Improve multi-gpu handling at the limit
Still not complete, needs some refinement to our prediction to understand the discrete GPUs available space so we can see how many layers fit in each one since we can't split one layer across multiple GPUs we can't treat free space as one logical block
This commit is contained in:
parent
206797bda4
commit
6fd04ca922
11 changed files with 390 additions and 90 deletions
|
@ -27,7 +27,7 @@ const (
|
|||
GPUTotalMemoryFileGlob = "mem_banks/*/properties" // size_in_bytes line
|
||||
|
||||
// Direct Rendering Manager sysfs location
|
||||
DRMDeviceDirGlob = "/sys/class/drm/card[0-9]/device"
|
||||
DRMDeviceDirGlob = "/sys/class/drm/card*/device"
|
||||
DRMTotalMemoryFile = "mem_info_vram_total"
|
||||
DRMUsedMemoryFile = "mem_info_vram_used"
|
||||
|
||||
|
|
|
@ -246,10 +246,6 @@ func GetGPUInfo() GpuInfoList {
|
|||
return GpuInfoList{cpus[0].GpuInfo}
|
||||
}
|
||||
|
||||
// TODO - implement
|
||||
|
||||
// TODO refine the discovery to only gather total memory
|
||||
|
||||
// On windows we bundle the nvidia library one level above the runner dir
|
||||
depPath := ""
|
||||
if runtime.GOOS == "windows" && envconfig.RunnersDir != "" {
|
||||
|
|
|
@ -44,14 +44,14 @@ type CPUInfo struct {
|
|||
|
||||
type CudaGPUInfo struct {
|
||||
GpuInfo
|
||||
index int // device index
|
||||
index int // nolint: unused
|
||||
}
|
||||
type CudaGPUInfoList []CudaGPUInfo
|
||||
|
||||
type RocmGPUInfo struct {
|
||||
GpuInfo
|
||||
usedFilepath string // linux
|
||||
index int // device index on windows
|
||||
usedFilepath string // nolint: unused
|
||||
index int // nolint: unused
|
||||
}
|
||||
type RocmGPUInfoList []RocmGPUInfo
|
||||
|
||||
|
|
|
@ -38,7 +38,7 @@ func TestMultiModelConcurrency(t *testing.T) {
|
|||
}
|
||||
resp = [2][]string{
|
||||
[]string{"sunlight"},
|
||||
[]string{"england", "english", "massachusetts", "pilgrims"},
|
||||
[]string{"england", "english", "massachusetts", "pilgrims", "british"},
|
||||
}
|
||||
)
|
||||
var wg sync.WaitGroup
|
||||
|
@ -229,5 +229,23 @@ func TestMultiModelStress(t *testing.T) {
|
|||
}
|
||||
}(i)
|
||||
}
|
||||
go func() {
|
||||
for {
|
||||
time.Sleep(2 * time.Second)
|
||||
select {
|
||||
case <-ctx.Done():
|
||||
return
|
||||
default:
|
||||
models, err := client.ListRunning(ctx)
|
||||
if err != nil {
|
||||
slog.Warn("failed to list running models", "error", err)
|
||||
continue
|
||||
}
|
||||
for _, m := range models.Models {
|
||||
slog.Info("loaded model snapshot", "model", m)
|
||||
}
|
||||
}
|
||||
}
|
||||
}()
|
||||
wg.Wait()
|
||||
}
|
||||
|
|
|
@ -11,7 +11,7 @@ import (
|
|||
)
|
||||
|
||||
func TestContextExhaustion(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute) // TODO maybe shorter?
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 4*time.Minute) // Longer needed for small footprint GPUs
|
||||
defer cancel()
|
||||
// Set up the test data
|
||||
req := api.GenerateRequest{
|
||||
|
|
|
@ -331,7 +331,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
|
|||
[][]string{
|
||||
[]string{"sunlight"},
|
||||
[]string{"soil", "organic", "earth", "black", "tan"},
|
||||
[]string{"england", "english", "massachusetts", "pilgrims"},
|
||||
[]string{"england", "english", "massachusetts", "pilgrims", "british"},
|
||||
[]string{"fourth", "july", "declaration", "independence"},
|
||||
[]string{"nitrogen", "oxygen", "carbon", "dioxide"},
|
||||
}
|
||||
|
|
|
@ -307,6 +307,7 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
|
|||
|
||||
partialOffload = 4 * batch * embedding
|
||||
partialOffload += max(
|
||||
// 4*batch*(4+6*embedding+context*(2*heads)+llm.KV().GQA()),
|
||||
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embedding/heads*headsKV),
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
)
|
||||
|
|
267
llm/memory.go
267
llm/memory.go
|
@ -3,9 +3,10 @@ package llm
|
|||
import (
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/gpu"
|
||||
)
|
||||
|
@ -16,7 +17,8 @@ func PredictServerFit(allGpus gpu.GpuInfoList, ggml *GGML, adapters, projectors
|
|||
var estimatedVRAM uint64
|
||||
for _, gpus := range allGpus.ByLibrary() {
|
||||
var layerCount int
|
||||
layerCount, estimatedVRAM, _ = EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||
layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
|
||||
if opts.NumGPU < 0 {
|
||||
if layerCount > 0 && layerCount >= int(ggml.KV().BlockCount()+1) {
|
||||
return true, estimatedVRAM
|
||||
|
@ -30,24 +32,68 @@ func PredictServerFit(allGpus gpu.GpuInfoList, ggml *GGML, adapters, projectors
|
|||
return false, estimatedVRAM
|
||||
}
|
||||
|
||||
type MemoryEstimate struct {
|
||||
// How many layers we predict we can load
|
||||
Layers int
|
||||
|
||||
// The size of the graph which occupies the main GPU
|
||||
Graph uint64
|
||||
|
||||
// How much VRAM will be allocated given the number of layers we predict
|
||||
VRAMSize uint64
|
||||
|
||||
// The total size of the model if loaded into VRAM. If all layers are loaded, VRAMSize == TotalSize
|
||||
TotalSize uint64
|
||||
|
||||
// For multi-GPU scenarios, this provides the tensor split parameter
|
||||
TensorSplit string
|
||||
|
||||
// For multi-GPU scenarios, this is the size in bytes per GPU
|
||||
GPUSizes []uint64
|
||||
}
|
||||
|
||||
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
|
||||
// The GPUs provided must all be the same Library
|
||||
func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts api.Options) (int, uint64, uint64) {
|
||||
var memoryAvailable uint64
|
||||
for _, info := range gpus {
|
||||
memoryAvailable += info.FreeMemory
|
||||
}
|
||||
if envconfig.MaxVRAM > 0 {
|
||||
memoryAvailable = envconfig.MaxVRAM
|
||||
}
|
||||
func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts api.Options) MemoryEstimate {
|
||||
// Graph size for a partial offload, applies to all GPUs
|
||||
var graphPartialOffload uint64
|
||||
|
||||
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", format.HumanBytes2(memoryAvailable))
|
||||
// Graph size when all layers are offloaded, applies to all GPUs
|
||||
var graphFullOffload uint64
|
||||
|
||||
// TODO - this is probably wrong, first GPU vs secondaries will have different overheads
|
||||
memoryMinimum := gpus[0].MinimumMemory
|
||||
// Final graph offload once we know full or partial
|
||||
var graphOffload uint64
|
||||
|
||||
// Projectors loaded into GPU0 only
|
||||
var projectorSize uint64
|
||||
|
||||
// Conditional output size on GPU 0
|
||||
var memoryLayerOutput uint64
|
||||
var includeOutput bool
|
||||
|
||||
// One extra layer as a pad for each GPU
|
||||
var layerBuffer uint64
|
||||
|
||||
// The sizes of the main layers
|
||||
var layerSizes []uint64
|
||||
|
||||
// The sum of all the layer sizes (just for logging)
|
||||
var memoryWeights uint64
|
||||
|
||||
// True if all the layers are loaded
|
||||
var fullyLoaded bool
|
||||
|
||||
// Overflow that didn't fit into the GPU
|
||||
var overflow uint64
|
||||
|
||||
availableList := make([]string, len(gpus))
|
||||
for i, gpu := range gpus {
|
||||
availableList[i] = format.HumanBytes2(gpu.FreeMemory)
|
||||
}
|
||||
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", availableList)
|
||||
|
||||
for _, projector := range projectors {
|
||||
memoryMinimum += projectorMemoryRequirements(projector)
|
||||
projectorSize += projectorMemoryRequirements(projector)
|
||||
|
||||
// multimodal models require at least 2048 context
|
||||
opts.NumCtx = max(opts.NumCtx, 2048)
|
||||
|
@ -56,40 +102,28 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
|||
layers := ggml.Tensors().Layers()
|
||||
// add one layer worth of memory as a buffer
|
||||
if blk0, ok := layers["blk.0"]; ok {
|
||||
memoryMinimum += blk0.size()
|
||||
layerBuffer = blk0.size()
|
||||
}
|
||||
|
||||
// fp16 k,v = (1 (k) + 1 (v)) * sizeof(float16) * n_ctx * n_layer * n_embd / n_head * n_head_kv
|
||||
var kv uint64 = 2 * 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * ggml.KV().EmbeddingLength() / ggml.KV().HeadCount() * ggml.KV().HeadCountKV()
|
||||
|
||||
graphPartialOffload, graphFullOffload := ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
|
||||
graphPartialOffload, graphFullOffload = ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
|
||||
if graphPartialOffload == 0 {
|
||||
graphPartialOffload = ggml.KV().GQA() * kv / 6
|
||||
}
|
||||
|
||||
if graphFullOffload == 0 {
|
||||
graphFullOffload = graphPartialOffload
|
||||
}
|
||||
|
||||
graphFullOffload *= uint64(len(gpus))
|
||||
graphPartialOffload *= uint64(len(gpus))
|
||||
|
||||
// on metal there's no partial offload overhead
|
||||
if gpus[0].Library == "metal" {
|
||||
graphPartialOffload = graphFullOffload
|
||||
}
|
||||
|
||||
// memoryRequiredTotal represents the memory required for full GPU offloading (all layers)
|
||||
memoryRequiredTotal := memoryMinimum + graphFullOffload
|
||||
|
||||
// memoryRequiredPartial represents the memory required for partial GPU offloading (n > 0, n < layers)
|
||||
memoryRequiredPartial := memoryMinimum + graphPartialOffload
|
||||
|
||||
var memoryLayerOutput uint64
|
||||
if layer, ok := layers["output_norm"]; ok {
|
||||
memoryLayerOutput += layer.size()
|
||||
}
|
||||
|
||||
if layer, ok := layers["output"]; ok {
|
||||
memoryLayerOutput += layer.size()
|
||||
} else if layer, ok := layers["token_embd"]; ok {
|
||||
|
@ -97,38 +131,144 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
|||
}
|
||||
|
||||
if gpus[0].Library == "metal" && opts.UseMMap {
|
||||
// memory is preallocated for output tensors
|
||||
memoryRequiredTotal += memoryLayerOutput
|
||||
memoryRequiredPartial += memoryLayerOutput
|
||||
includeOutput = true
|
||||
} else if gpus[0].Library != "metal" || !opts.UseMMap {
|
||||
includeOutput = true
|
||||
}
|
||||
|
||||
gpuZeroOverhead := projectorSize
|
||||
if includeOutput {
|
||||
gpuZeroOverhead += memoryLayerOutput
|
||||
}
|
||||
|
||||
// Reduce set of GPUs to only those that have sufficient space to fit overhead and at least one layer
|
||||
var layerCount int
|
||||
layerCounts := make([]int, len(gpus))
|
||||
gpuAllocations := make([]uint64, len(gpus))
|
||||
type gs struct {
|
||||
i int
|
||||
g *gpu.GpuInfo
|
||||
}
|
||||
gpusWithSpace := []gs{}
|
||||
for i := range gpus {
|
||||
var gzo uint64
|
||||
if len(gpusWithSpace) == 0 {
|
||||
gzo = gpuZeroOverhead
|
||||
}
|
||||
// Only include GPUs that can fit the graph, gpu minimum, the layer buffer and at least more layer
|
||||
if gpus[i].FreeMemory < gzo+max(graphPartialOffload, graphFullOffload)+gpus[i].MinimumMemory+2*layerBuffer {
|
||||
slog.Debug("gpu has too little memory to allocate any layers", "gpu", gpus[i])
|
||||
continue
|
||||
}
|
||||
gpusWithSpace = append(gpusWithSpace, gs{i, &gpus[i]})
|
||||
gpuAllocations[i] += gpus[i].MinimumMemory + layerBuffer // We hold off on graph until we know partial vs. full
|
||||
}
|
||||
|
||||
var gpuZeroID int
|
||||
if len(gpusWithSpace) > 0 {
|
||||
gpuZeroID = gpusWithSpace[0].i
|
||||
gpuAllocations[gpuZeroID] += gpuZeroOverhead
|
||||
}
|
||||
|
||||
layerSizes = make([]uint64, int(ggml.KV().BlockCount()))
|
||||
for i := range int(ggml.KV().BlockCount()) {
|
||||
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
|
||||
memoryLayer := blk.size()
|
||||
|
||||
// KV is proportional to the number of layers
|
||||
memoryLayer += kv / ggml.KV().BlockCount()
|
||||
|
||||
memoryRequiredTotal += memoryLayer
|
||||
if (opts.NumGPU >= 0 && layerCount+1 <= opts.NumGPU) || (opts.NumGPU < 0 && memoryAvailable > memoryRequiredPartial+memoryLayer) {
|
||||
memoryRequiredPartial += memoryLayer
|
||||
layerCount++
|
||||
}
|
||||
layerSizes[i] = memoryLayer
|
||||
memoryWeights += memoryLayer
|
||||
}
|
||||
}
|
||||
|
||||
if gpus[0].Library != "metal" || !opts.UseMMap {
|
||||
// memory was not preallocated for output tensors
|
||||
memoryRequiredTotal += memoryLayerOutput
|
||||
// For all the layers, find where they can fit on the GPU(s)
|
||||
for i := range layerSizes {
|
||||
if layerSizes[i] == 0 {
|
||||
continue
|
||||
}
|
||||
if opts.NumGPU >= 0 && layerCount >= opts.NumGPU {
|
||||
// Stop allocating on GPU(s) once we hit the users target NumGPU
|
||||
continue
|
||||
}
|
||||
|
||||
// distribute the layers across the GPU(s) that have space
|
||||
for j := len(gpusWithSpace); j > 0; j-- {
|
||||
g := gpusWithSpace[i%j]
|
||||
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
|
||||
if g.g.FreeMemory > used+layerSizes[i] {
|
||||
gpuAllocations[g.i] += layerSizes[i]
|
||||
layerCounts[g.i]++
|
||||
layerCount++
|
||||
break
|
||||
} else {
|
||||
gpusWithSpace = append(gpusWithSpace[:i%j], gpusWithSpace[i%j+1:]...)
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
if layerCount >= int(ggml.KV().BlockCount()) {
|
||||
fullyLoaded = true
|
||||
} else {
|
||||
for i := layerCount; i < int(ggml.KV().BlockCount()); i++ {
|
||||
overflow += layerSizes[i]
|
||||
}
|
||||
}
|
||||
// Find where the output fits
|
||||
if includeOutput && memoryLayerOutput > 0 && (opts.NumGPU < 0 || layerCount < opts.NumGPU) {
|
||||
for j := len(gpusWithSpace); j > 0; j-- {
|
||||
g := gpusWithSpace[layerCount%j]
|
||||
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
|
||||
if g.g.FreeMemory > used+memoryLayerOutput {
|
||||
gpuAllocations[g.i] += memoryLayerOutput
|
||||
layerCounts[g.i]++
|
||||
layerCount++
|
||||
break
|
||||
}
|
||||
}
|
||||
if layerCount < int(ggml.KV().BlockCount())+1 {
|
||||
fullyLoaded = false
|
||||
overflow += memoryLayerOutput
|
||||
}
|
||||
}
|
||||
|
||||
if (opts.NumGPU >= 0 && layerCount+1 <= opts.NumGPU) || (opts.NumGPU < 0 && memoryAvailable > memoryRequiredTotal) {
|
||||
layerCount = int(ggml.KV().BlockCount()) + 1
|
||||
memoryRequiredPartial = memoryRequiredTotal
|
||||
// Add the applicable (full or partial) graph allocations
|
||||
for i := range gpus {
|
||||
if layerCounts[i] <= 0 {
|
||||
continue
|
||||
}
|
||||
if fullyLoaded {
|
||||
gpuAllocations[i] += graphFullOffload
|
||||
} else {
|
||||
gpuAllocations[i] += graphPartialOffload
|
||||
}
|
||||
}
|
||||
if fullyLoaded {
|
||||
graphOffload = graphFullOffload
|
||||
} else {
|
||||
graphOffload = graphPartialOffload
|
||||
}
|
||||
|
||||
memoryWeights := memoryRequiredTotal - memoryMinimum - graphFullOffload - kv
|
||||
// Summaries for the log
|
||||
var memoryRequiredPartial, memoryRequiredTotal uint64
|
||||
for i := range gpuAllocations {
|
||||
memoryRequiredPartial += gpuAllocations[i]
|
||||
|
||||
}
|
||||
memoryRequiredTotal = memoryRequiredPartial + overflow
|
||||
|
||||
tensorSplit := ""
|
||||
if len(gpus) > 1 {
|
||||
splits := make([]string, len(gpus))
|
||||
for i, count := range layerCounts {
|
||||
splits[i] = strconv.Itoa(count)
|
||||
}
|
||||
tensorSplit = strings.Join(splits, ",")
|
||||
}
|
||||
allocationsList := []string{}
|
||||
for _, a := range gpuAllocations {
|
||||
allocationsList = append(allocationsList, format.HumanBytes2(a))
|
||||
}
|
||||
|
||||
slog.Info(
|
||||
"offload to gpu",
|
||||
|
@ -136,13 +276,17 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
|||
"layers",
|
||||
// requested number of layers to offload
|
||||
"requested", opts.NumGPU,
|
||||
// The number of layers the model has (including output)
|
||||
"model", int(ggml.KV().BlockCount())+1,
|
||||
// estimated number of layers that can be offloaded
|
||||
"real", layerCount,
|
||||
"offload", layerCount,
|
||||
// multi-gpu split for tesnors
|
||||
"split", tensorSplit,
|
||||
),
|
||||
slog.Group(
|
||||
"memory",
|
||||
// memory available for offloading
|
||||
"available", format.HumanBytes2(memoryAvailable),
|
||||
// memory available by GPU for offloading
|
||||
"available", availableList,
|
||||
slog.Group(
|
||||
"required",
|
||||
// memory required for full offloading
|
||||
|
@ -151,6 +295,8 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
|||
"partial", format.HumanBytes2(memoryRequiredPartial),
|
||||
// memory of KV cache
|
||||
"kv", format.HumanBytes2(kv),
|
||||
// Allocations across the GPUs
|
||||
"allocations", allocationsList,
|
||||
),
|
||||
slog.Group(
|
||||
"weights",
|
||||
|
@ -171,12 +317,31 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
|||
),
|
||||
)
|
||||
if gpus[0].Library == "cpu" {
|
||||
return 0, 0, memoryRequiredTotal
|
||||
return MemoryEstimate{
|
||||
Layers: 0,
|
||||
Graph: 0,
|
||||
VRAMSize: 0,
|
||||
TotalSize: memoryRequiredTotal,
|
||||
GPUSizes: []uint64{},
|
||||
}
|
||||
}
|
||||
if memoryRequiredPartial > memoryAvailable {
|
||||
if layerCount == 0 {
|
||||
slog.Debug("insufficient VRAM to load any model layers")
|
||||
return 0, 0, memoryRequiredTotal
|
||||
return MemoryEstimate{
|
||||
Layers: 0,
|
||||
Graph: 0,
|
||||
VRAMSize: 0,
|
||||
TotalSize: memoryRequiredTotal,
|
||||
GPUSizes: []uint64{},
|
||||
}
|
||||
}
|
||||
|
||||
return layerCount, memoryRequiredPartial, memoryRequiredTotal
|
||||
return MemoryEstimate{
|
||||
Layers: layerCount,
|
||||
Graph: graphOffload,
|
||||
VRAMSize: memoryRequiredPartial,
|
||||
TotalSize: memoryRequiredTotal,
|
||||
TensorSplit: tensorSplit,
|
||||
GPUSizes: gpuAllocations,
|
||||
}
|
||||
}
|
||||
|
|
116
llm/memory_test.go
Normal file
116
llm/memory_test.go
Normal file
|
@ -0,0 +1,116 @@
|
|||
package llm
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
"os"
|
||||
"testing"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/gpu"
|
||||
"github.com/stretchr/testify/assert"
|
||||
"github.com/stretchr/testify/require"
|
||||
)
|
||||
|
||||
func TestEstimateGPULayers(t *testing.T) {
|
||||
envconfig.Debug = true
|
||||
modelName := "dummy"
|
||||
f, err := os.CreateTemp(t.TempDir(), modelName)
|
||||
assert.Nil(t, err)
|
||||
defer f.Close()
|
||||
gguf := NewGGUFV3(binary.LittleEndian)
|
||||
inputLayerCount := 5
|
||||
tensors := []Tensor{
|
||||
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
|
||||
{Name: "blk.1.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
|
||||
{Name: "blk.2.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
|
||||
{Name: "blk.3.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
|
||||
{Name: "blk.4.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
|
||||
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
|
||||
}
|
||||
assert.Equal(t, inputLayerCount+1, len(tensors))
|
||||
err = gguf.Encode(f, KV{
|
||||
"general.architecture": "llama",
|
||||
"general.name": "name",
|
||||
"llama.context_length": uint32(32),
|
||||
"llama.embedding_length": uint32(4096),
|
||||
"llama.block_count": uint32(inputLayerCount),
|
||||
"llama.attention.head_count": uint32(32),
|
||||
"llama.attention.head_count_kv": uint32(32),
|
||||
"tokenizer.ggml.tokens": []string{" "},
|
||||
"tokenizer.ggml.scores": []float32{0},
|
||||
"tokenizer.ggml.token_type": []int32{0},
|
||||
}, tensors)
|
||||
require.NoError(t, err)
|
||||
|
||||
ggml, err := LoadModel(f.Name())
|
||||
require.NoError(t, err)
|
||||
|
||||
// Simple CPU scenario
|
||||
gpus := []gpu.GpuInfo{
|
||||
{
|
||||
Library: "cpu",
|
||||
},
|
||||
}
|
||||
projectors := []string{}
|
||||
opts := api.DefaultOptions()
|
||||
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||
assert.Equal(t, 0, estimate.Layers)
|
||||
assert.Equal(t, uint64(0), estimate.Graph)
|
||||
|
||||
// derived from the dummy ggml file above
|
||||
graphPartialOffload := uint64(202377216)
|
||||
graphFullOffload := uint64(171968512)
|
||||
layerSize := uint64(33554436)
|
||||
projectorSize := uint64(0)
|
||||
memoryLayerOutput := uint64(4)
|
||||
|
||||
// Dual CUDA scenario with assymetry
|
||||
gpuMinimumMemory := uint64(2048)
|
||||
gpus = []gpu.GpuInfo{
|
||||
{
|
||||
Library: "cuda",
|
||||
MinimumMemory: gpuMinimumMemory,
|
||||
},
|
||||
{
|
||||
Library: "cuda",
|
||||
MinimumMemory: gpuMinimumMemory,
|
||||
},
|
||||
}
|
||||
// Nested array: GPU0 layer space, GPU1 layer space, expected gpu0, expected gpu1
|
||||
for i, s := range [][]uint64{
|
||||
{1, 1, 1, 1},
|
||||
{2, 1, 2, 1},
|
||||
{2, 2, 2, 2},
|
||||
{1, 2, 1, 2},
|
||||
{3, 3, 3, 3},
|
||||
{4, 4, 3, 3},
|
||||
{6, 6, 3, 3},
|
||||
{0, 3, 0, 3},
|
||||
} {
|
||||
gpus[0].FreeMemory = 0
|
||||
gpus[1].FreeMemory = 0
|
||||
gpus[0].FreeMemory += projectorSize + memoryLayerOutput
|
||||
gpus[0].FreeMemory += gpuMinimumMemory + layerSize + s[0]*layerSize + 1
|
||||
gpus[1].FreeMemory += gpuMinimumMemory + layerSize + s[1]*layerSize + 1
|
||||
gpus[0].FreeMemory += max(graphFullOffload, graphPartialOffload)
|
||||
gpus[1].FreeMemory += max(graphFullOffload, graphPartialOffload)
|
||||
estimate = EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||
assert.Equal(t, int(s[2]+s[3]), estimate.Layers, "scenario %d: %v", i, s)
|
||||
assert.Equal(t, fmt.Sprintf("%d,%d", s[2], s[3]), estimate.TensorSplit, "scenario %d: %v", i, s)
|
||||
var layerSums uint64
|
||||
for _, b := range estimate.GPUSizes {
|
||||
layerSums += b
|
||||
}
|
||||
if estimate.Layers < inputLayerCount+1 {
|
||||
assert.Less(t, estimate.VRAMSize, estimate.TotalSize, "scenario %d: %v %+v", i, s, estimate)
|
||||
assert.Equal(t, estimate.VRAMSize, layerSums, "scenario %d: %v %+v", i, s, estimate)
|
||||
} else {
|
||||
assert.Equal(t, estimate.VRAMSize, estimate.TotalSize, "scenario %d: %v %+v", i, s, estimate)
|
||||
assert.Equal(t, estimate.TotalSize, layerSums, "scenario %d: %v %+v", i, s, estimate)
|
||||
}
|
||||
}
|
||||
|
||||
}
|
|
@ -49,13 +49,11 @@ type llmServer struct {
|
|||
status *StatusWriter
|
||||
options api.Options
|
||||
|
||||
// TODO - this should be broken down by GPU
|
||||
estimatedVRAM uint64 // Estimated usage of VRAM by the loaded model
|
||||
estimatedTotal uint64 // Total size of model
|
||||
totalLayers uint64
|
||||
gpuCount int
|
||||
loadDuration time.Duration // Record how long it took the model to load
|
||||
loadProgress float32
|
||||
estimate MemoryEstimate
|
||||
totalLayers uint64
|
||||
gpuCount int
|
||||
loadDuration time.Duration // Record how long it took the model to load
|
||||
loadProgress float32
|
||||
|
||||
sem *semaphore.Weighted
|
||||
}
|
||||
|
@ -80,8 +78,7 @@ func LoadModel(model string) (*GGML, error) {
|
|||
func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, projectors []string, opts api.Options) (LlamaServer, error) {
|
||||
var err error
|
||||
var cpuRunner string
|
||||
var estimatedVRAM uint64
|
||||
var estimatedTotal uint64
|
||||
var estimate MemoryEstimate
|
||||
var systemMemory uint64
|
||||
gpuCount := len(gpus)
|
||||
if (len(gpus) == 1 && gpus[0].Library == "cpu") || opts.NumGPU == 0 {
|
||||
|
@ -89,7 +86,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
|||
|
||||
cpuRunner = serverForCpu()
|
||||
gpuCount = 0
|
||||
_, _, estimatedTotal = EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||
estimate = EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||
} else {
|
||||
if gpus[0].Library == "metal" {
|
||||
memInfo, err := gpu.GetCPUMem()
|
||||
|
@ -100,20 +97,19 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
|||
slog.Debug("system memory", "total", format.HumanBytes2(systemMemory))
|
||||
}
|
||||
}
|
||||
var layers int
|
||||
layers, estimatedVRAM, estimatedTotal = EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||
estimate = EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||
|
||||
switch {
|
||||
case gpus[0].Library == "metal" && estimatedVRAM > systemMemory:
|
||||
case gpus[0].Library == "metal" && estimate.VRAMSize > systemMemory:
|
||||
// disable partial offloading when model is greater than total system memory as this
|
||||
// can lead to locking up the system
|
||||
opts.NumGPU = 0
|
||||
case gpus[0].Library != "metal" && layers == 0:
|
||||
case gpus[0].Library != "metal" && estimate.Layers == 0:
|
||||
// Don't bother loading into the GPU if no layers can fit
|
||||
cpuRunner = serverForCpu()
|
||||
gpuCount = 0
|
||||
case opts.NumGPU < 0 && layers > 0 && gpus[0].Library != "cpu":
|
||||
opts.NumGPU = layers
|
||||
case opts.NumGPU < 0 && estimate.Layers > 0 && gpus[0].Library != "cpu":
|
||||
opts.NumGPU = estimate.Layers
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -232,6 +228,14 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
|||
|
||||
params = append(params, "--parallel", fmt.Sprintf("%d", numParallel))
|
||||
|
||||
if estimate.TensorSplit != "" {
|
||||
params = append(params, "--tensor-split", estimate.TensorSplit)
|
||||
}
|
||||
|
||||
if estimate.TensorSplit != "" {
|
||||
params = append(params, "--tensor-split", estimate.TensorSplit)
|
||||
}
|
||||
|
||||
for i := range len(servers) {
|
||||
dir := availableServers[servers[i]]
|
||||
if dir == "" {
|
||||
|
@ -299,16 +303,15 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
|||
}
|
||||
|
||||
s := &llmServer{
|
||||
port: port,
|
||||
cmd: exec.Command(server, finalParams...),
|
||||
status: NewStatusWriter(os.Stderr),
|
||||
options: opts,
|
||||
estimatedVRAM: estimatedVRAM,
|
||||
estimatedTotal: estimatedTotal,
|
||||
sem: semaphore.NewWeighted(int64(numParallel)),
|
||||
totalLayers: ggml.KV().BlockCount() + 1,
|
||||
gpuCount: gpuCount,
|
||||
done: make(chan error, 1),
|
||||
port: port,
|
||||
cmd: exec.Command(server, finalParams...),
|
||||
status: NewStatusWriter(os.Stderr),
|
||||
options: opts,
|
||||
estimate: estimate,
|
||||
sem: semaphore.NewWeighted(int64(numParallel)),
|
||||
totalLayers: ggml.KV().BlockCount() + 1,
|
||||
gpuCount: gpuCount,
|
||||
done: make(chan error, 1),
|
||||
}
|
||||
|
||||
s.cmd.Env = os.Environ()
|
||||
|
@ -1004,11 +1007,11 @@ func (s *llmServer) Close() error {
|
|||
}
|
||||
|
||||
func (s *llmServer) EstimatedVRAM() uint64 {
|
||||
return s.estimatedVRAM
|
||||
return s.estimate.VRAMSize
|
||||
}
|
||||
|
||||
func (s *llmServer) EstimatedTotal() uint64 {
|
||||
return s.estimatedTotal
|
||||
return s.estimate.TotalSize
|
||||
}
|
||||
|
||||
func parseDurationMs(ms float64) time.Duration {
|
||||
|
|
|
@ -129,6 +129,7 @@ func newScenario(t *testing.T, ctx context.Context, modelName string, estimatedV
|
|||
"tokenizer.ggml.token_type": []int32{0},
|
||||
}, []llm.Tensor{
|
||||
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
|
||||
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
|
||||
})
|
||||
require.NoError(t, err)
|
||||
|
||||
|
|
Loading…
Reference in a new issue