During rebasing, the ordering was inverted causing the cuda version
selection logic to break, with driver version being evaluated as zero
incorrectly causing a downgrade to v11.
This adjusts linux to follow a similar model to windows with a discrete archive
(zip/tgz) to cary the primary executable, and dependent libraries. Runners are
still carried as payloads inside the main binary
Darwin retain the payload model where the go binary is fully self contained.
* llm: avoid loading model if system memory is too small
* update log
* Instrument swap free space
On linux and windows, expose how much swap space is available
so we can take that into consideration when scheduling models
* use `systemSwapFreeMemory` in check
---------
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
This adds logic to detect skew between the driver and
management library which can be attributed to OS overhead
and records that so we can adjust subsequent management
library free VRAM updates and avoid OOM scenarios.
Refine the way we log GPU discovery to improve the non-debug
output, and report more actionable log messages when possible
to help users troubleshoot on their own.
We update the PATH on windows to get the CLI mapped, but this has
an unintended side effect of causing other apps that may use our bundled
DLLs to get terminated when we upgrade.
Still not complete, needs some refinement to our prediction to understand the
discrete GPUs available space so we can see how many layers fit in each one
since we can't split one layer across multiple GPUs we can't treat free space
as one logical block
Trying to live off the land for cuda libraries was not the right strategy. We need to use the version we compiled against to ensure things work properly
This moves all the env var reading into one central module
and logs the loaded config once at startup which should
help in troubleshooting user server logs
This change adds support for multiple concurrent requests, as well as
loading multiple models by spawning multiple runners. The default
settings are currently set at 1 concurrent request per model and only 1
loaded model at a time, but these can be adjusted by setting
OLLAMA_NUM_PARALLEL and OLLAMA_MAX_LOADED_MODELS.
Leaving the cudart library loaded kept ~30m of memory
pinned in the GPU in the main process. This change ensures
we don't hold GPU resources when idle.
This refines where we extract the LLM libraries to by adding a new
OLLAMA_HOME env var, that defaults to `~/.ollama` The logic was already
idempotenent, so this should speed up startups after the first time a
new release is deployed. It also cleans up after itself.
We now build only a single ROCm version (latest major) on both windows
and linux. Given the large size of ROCms tensor files, we split the
dependency out. It's bundled into the installer on windows, and a
separate download on windows. The linux install script is now smart and
detects the presence of AMD GPUs and looks to see if rocm v6 is already
present, and if not, then downloads our dependency tar file.
For Linux discovery, we now use sysfs and check each GPU against what
ROCm supports so we can degrade to CPU gracefully instead of having
llama.cpp+rocm assert/crash on us. For Windows, we now use go's windows
dynamic library loading logic to access the amdhip64.dll APIs to query
the GPU information.
This wires up some new logic to start using sysfs to discover AMD GPU
information and detects old cards we can't yet support so we can fallback to CPU mode.