* Initial Batch Embedding
* Revert "Initial Batch Embedding"
This reverts commit c22d54895a280b54c727279d85a5fc94defb5a29.
* Initial Draft
* mock up notes
* api/embed draft
* add server function
* check normalization
* clean up
* normalization
* playing around with truncate stuff
* Truncation
* Truncation
* move normalization to go
* Integration Test Template
* Truncation Integration Tests
* Clean up
* use float32
* move normalize
* move normalize test
* refactoring
* integration float32
* input handling and handler testing
* Refactoring of legacy and new
* clear comments
* merge conflicts
* touches
* embedding type 64
* merge conflicts
* fix hanging on single string
* refactoring
* test values
* set context length
* clean up
* testing clean up
* testing clean up
* remove function closure
* Revert "remove function closure"
This reverts commit 55d48c6ed17abe42e7a122e69d603ef0c1506787.
* remove function closure
* remove redundant error check
* clean up
* more clean up
* clean up
* llm: avoid loading model if system memory is too small
* update log
* Instrument swap free space
On linux and windows, expose how much swap space is available
so we can take that into consideration when scheduling models
* use `systemSwapFreeMemory` in check
---------
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
This also adjusts our algorithm to favor our bundled ROCm.
I've confirmed VRAM reporting still doesn't work properly so we
can't yet enable concurrency by default.
When ollama is running a long time, tmp cleaners can remove the
runners. This tightens up a few corner cases on arm macs where
we failed with "server cpu not listed in available servers map[]"
On windows, if the model dir contained unicode characters
clip models would fail to load. This fixes the file name
handling in clip.cpp to support utf16 on windows.
Previously, some costly things were causing the loading of GGUF files
and their metadata and tensor information to be VERY slow:
* Too many allocations when decoding strings
* Hitting disk for each read of each key and value, resulting in a
not-okay amount of syscalls/disk I/O.
The show API is now down to 33ms from 800ms+ for llama3 on a macbook pro
m3.
This commit also prevents collecting large arrays of values when
decoding GGUFs (if desired). When such keys are encountered, their
values are null, and are encoded as such in JSON.
Also, this fixes a broken test that was not encoding valid GGUF.
This adjusts our default settings to enable multiple models and parallel
requests to a single model. Users can still override these by the same
env var settings as before. Parallel has a direct impact on
num_ctx, which in turn can have a significant impact on small VRAM GPUs
so this change also refines the algorithm so that when parallel is not
explicitly set by the user, we try to find a reasonable default that fits
the model on their GPU(s). As before, multiple models will only load
concurrently if they fully fit in VRAM.
The recent refactoring of the memory prediction assumed all layers
are the same size, but for some models (like deepseek-coder-v2) this
is not the case, so our predictions were significantly off.
Prior to this change, we logged the memory prediction multiple times
as the scheduler iterates to find a suitable configuration, which can be
confusing since only the last log before the server starts is actually valid.
This now logs once just before starting the server on the final configuration.
It also reports what library instead of always saying "offloading to gpu" when
using CPU.
On Windows, recent llama.cpp changes make mmap slower in most
cases, so default to off. This also implements a tri-state for
use_mmap so we can detect the difference between a user provided
value of true/false, or unspecified.
We update the PATH on windows to get the CLI mapped, but this has
an unintended side effect of causing other apps that may use our bundled
DLLs to get terminated when we upgrade.
Still not complete, needs some refinement to our prediction to understand the
discrete GPUs available space so we can see how many layers fit in each one
since we can't split one layer across multiple GPUs we can't treat free space
as one logical block
On some systems, 1 minute isn't sufficient to finish the load after it
hits 100% This creates 2 distinct timers, although they're both set to
the same value for now so we can refine the timeouts further.