Merge pull request #4218 from dhiltgen/auto_parallel
Enable concurrency by default
This commit is contained in:
commit
3518aaef33
7 changed files with 175 additions and 73 deletions
|
@ -85,13 +85,13 @@ func AsMap() map[string]EnvVar {
|
|||
"OLLAMA_HOST": {"OLLAMA_HOST", Host, "IP Address for the ollama server (default 127.0.0.1:11434)"},
|
||||
"OLLAMA_KEEP_ALIVE": {"OLLAMA_KEEP_ALIVE", KeepAlive, "The duration that models stay loaded in memory (default \"5m\")"},
|
||||
"OLLAMA_LLM_LIBRARY": {"OLLAMA_LLM_LIBRARY", LLMLibrary, "Set LLM library to bypass autodetection"},
|
||||
"OLLAMA_MAX_LOADED_MODELS": {"OLLAMA_MAX_LOADED_MODELS", MaxRunners, "Maximum number of loaded models (default 1)"},
|
||||
"OLLAMA_MAX_LOADED_MODELS": {"OLLAMA_MAX_LOADED_MODELS", MaxRunners, "Maximum number of loaded models per GPU (default auto)"},
|
||||
"OLLAMA_MAX_QUEUE": {"OLLAMA_MAX_QUEUE", MaxQueuedRequests, "Maximum number of queued requests"},
|
||||
"OLLAMA_MAX_VRAM": {"OLLAMA_MAX_VRAM", MaxVRAM, "Maximum VRAM"},
|
||||
"OLLAMA_MODELS": {"OLLAMA_MODELS", ModelsDir, "The path to the models directory"},
|
||||
"OLLAMA_NOHISTORY": {"OLLAMA_NOHISTORY", NoHistory, "Do not preserve readline history"},
|
||||
"OLLAMA_NOPRUNE": {"OLLAMA_NOPRUNE", NoPrune, "Do not prune model blobs on startup"},
|
||||
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel, "Maximum number of parallel requests (default 1)"},
|
||||
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel, "Maximum number of parallel requests (default auto)"},
|
||||
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", AllowOrigins, "A comma separated list of allowed origins"},
|
||||
"OLLAMA_RUNNERS_DIR": {"OLLAMA_RUNNERS_DIR", RunnersDir, "Location for runners"},
|
||||
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread, "Always schedule model across all GPUs"},
|
||||
|
@ -129,8 +129,8 @@ func clean(key string) string {
|
|||
|
||||
func init() {
|
||||
// default values
|
||||
NumParallel = 1
|
||||
MaxRunners = 1
|
||||
NumParallel = 0 // Autoselect
|
||||
MaxRunners = 0 // Autoselect
|
||||
MaxQueuedRequests = 512
|
||||
|
||||
LoadConfig()
|
||||
|
@ -205,8 +205,8 @@ func LoadConfig() {
|
|||
|
||||
if onp := clean("OLLAMA_NUM_PARALLEL"); onp != "" {
|
||||
val, err := strconv.Atoi(onp)
|
||||
if err != nil || val <= 0 {
|
||||
slog.Error("invalid setting must be greater than zero", "OLLAMA_NUM_PARALLEL", onp, "error", err)
|
||||
if err != nil {
|
||||
slog.Error("invalid setting, ignoring", "OLLAMA_NUM_PARALLEL", onp, "error", err)
|
||||
} else {
|
||||
NumParallel = val
|
||||
}
|
||||
|
@ -251,7 +251,7 @@ func LoadConfig() {
|
|||
if maxRunners != "" {
|
||||
m, err := strconv.Atoi(maxRunners)
|
||||
if err != nil {
|
||||
slog.Error("invalid setting", "OLLAMA_MAX_LOADED_MODELS", maxRunners, "error", err)
|
||||
slog.Error("invalid setting, ignoring", "OLLAMA_MAX_LOADED_MODELS", maxRunners, "error", err)
|
||||
} else {
|
||||
MaxRunners = m
|
||||
}
|
||||
|
@ -260,7 +260,7 @@ func LoadConfig() {
|
|||
if onp := os.Getenv("OLLAMA_MAX_QUEUE"); onp != "" {
|
||||
p, err := strconv.Atoi(onp)
|
||||
if err != nil || p <= 0 {
|
||||
slog.Error("invalid setting", "OLLAMA_MAX_QUEUE", onp, "error", err)
|
||||
slog.Error("invalid setting, ignoring", "OLLAMA_MAX_QUEUE", onp, "error", err)
|
||||
} else {
|
||||
MaxQueuedRequests = p
|
||||
}
|
||||
|
|
|
@ -115,8 +115,6 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
|||
continue
|
||||
}
|
||||
|
||||
// TODO revisit this once ROCm v6 is available on windows.
|
||||
// v5.7 only reports VRAM used by this process, so it's completely wrong and unusable
|
||||
slog.Debug("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory))
|
||||
slog.Debug("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory))
|
||||
gpuInfo := RocmGPUInfo{
|
||||
|
@ -126,6 +124,9 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
|||
TotalMemory: totalMemory,
|
||||
FreeMemory: freeMemory,
|
||||
},
|
||||
// Free memory reporting on Windows is not reliable until we bump to ROCm v6.2
|
||||
UnreliableFreeMemory: true,
|
||||
|
||||
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
|
||||
DependencyPath: libDir,
|
||||
MinimumMemory: rocmMinimumMemory,
|
||||
|
|
|
@ -29,6 +29,11 @@ type GpuInfo struct {
|
|||
// Extra environment variables specific to the GPU as list of [key,value]
|
||||
EnvWorkarounds [][2]string `json:"envs,omitempty"`
|
||||
|
||||
// Set to true if we can NOT reliably discover FreeMemory. A value of true indicates
|
||||
// the FreeMemory is best effort, and may over or under report actual memory usage
|
||||
// False indicates FreeMemory can generally be trusted on this GPU
|
||||
UnreliableFreeMemory bool
|
||||
|
||||
// GPU information
|
||||
ID string `json:"gpu_id"` // string to use for selection of this specific GPU
|
||||
Name string `json:"name"` // user friendly name if available
|
||||
|
|
|
@ -82,7 +82,7 @@ func LoadModel(model string, maxArraySize int) (*GGML, error) {
|
|||
|
||||
// NewLlamaServer will run a server for the given GPUs
|
||||
// The gpu list must be a single family.
|
||||
func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, projectors []string, opts api.Options) (LlamaServer, error) {
|
||||
func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
|
||||
var err error
|
||||
var cpuRunner string
|
||||
var estimate MemoryEstimate
|
||||
|
@ -218,8 +218,10 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
|||
|
||||
// Windows CUDA should not use mmap for best performance
|
||||
// Linux with a model larger than free space, mmap leads to thrashing
|
||||
// For CPU loads we want the memory to be allocated, not FS cache
|
||||
if (runtime.GOOS == "windows" && gpus[0].Library == "cuda" && opts.UseMMap == api.TriStateUndefined) ||
|
||||
(runtime.GOOS == "linux" && systemFreeMemory < estimate.TotalSize && opts.UseMMap == api.TriStateUndefined) ||
|
||||
(gpus[0].Library == "cpu" && opts.UseMMap == api.TriStateUndefined) ||
|
||||
opts.UseMMap == api.TriStateFalse {
|
||||
params = append(params, "--no-mmap")
|
||||
}
|
||||
|
@ -232,15 +234,6 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
|||
params = append(params, "--numa")
|
||||
}
|
||||
|
||||
numParallel := envconfig.NumParallel
|
||||
|
||||
// TODO (jmorganca): multimodal models don't support parallel yet
|
||||
// see https://github.com/ollama/ollama/issues/4165
|
||||
if len(projectors) > 0 {
|
||||
numParallel = 1
|
||||
slog.Warn("multimodal models don't support parallel requests yet")
|
||||
}
|
||||
|
||||
params = append(params, "--parallel", fmt.Sprintf("%d", numParallel))
|
||||
|
||||
if estimate.TensorSplit != "" {
|
||||
|
|
|
@ -1237,6 +1237,11 @@ func (s *Server) ProcessHandler(c *gin.Context) {
|
|||
models = append(models, mr)
|
||||
}
|
||||
|
||||
slices.SortStableFunc(models, func(i, j api.ProcessModelResponse) int {
|
||||
// longest duration remaining listed first
|
||||
return cmp.Compare(j.ExpiresAt.Unix(), i.ExpiresAt.Unix())
|
||||
})
|
||||
|
||||
c.JSON(http.StatusOK, api.ProcessResponse{Models: models})
|
||||
}
|
||||
|
||||
|
|
124
server/sched.go
124
server/sched.go
|
@ -23,6 +23,7 @@ type LlmRequest struct {
|
|||
ctx context.Context //nolint:containedctx
|
||||
model *Model
|
||||
opts api.Options
|
||||
origNumCTX int // Track the initial ctx request
|
||||
sessionDuration time.Duration
|
||||
successCh chan *runnerRef
|
||||
errCh chan error
|
||||
|
@ -38,13 +39,23 @@ type Scheduler struct {
|
|||
loaded map[string]*runnerRef
|
||||
loadedMu sync.Mutex
|
||||
|
||||
loadFn func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList)
|
||||
newServerFn func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options) (llm.LlamaServer, error)
|
||||
loadFn func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int)
|
||||
newServerFn func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error)
|
||||
getGpuFn func() gpu.GpuInfoList
|
||||
getCpuFn func() gpu.GpuInfoList
|
||||
reschedDelay time.Duration
|
||||
}
|
||||
|
||||
// Default automatic value for number of models we allow per GPU
|
||||
// Model will still need to fit in VRAM, but loading many small models
|
||||
// on a large GPU can cause stalling
|
||||
var defaultModelsPerGPU = 3
|
||||
|
||||
// Default automatic value for parallel setting
|
||||
// Model will still need to fit in VRAM. If this setting wont fit
|
||||
// we'll back off down to 1 to try to get it to fit
|
||||
var defaultParallel = 4
|
||||
|
||||
var ErrMaxQueue = fmt.Errorf("server busy, please try again. maximum pending requests exceeded")
|
||||
|
||||
func InitScheduler(ctx context.Context) *Scheduler {
|
||||
|
@ -65,13 +76,10 @@ func InitScheduler(ctx context.Context) *Scheduler {
|
|||
|
||||
// context must be canceled to decrement ref count and release the runner
|
||||
func (s *Scheduler) GetRunner(c context.Context, model *Model, opts api.Options, sessionDuration time.Duration) (chan *runnerRef, chan error) {
|
||||
// allocate a large enough kv cache for all parallel requests
|
||||
if opts.NumCtx < 4 {
|
||||
opts.NumCtx = 4
|
||||
}
|
||||
|
||||
opts.NumCtx *= envconfig.NumParallel
|
||||
|
||||
req := &LlmRequest{
|
||||
ctx: c,
|
||||
model: model,
|
||||
|
@ -110,11 +118,25 @@ func (s *Scheduler) processPending(ctx context.Context) {
|
|||
case pending := <-s.pendingReqCh:
|
||||
// Block other requests until we get this pending request running
|
||||
pending.schedAttempts++
|
||||
if pending.origNumCTX == 0 {
|
||||
pending.origNumCTX = pending.opts.NumCtx
|
||||
}
|
||||
|
||||
if pending.ctx.Err() != nil {
|
||||
slog.Debug("pending request cancelled or timed out, skipping scheduling")
|
||||
continue
|
||||
}
|
||||
numParallel := envconfig.NumParallel
|
||||
// TODO (jmorganca): multimodal models don't support parallel yet
|
||||
// see https://github.com/ollama/ollama/issues/4165
|
||||
if len(pending.model.ProjectorPaths) > 0 && numParallel != 1 {
|
||||
numParallel = 1
|
||||
slog.Warn("multimodal models don't support parallel requests yet")
|
||||
}
|
||||
// Keep NumCtx and numParallel in sync
|
||||
if numParallel > 1 {
|
||||
pending.opts.NumCtx = pending.origNumCTX * numParallel
|
||||
}
|
||||
|
||||
for {
|
||||
var runnerToExpire *runnerRef
|
||||
|
@ -143,6 +165,26 @@ func (s *Scheduler) processPending(ctx context.Context) {
|
|||
gpus = s.getGpuFn()
|
||||
}
|
||||
|
||||
if envconfig.MaxRunners <= 0 {
|
||||
// No user specified MaxRunners, so figure out what automatic setting to use
|
||||
// If all GPUs have reliable free memory reporting, defaultModelsPerGPU * the number of GPUs
|
||||
// if any GPU has unreliable free memory reporting, 1x the number of GPUs
|
||||
allReliable := true
|
||||
for _, gpu := range gpus {
|
||||
if gpu.UnreliableFreeMemory {
|
||||
allReliable = false
|
||||
break
|
||||
}
|
||||
}
|
||||
if allReliable {
|
||||
envconfig.MaxRunners = defaultModelsPerGPU * len(gpus)
|
||||
slog.Debug("updating default concurrency", "OLLAMA_MAX_LOADED_MODELS", envconfig.MaxRunners, "gpu_count", len(gpus))
|
||||
} else {
|
||||
slog.Info("one or more GPUs detected that are unable to accurately report free memory - disabling default concurrency")
|
||||
envconfig.MaxRunners = len(gpus)
|
||||
}
|
||||
}
|
||||
|
||||
// Load model for fitting
|
||||
ggml, err := llm.LoadModel(pending.model.ModelPath, 0)
|
||||
if err != nil {
|
||||
|
@ -152,26 +194,32 @@ func (s *Scheduler) processPending(ctx context.Context) {
|
|||
|
||||
// Evaluate if the model will fit in the available system memory, or if we should unload a model first
|
||||
if len(gpus) == 1 && gpus[0].Library == "cpu" {
|
||||
// simplifying assumption of defaultParallel when in CPU mode
|
||||
if numParallel <= 0 {
|
||||
numParallel = defaultParallel
|
||||
pending.opts.NumCtx = pending.origNumCTX * numParallel
|
||||
}
|
||||
|
||||
if loadedCount == 0 {
|
||||
slog.Debug("cpu mode with first model, loading")
|
||||
s.loadFn(pending, ggml, gpus)
|
||||
s.loadFn(pending, ggml, gpus, numParallel)
|
||||
break
|
||||
}
|
||||
runnerToExpire = s.maybeFindCPURunnerToUnload(pending, ggml, gpus)
|
||||
if runnerToExpire == nil {
|
||||
slog.Debug("cpu mode with available system memory or first model, loading")
|
||||
s.loadFn(pending, ggml, gpus)
|
||||
s.loadFn(pending, ggml, gpus, numParallel)
|
||||
break
|
||||
}
|
||||
// else we need to expire a runner
|
||||
} else if loadedCount == 0 {
|
||||
// No models loaded. Load the model but prefer the best fit.
|
||||
slog.Debug("loading first model", "model", pending.model.ModelPath)
|
||||
g := pickBestFitGPUs(pending, ggml, gpus)
|
||||
g := pickBestFitGPUs(pending, ggml, gpus, &numParallel)
|
||||
if g != nil {
|
||||
gpus = g
|
||||
}
|
||||
s.loadFn(pending, ggml, gpus)
|
||||
s.loadFn(pending, ggml, gpus, numParallel)
|
||||
break
|
||||
}
|
||||
|
||||
|
@ -186,10 +234,10 @@ func (s *Scheduler) processPending(ctx context.Context) {
|
|||
|
||||
// Update free memory from currently loaded models
|
||||
s.updateFreeSpace(availGpus)
|
||||
fitGpus := pickBestFitGPUs(pending, ggml, availGpus)
|
||||
fitGpus := pickBestFitGPUs(pending, ggml, availGpus, &numParallel)
|
||||
if fitGpus != nil {
|
||||
slog.Debug("new model fits with existing models, loading")
|
||||
s.loadFn(pending, ggml, fitGpus)
|
||||
s.loadFn(pending, ggml, fitGpus, numParallel)
|
||||
break
|
||||
}
|
||||
|
||||
|
@ -350,8 +398,11 @@ func (pending *LlmRequest) useLoadedRunner(runner *runnerRef, finished chan *Llm
|
|||
}()
|
||||
}
|
||||
|
||||
func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) {
|
||||
llama, err := s.newServerFn(gpus, req.model.ModelPath, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts)
|
||||
func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int) {
|
||||
if numParallel < 1 {
|
||||
numParallel = 1
|
||||
}
|
||||
llama, err := s.newServerFn(gpus, req.model.ModelPath, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, numParallel)
|
||||
if err != nil {
|
||||
// some older models are not compatible with newer versions of llama.cpp
|
||||
// show a generalized compatibility error until there is a better way to
|
||||
|
@ -375,6 +426,7 @@ func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList)
|
|||
loading: true,
|
||||
refCount: 1,
|
||||
}
|
||||
runner.numParallel = numParallel
|
||||
runner.refMu.Lock()
|
||||
|
||||
s.loadedMu.Lock()
|
||||
|
@ -483,8 +535,9 @@ type runnerRef struct {
|
|||
expireTimer *time.Timer
|
||||
expiresAt time.Time
|
||||
|
||||
model *Model
|
||||
modelPath string
|
||||
model *Model
|
||||
modelPath string
|
||||
numParallel int
|
||||
*api.Options
|
||||
}
|
||||
|
||||
|
@ -525,6 +578,9 @@ func (runner *runnerRef) needsReload(ctx context.Context, req *LlmRequest) bool
|
|||
optsNew.NumGPU = -1
|
||||
}
|
||||
|
||||
// Normalize the NumCtx for parallelism
|
||||
optsExisting.NumCtx = optsExisting.NumCtx / runner.numParallel
|
||||
|
||||
ctx, cancel := context.WithTimeout(ctx, timeout)
|
||||
defer cancel()
|
||||
if !reflect.DeepEqual(runner.model.AdapterPaths, req.model.AdapterPaths) || // have the adapters changed?
|
||||
|
@ -611,22 +667,38 @@ func (a ByDuration) Less(i, j int) bool {
|
|||
|
||||
// pickBestFitGPUs will try to find the optimal placement of the model in the available GPUs where the model fully fits
|
||||
// If the model can not be fit fully within the available GPU(s) nil is returned
|
||||
func pickBestFitGPUs(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) gpu.GpuInfoList {
|
||||
// If numParallel is <= 0, this will attempt try to optimize parallism based on available VRAM, and adjust
|
||||
// opts.NumCtx accordingly
|
||||
func pickBestFitGPUs(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList {
|
||||
var estimatedVRAM uint64
|
||||
|
||||
var numParallelToTry []int
|
||||
if *numParallel <= 0 {
|
||||
// If no specific parallel setting was provided, try larger then smaller, always end with 1
|
||||
numParallelToTry = append(numParallelToTry, defaultParallel, 1)
|
||||
} else {
|
||||
numParallelToTry = []int{*numParallel}
|
||||
}
|
||||
|
||||
for _, gl := range gpus.ByLibrary() {
|
||||
var ok bool
|
||||
sgl := append(make(gpu.GpuInfoList, 0, len(gl)), gl...)
|
||||
|
||||
// TODO - potentially sort by performance capability, existing models loaded, etc.
|
||||
// TODO - Eliminate any GPUs that already have envconfig.MaxRunners loaded on them
|
||||
// Note: at present, this will favor more VRAM over faster GPU speed in mixed setups
|
||||
sort.Sort(sort.Reverse(gpu.ByFreeMemory(sgl)))
|
||||
|
||||
// First attempt to fit the model into a single GPU
|
||||
if !envconfig.SchedSpread {
|
||||
for _, g := range sgl {
|
||||
if ok, estimatedVRAM = llm.PredictServerFit([]gpu.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
|
||||
slog.Debug("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM))
|
||||
return []gpu.GpuInfo{g}
|
||||
for _, p := range numParallelToTry {
|
||||
req.opts.NumCtx = req.origNumCTX * p
|
||||
if !envconfig.SchedSpread {
|
||||
for _, g := range sgl {
|
||||
if ok, estimatedVRAM = llm.PredictServerFit([]gpu.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
|
||||
slog.Info("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "parallel", p, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM))
|
||||
*numParallel = p
|
||||
return []gpu.GpuInfo{g}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -636,9 +708,13 @@ func pickBestFitGPUs(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) gpu.
|
|||
// - try subsets of GPUs instead of just falling back to 1 or all in a family
|
||||
|
||||
// Now try all the GPUs
|
||||
if ok, estimatedVRAM = llm.PredictServerFit(sgl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
|
||||
slog.Debug("new model will fit in available VRAM, loading", "model", req.model.ModelPath, "library", sgl[0].Library, "required", format.HumanBytes2(estimatedVRAM))
|
||||
return sgl
|
||||
for _, p := range numParallelToTry {
|
||||
req.opts.NumCtx = req.origNumCTX * p
|
||||
if ok, estimatedVRAM = llm.PredictServerFit(sgl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
|
||||
slog.Info("new model will fit in available VRAM, loading", "model", req.model.ModelPath, "library", sgl[0].Library, "parallel", p, "required", format.HumanBytes2(estimatedVRAM))
|
||||
*numParallel = p
|
||||
return sgl
|
||||
}
|
||||
}
|
||||
}
|
||||
return nil
|
||||
|
|
|
@ -47,11 +47,11 @@ func TestLoad(t *testing.T) {
|
|||
sessionDuration: 2,
|
||||
}
|
||||
// Fail to load model first
|
||||
s.newServerFn = func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options) (llm.LlamaServer, error) {
|
||||
s.newServerFn = func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
|
||||
return nil, fmt.Errorf("something failed to load model blah")
|
||||
}
|
||||
gpus := gpu.GpuInfoList{}
|
||||
s.load(req, ggml, gpus)
|
||||
s.load(req, ggml, gpus, 0)
|
||||
require.Empty(t, req.successCh)
|
||||
require.Len(t, req.errCh, 1)
|
||||
s.loadedMu.Lock()
|
||||
|
@ -61,10 +61,10 @@ func TestLoad(t *testing.T) {
|
|||
require.Contains(t, err.Error(), "this model may be incompatible")
|
||||
|
||||
server := &mockLlm{estimatedVRAM: 10, estimatedVRAMByGPU: map[string]uint64{}}
|
||||
s.newServerFn = func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options) (llm.LlamaServer, error) {
|
||||
s.newServerFn = func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
|
||||
return server, nil
|
||||
}
|
||||
s.load(req, ggml, gpus)
|
||||
s.load(req, ggml, gpus, 0)
|
||||
select {
|
||||
case err := <-req.errCh:
|
||||
require.NoError(t, err)
|
||||
|
@ -78,12 +78,12 @@ func TestLoad(t *testing.T) {
|
|||
|
||||
req.model.ModelPath = "dummy_model_path"
|
||||
server.waitResp = fmt.Errorf("wait failure")
|
||||
s.load(req, ggml, gpus)
|
||||
s.load(req, ggml, gpus, 0)
|
||||
select {
|
||||
case err := <-req.errCh:
|
||||
require.Contains(t, err.Error(), "wait failure")
|
||||
case resp := <-req.successCh:
|
||||
t.Errorf("unexpected success %v", resp)
|
||||
t.Fatalf("unexpected success %v", resp)
|
||||
}
|
||||
s.loadedMu.Lock()
|
||||
runner := s.loaded["dummy_model_path"]
|
||||
|
@ -102,7 +102,7 @@ type bundle struct {
|
|||
ggml *llm.GGML
|
||||
}
|
||||
|
||||
func (scenario *bundle) newServer(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options) (llm.LlamaServer, error) {
|
||||
func (scenario *bundle) newServer(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
|
||||
return scenario.srv, nil
|
||||
}
|
||||
|
||||
|
@ -200,7 +200,7 @@ func TestRequests(t *testing.T) {
|
|||
require.Empty(t, s.pendingReqCh)
|
||||
require.Empty(t, scenario1a.req.errCh)
|
||||
case <-ctx.Done():
|
||||
t.Errorf("timeout")
|
||||
t.Fatal("timeout")
|
||||
}
|
||||
|
||||
// Same runner as first request due to not needing a reload
|
||||
|
@ -213,7 +213,7 @@ func TestRequests(t *testing.T) {
|
|||
require.Empty(t, s.pendingReqCh)
|
||||
require.Empty(t, scenario1b.req.errCh)
|
||||
case <-ctx.Done():
|
||||
t.Errorf("timeout")
|
||||
t.Fatal("timeout")
|
||||
}
|
||||
|
||||
// Trigger a reload
|
||||
|
@ -231,7 +231,7 @@ func TestRequests(t *testing.T) {
|
|||
require.Empty(t, s.pendingReqCh)
|
||||
require.Empty(t, scenario2a.req.errCh)
|
||||
case <-ctx.Done():
|
||||
t.Errorf("timeout")
|
||||
t.Fatal("timeout")
|
||||
}
|
||||
|
||||
envconfig.MaxRunners = 1
|
||||
|
@ -247,7 +247,7 @@ func TestRequests(t *testing.T) {
|
|||
require.Empty(t, s.pendingReqCh)
|
||||
require.Empty(t, scenario3a.req.errCh)
|
||||
case <-ctx.Done():
|
||||
t.Errorf("timeout")
|
||||
t.Fatal("timeout")
|
||||
}
|
||||
s.loadedMu.Lock()
|
||||
require.Len(t, s.loaded, 1)
|
||||
|
@ -263,7 +263,7 @@ func TestRequests(t *testing.T) {
|
|||
require.Empty(t, s.pendingReqCh)
|
||||
require.Empty(t, scenario3b.req.errCh)
|
||||
case <-ctx.Done():
|
||||
t.Errorf("timeout")
|
||||
t.Fatal("timeout")
|
||||
}
|
||||
s.loadedMu.Lock()
|
||||
require.Len(t, s.loaded, 2)
|
||||
|
@ -279,7 +279,7 @@ func TestRequests(t *testing.T) {
|
|||
require.Empty(t, s.pendingReqCh)
|
||||
require.Empty(t, scenario3c.req.errCh)
|
||||
case <-ctx.Done():
|
||||
t.Errorf("timeout")
|
||||
t.Fatal("timeout")
|
||||
}
|
||||
s.loadedMu.Lock()
|
||||
require.Len(t, s.loaded, 3)
|
||||
|
@ -306,7 +306,7 @@ func TestRequests(t *testing.T) {
|
|||
require.Empty(t, s.pendingReqCh)
|
||||
require.Empty(t, scenario3d.req.errCh)
|
||||
case <-ctx.Done():
|
||||
t.Errorf("timeout")
|
||||
t.Fatal("timeout")
|
||||
}
|
||||
s.loadedMu.Lock()
|
||||
require.Len(t, s.loaded, 2)
|
||||
|
@ -349,7 +349,7 @@ func TestGetRunner(t *testing.T) {
|
|||
require.Empty(t, s.pendingReqCh)
|
||||
require.Empty(t, errCh1a)
|
||||
case <-ctx.Done():
|
||||
t.Errorf("timeout")
|
||||
t.Fatal("timeout")
|
||||
}
|
||||
scenario1a.ctxDone()
|
||||
s.loadedMu.Lock()
|
||||
|
@ -400,7 +400,7 @@ func TestPrematureExpired(t *testing.T) {
|
|||
slog.Info("sending premature expired event now")
|
||||
s.expiredCh <- resp // Shouldn't happen in real life, but make sure its safe
|
||||
case <-ctx.Done():
|
||||
t.Errorf("timeout")
|
||||
t.Fatal("timeout")
|
||||
}
|
||||
time.Sleep(scenario1a.req.sessionDuration)
|
||||
scenario1a.ctxDone()
|
||||
|
@ -427,7 +427,7 @@ func TestUseLoadedRunner(t *testing.T) {
|
|||
}
|
||||
finished := make(chan *LlmRequest)
|
||||
llm1 := &mockLlm{estimatedVRAMByGPU: map[string]uint64{}}
|
||||
r1 := &runnerRef{llama: llm1, sessionDuration: 1}
|
||||
r1 := &runnerRef{llama: llm1, sessionDuration: 1, numParallel: 1}
|
||||
req.useLoadedRunner(r1, finished)
|
||||
require.Equal(t, uint(1), r1.refCount)
|
||||
require.Equal(t, time.Duration(2), r1.sessionDuration)
|
||||
|
@ -435,7 +435,7 @@ func TestUseLoadedRunner(t *testing.T) {
|
|||
case success := <-req.successCh:
|
||||
require.Equal(t, r1, success)
|
||||
case <-ctx.Done():
|
||||
t.Errorf("timeout")
|
||||
t.Fatal("timeout")
|
||||
}
|
||||
done()
|
||||
fin := <-finished
|
||||
|
@ -461,8 +461,8 @@ func TestUpdateFreeSpace(t *testing.T) {
|
|||
gpus[1].FreeMemory = 1900
|
||||
llm1 := &mockLlm{estimatedVRAMByGPU: map[string]uint64{"1": 50, "2": 50}}
|
||||
llm2 := &mockLlm{estimatedVRAMByGPU: map[string]uint64{"1": 125, "2": 75}}
|
||||
r1 := &runnerRef{llama: llm1, gpus: gpus}
|
||||
r2 := &runnerRef{llama: llm2, gpus: gpus}
|
||||
r1 := &runnerRef{llama: llm1, gpus: gpus, numParallel: 1}
|
||||
r2 := &runnerRef{llama: llm2, gpus: gpus, numParallel: 1}
|
||||
|
||||
s := InitScheduler(ctx)
|
||||
s.loadedMu.Lock()
|
||||
|
@ -513,8 +513,8 @@ func TestFindRunnerToUnload(t *testing.T) {
|
|||
ctx, done := context.WithTimeout(context.Background(), 100*time.Millisecond)
|
||||
defer done()
|
||||
|
||||
r1 := &runnerRef{refCount: 1, sessionDuration: 1}
|
||||
r2 := &runnerRef{sessionDuration: 2}
|
||||
r1 := &runnerRef{refCount: 1, sessionDuration: 1, numParallel: 1}
|
||||
r2 := &runnerRef{sessionDuration: 2, numParallel: 1}
|
||||
|
||||
s := InitScheduler(ctx)
|
||||
s.loadedMu.Lock()
|
||||
|
@ -536,9 +536,13 @@ func TestNeedsReload(t *testing.T) {
|
|||
llm := &mockLlm{estimatedVRAMByGPU: map[string]uint64{}}
|
||||
do := api.DefaultOptions()
|
||||
runner := &runnerRef{
|
||||
model: &Model{AdapterPaths: []string{"adapter1"}, ProjectorPaths: []string{"projector1"}},
|
||||
Options: &do,
|
||||
llama: llm,
|
||||
model: &Model{
|
||||
AdapterPaths: []string{"adapter1"},
|
||||
ProjectorPaths: []string{"projector1"},
|
||||
},
|
||||
Options: &do,
|
||||
llama: llm,
|
||||
numParallel: 1,
|
||||
}
|
||||
req := &LlmRequest{
|
||||
model: &Model{
|
||||
|
@ -581,8 +585,8 @@ func TestUnloadAllRunners(t *testing.T) {
|
|||
s := InitScheduler(ctx)
|
||||
s.unloadAllRunners()
|
||||
|
||||
r1 := &runnerRef{llama: llm1}
|
||||
r2 := &runnerRef{llama: llm2}
|
||||
r1 := &runnerRef{llama: llm1, numParallel: 1}
|
||||
r2 := &runnerRef{llama: llm2, numParallel: 1}
|
||||
|
||||
s.loadedMu.Lock()
|
||||
s.loaded["a"] = r1
|
||||
|
@ -596,14 +600,32 @@ func TestUnloadAllRunners(t *testing.T) {
|
|||
|
||||
func TestUnload(t *testing.T) {
|
||||
llm1 := &mockLlm{estimatedVRAMByGPU: map[string]uint64{}}
|
||||
r1 := &runnerRef{llama: llm1}
|
||||
r2 := &runnerRef{model: &Model{AdapterPaths: []string{"A"}}}
|
||||
r1 := &runnerRef{llama: llm1, numParallel: 1}
|
||||
r2 := &runnerRef{model: &Model{AdapterPaths: []string{"A"}}, numParallel: 1}
|
||||
r1.unload()
|
||||
require.True(t, llm1.closeCalled)
|
||||
r2.unload()
|
||||
require.Nil(t, r2.model)
|
||||
}
|
||||
|
||||
func TestAlreadyCanceled(t *testing.T) {
|
||||
ctx, done := context.WithTimeout(context.Background(), 500*time.Millisecond)
|
||||
defer done()
|
||||
dctx, done2 := context.WithCancel(ctx)
|
||||
done2()
|
||||
scenario1a := newScenario(t, dctx, "ollama-model-1", 10)
|
||||
scenario1a.req.sessionDuration = 0
|
||||
s := InitScheduler(ctx)
|
||||
slog.Info("scenario1a")
|
||||
s.pendingReqCh <- scenario1a.req
|
||||
require.Len(t, s.pendingReqCh, 1)
|
||||
s.Run(ctx)
|
||||
time.Sleep(5 * time.Millisecond)
|
||||
require.Empty(t, s.pendingReqCh)
|
||||
require.Empty(t, scenario1a.req.errCh)
|
||||
require.Empty(t, scenario1a.req.successCh)
|
||||
}
|
||||
|
||||
type mockLlm struct {
|
||||
pingResp error
|
||||
waitResp error
|
||||
|
|
Loading…
Reference in a new issue