2023-03-24 19:47:17 +00:00
|
|
|
import os
|
2023-04-04 17:09:24 +00:00
|
|
|
import sys
|
2023-03-23 09:33:06 +00:00
|
|
|
import uuid
|
|
|
|
import time
|
2023-04-12 18:05:11 +00:00
|
|
|
import math
|
2023-03-23 09:33:06 +00:00
|
|
|
import multiprocessing
|
2023-06-08 17:19:23 +00:00
|
|
|
from abc import ABC, abstractmethod
|
2023-05-25 18:04:54 +00:00
|
|
|
from typing import (
|
|
|
|
List,
|
|
|
|
Optional,
|
|
|
|
Union,
|
|
|
|
Generator,
|
|
|
|
Sequence,
|
|
|
|
Iterator,
|
|
|
|
Deque,
|
|
|
|
Tuple,
|
|
|
|
Callable,
|
|
|
|
)
|
2023-05-07 23:31:26 +00:00
|
|
|
from collections import deque, OrderedDict
|
2023-03-23 09:33:06 +00:00
|
|
|
|
2023-05-28 13:56:38 +00:00
|
|
|
import diskcache
|
|
|
|
|
2023-03-23 09:33:06 +00:00
|
|
|
from . import llama_cpp
|
2023-04-01 17:01:27 +00:00
|
|
|
from .llama_types import *
|
2023-03-23 09:33:06 +00:00
|
|
|
|
2023-05-26 20:12:45 +00:00
|
|
|
import numpy as np
|
|
|
|
import numpy.typing as npt
|
|
|
|
|
2023-03-24 18:35:41 +00:00
|
|
|
|
2023-06-08 17:19:23 +00:00
|
|
|
class BaseLlamaCache(ABC):
|
2023-05-31 20:33:56 +00:00
|
|
|
"""Base cache class for a llama.cpp model."""
|
2023-04-15 16:03:09 +00:00
|
|
|
|
2023-05-07 23:31:26 +00:00
|
|
|
def __init__(self, capacity_bytes: int = (2 << 30)):
|
2023-06-08 17:19:23 +00:00
|
|
|
self.capacity_bytes = capacity_bytes
|
2023-05-31 20:33:56 +00:00
|
|
|
|
|
|
|
@property
|
2023-06-08 17:19:23 +00:00
|
|
|
@abstractmethod
|
|
|
|
def cache_size(self) -> int:
|
|
|
|
raise NotImplementedError
|
2023-05-31 20:33:56 +00:00
|
|
|
|
|
|
|
def _find_longest_prefix_key(
|
2023-06-08 17:19:23 +00:00
|
|
|
self,
|
|
|
|
key: Tuple[int, ...],
|
2023-05-31 20:33:56 +00:00
|
|
|
) -> Optional[Tuple[int, ...]]:
|
|
|
|
pass
|
|
|
|
|
2023-06-08 17:19:23 +00:00
|
|
|
@abstractmethod
|
2023-05-31 20:33:56 +00:00
|
|
|
def __getitem__(self, key: Sequence[int]) -> "LlamaState":
|
2023-06-08 17:19:23 +00:00
|
|
|
raise NotImplementedError
|
2023-05-31 20:33:56 +00:00
|
|
|
|
2023-06-08 17:19:23 +00:00
|
|
|
@abstractmethod
|
2023-05-31 20:33:56 +00:00
|
|
|
def __contains__(self, key: Sequence[int]) -> bool:
|
2023-06-08 17:19:23 +00:00
|
|
|
raise NotImplementedError
|
2023-05-31 20:33:56 +00:00
|
|
|
|
2023-06-08 17:19:23 +00:00
|
|
|
@abstractmethod
|
|
|
|
def __setitem__(self, key: Sequence[int], value: "LlamaState") -> None:
|
|
|
|
raise NotImplementedError
|
2023-05-31 20:33:56 +00:00
|
|
|
|
|
|
|
|
2023-06-08 17:19:23 +00:00
|
|
|
class LlamaRAMCache(BaseLlamaCache):
|
2023-05-31 20:33:56 +00:00
|
|
|
"""Cache for a llama.cpp model using RAM."""
|
|
|
|
|
|
|
|
def __init__(self, capacity_bytes: int = (2 << 30)):
|
|
|
|
super().__init__(capacity_bytes)
|
2023-05-07 23:31:26 +00:00
|
|
|
self.capacity_bytes = capacity_bytes
|
2023-05-31 20:33:56 +00:00
|
|
|
self.cache_state: OrderedDict[Tuple[int, ...], "LlamaState"] = OrderedDict()
|
2023-04-15 16:03:09 +00:00
|
|
|
|
2023-05-07 23:31:26 +00:00
|
|
|
@property
|
|
|
|
def cache_size(self):
|
|
|
|
return sum([state.llama_state_size for state in self.cache_state.values()])
|
2023-04-25 02:18:54 +00:00
|
|
|
|
2023-05-07 23:31:26 +00:00
|
|
|
def _find_longest_prefix_key(
|
2023-06-08 17:19:23 +00:00
|
|
|
self,
|
|
|
|
key: Tuple[int, ...],
|
2023-05-19 15:59:33 +00:00
|
|
|
) -> Optional[Tuple[int, ...]]:
|
2023-05-07 23:31:26 +00:00
|
|
|
min_len = 0
|
|
|
|
min_key = None
|
|
|
|
keys = (
|
|
|
|
(k, Llama.longest_token_prefix(k, key)) for k in self.cache_state.keys()
|
|
|
|
)
|
|
|
|
for k, prefix_len in keys:
|
|
|
|
if prefix_len > min_len:
|
|
|
|
min_len = prefix_len
|
|
|
|
min_key = k
|
|
|
|
return min_key
|
2023-04-15 16:03:09 +00:00
|
|
|
|
2023-05-19 15:59:33 +00:00
|
|
|
def __getitem__(self, key: Sequence[int]) -> "LlamaState":
|
2023-05-07 23:31:26 +00:00
|
|
|
key = tuple(key)
|
|
|
|
_key = self._find_longest_prefix_key(key)
|
2023-04-25 02:18:54 +00:00
|
|
|
if _key is None:
|
2023-05-31 20:33:56 +00:00
|
|
|
raise KeyError("Key not found")
|
2023-05-07 23:31:26 +00:00
|
|
|
value = self.cache_state[_key]
|
|
|
|
self.cache_state.move_to_end(_key)
|
|
|
|
return value
|
2023-04-24 23:54:41 +00:00
|
|
|
|
2023-05-19 15:59:33 +00:00
|
|
|
def __contains__(self, key: Sequence[int]) -> bool:
|
2023-05-07 23:31:26 +00:00
|
|
|
return self._find_longest_prefix_key(tuple(key)) is not None
|
2023-04-24 23:54:41 +00:00
|
|
|
|
2023-05-19 15:59:33 +00:00
|
|
|
def __setitem__(self, key: Sequence[int], value: "LlamaState"):
|
2023-05-07 23:31:26 +00:00
|
|
|
key = tuple(key)
|
|
|
|
if key in self.cache_state:
|
|
|
|
del self.cache_state[key]
|
|
|
|
self.cache_state[key] = value
|
2023-06-08 17:19:23 +00:00
|
|
|
while self.cache_size > self.capacity_bytes and len(self.cache_state) > 0:
|
2023-05-07 23:31:26 +00:00
|
|
|
self.cache_state.popitem(last=False)
|
2023-04-15 16:03:09 +00:00
|
|
|
|
|
|
|
|
2023-06-08 17:19:23 +00:00
|
|
|
# Alias for backwards compatibility
|
|
|
|
LlamaCache = LlamaRAMCache
|
|
|
|
|
|
|
|
|
|
|
|
class LlamaDiskCache(BaseLlamaCache):
|
2023-05-31 20:33:56 +00:00
|
|
|
"""Cache for a llama.cpp model using disk."""
|
2023-04-15 16:03:09 +00:00
|
|
|
|
2023-06-08 17:19:23 +00:00
|
|
|
def __init__(
|
|
|
|
self, cache_dir: str = ".cache/llama_cache", capacity_bytes: int = (2 << 30)
|
|
|
|
):
|
2023-05-31 20:33:56 +00:00
|
|
|
super().__init__(capacity_bytes)
|
2023-05-28 13:56:38 +00:00
|
|
|
self.cache = diskcache.Cache(cache_dir)
|
2023-04-15 16:03:09 +00:00
|
|
|
|
2023-05-07 23:31:26 +00:00
|
|
|
@property
|
|
|
|
def cache_size(self):
|
2023-06-08 17:19:23 +00:00
|
|
|
return int(self.cache.volume()) # type: ignore
|
2023-04-25 02:18:54 +00:00
|
|
|
|
2023-05-07 23:31:26 +00:00
|
|
|
def _find_longest_prefix_key(
|
2023-06-08 17:19:23 +00:00
|
|
|
self,
|
|
|
|
key: Tuple[int, ...],
|
2023-05-19 15:59:33 +00:00
|
|
|
) -> Optional[Tuple[int, ...]]:
|
2023-05-07 23:31:26 +00:00
|
|
|
min_len = 0
|
2023-06-08 17:19:23 +00:00
|
|
|
min_key: Optional[Tuple[int, ...]] = None
|
|
|
|
for k in self.cache.iterkeys(): # type: ignore
|
2023-05-28 13:56:38 +00:00
|
|
|
prefix_len = Llama.longest_token_prefix(k, key)
|
2023-05-07 23:31:26 +00:00
|
|
|
if prefix_len > min_len:
|
|
|
|
min_len = prefix_len
|
2023-06-08 17:19:23 +00:00
|
|
|
min_key = k # type: ignore
|
2023-05-07 23:31:26 +00:00
|
|
|
return min_key
|
2023-04-15 16:03:09 +00:00
|
|
|
|
2023-05-19 15:59:33 +00:00
|
|
|
def __getitem__(self, key: Sequence[int]) -> "LlamaState":
|
2023-05-07 23:31:26 +00:00
|
|
|
key = tuple(key)
|
|
|
|
_key = self._find_longest_prefix_key(key)
|
2023-04-25 02:18:54 +00:00
|
|
|
if _key is None:
|
2023-05-28 13:56:38 +00:00
|
|
|
raise KeyError("Key not found")
|
2023-06-08 17:19:23 +00:00
|
|
|
value: "LlamaState" = self.cache.pop(_key) # type: ignore
|
|
|
|
self.cache.push(_key, side="front") # type: ignore
|
2023-05-07 23:31:26 +00:00
|
|
|
return value
|
2023-04-24 23:54:41 +00:00
|
|
|
|
2023-06-08 17:19:23 +00:00
|
|
|
def __contains__(self, key: Sequence[int]) -> bool:
|
|
|
|
return self._find_longest_prefix_key(tuple(key)) is not None
|
|
|
|
|
2023-05-19 15:59:33 +00:00
|
|
|
def __setitem__(self, key: Sequence[int], value: "LlamaState"):
|
2023-06-08 17:19:23 +00:00
|
|
|
print("LlamaDiskCache.__setitem__: called", file=sys.stderr)
|
2023-05-07 23:31:26 +00:00
|
|
|
key = tuple(key)
|
2023-05-28 13:56:38 +00:00
|
|
|
if key in self.cache:
|
2023-06-08 17:19:23 +00:00
|
|
|
print("LlamaDiskCache.__setitem__: delete", file=sys.stderr)
|
2023-05-28 13:56:38 +00:00
|
|
|
del self.cache[key]
|
|
|
|
self.cache[key] = value
|
2023-06-08 17:19:23 +00:00
|
|
|
print("LlamaDiskCache.__setitem__: set", file=sys.stderr)
|
|
|
|
while self.cache_size > self.capacity_bytes and len(self.cache) > 0:
|
2023-05-28 13:56:38 +00:00
|
|
|
key_to_remove = next(iter(self.cache))
|
|
|
|
del self.cache[key_to_remove]
|
2023-06-08 17:19:23 +00:00
|
|
|
print("LlamaDiskCache.__setitem__: trim", file=sys.stderr)
|
2023-05-28 13:56:38 +00:00
|
|
|
|
2023-04-15 16:03:09 +00:00
|
|
|
|
2023-04-24 21:51:25 +00:00
|
|
|
class LlamaState:
|
|
|
|
def __init__(
|
2023-06-08 17:19:23 +00:00
|
|
|
self,
|
|
|
|
eval_tokens: Deque[int],
|
|
|
|
eval_logits: Deque[List[float]],
|
|
|
|
input_ids: npt.NDArray[np.intc],
|
|
|
|
scores: npt.NDArray[np.single],
|
|
|
|
llama_state, # type: llama_cpp.Array[llama_cpp.c_uint8]
|
|
|
|
llama_state_size: int,
|
2023-04-24 21:51:25 +00:00
|
|
|
):
|
|
|
|
self.eval_tokens = eval_tokens
|
|
|
|
self.eval_logits = eval_logits
|
2023-05-26 20:12:45 +00:00
|
|
|
self.input_ids = input_ids
|
|
|
|
self.scores = scores
|
2023-04-24 21:51:25 +00:00
|
|
|
self.llama_state = llama_state
|
2023-05-03 13:33:50 +00:00
|
|
|
self.llama_state_size = llama_state_size
|
2023-04-15 16:03:09 +00:00
|
|
|
|
|
|
|
|
2023-05-25 18:04:54 +00:00
|
|
|
LogitsProcessor = Callable[[List[int], List[float]], List[float]]
|
|
|
|
|
|
|
|
|
|
|
|
class LogitsProcessorList(List[LogitsProcessor]):
|
|
|
|
def __call__(self, input_ids: List[int], scores: List[float]) -> List[float]:
|
|
|
|
for processor in self:
|
|
|
|
scores = processor(input_ids, scores)
|
|
|
|
return scores
|
|
|
|
|
|
|
|
|
|
|
|
StoppingCriteria = Callable[[List[int], List[float]], bool]
|
|
|
|
|
|
|
|
|
|
|
|
class StoppingCriteriaList(List[StoppingCriteria]):
|
|
|
|
def __call__(self, input_ids: List[int], logits: List[float]) -> bool:
|
|
|
|
return any([stopping_criteria(input_ids, logits) for stopping_criteria in self])
|
|
|
|
|
|
|
|
|
2023-03-23 09:33:06 +00:00
|
|
|
class Llama:
|
2023-03-24 22:57:59 +00:00
|
|
|
"""High-level Python wrapper for a llama.cpp model."""
|
|
|
|
|
2023-03-23 09:33:06 +00:00
|
|
|
def __init__(
|
2023-06-08 17:19:23 +00:00
|
|
|
self,
|
|
|
|
model_path: str,
|
|
|
|
# NOTE: These parameters are likely to change in the future.
|
|
|
|
n_ctx: int = 512,
|
|
|
|
n_parts: int = -1,
|
|
|
|
n_gpu_layers: int = 0,
|
|
|
|
seed: int = 1337,
|
|
|
|
f16_kv: bool = True,
|
|
|
|
logits_all: bool = False,
|
|
|
|
vocab_only: bool = False,
|
|
|
|
use_mmap: bool = True,
|
|
|
|
use_mlock: bool = False,
|
|
|
|
embedding: bool = False,
|
|
|
|
n_threads: Optional[int] = None,
|
|
|
|
n_batch: int = 512,
|
|
|
|
last_n_tokens_size: int = 64,
|
|
|
|
lora_base: Optional[str] = None,
|
|
|
|
lora_path: Optional[str] = None,
|
2023-06-15 02:12:33 +00:00
|
|
|
low_vram: bool = False,
|
2023-06-08 17:19:23 +00:00
|
|
|
verbose: bool = True,
|
2023-04-01 17:01:27 +00:00
|
|
|
):
|
2023-03-24 22:57:59 +00:00
|
|
|
"""Load a llama.cpp model from `model_path`.
|
|
|
|
|
|
|
|
Args:
|
2023-03-25 16:33:18 +00:00
|
|
|
model_path: Path to the model.
|
|
|
|
n_ctx: Maximum context size.
|
2023-03-24 22:57:59 +00:00
|
|
|
n_parts: Number of parts to split the model into. If -1, the number of parts is automatically determined.
|
2023-03-25 16:33:18 +00:00
|
|
|
seed: Random seed. 0 for random.
|
|
|
|
f16_kv: Use half-precision for key/value cache.
|
|
|
|
logits_all: Return logits for all tokens, not just the last token.
|
|
|
|
vocab_only: Only load the vocabulary no weights.
|
2023-04-10 06:11:35 +00:00
|
|
|
use_mmap: Use mmap if possible.
|
2023-03-25 20:26:23 +00:00
|
|
|
use_mlock: Force the system to keep the model in RAM.
|
|
|
|
embedding: Embedding mode only.
|
2023-03-24 22:57:59 +00:00
|
|
|
n_threads: Number of threads to use. If None, the number of threads is automatically determined.
|
2023-04-01 17:01:27 +00:00
|
|
|
n_batch: Maximum number of prompt tokens to batch together when calling llama_eval.
|
|
|
|
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
|
2023-04-18 14:20:46 +00:00
|
|
|
lora_base: Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model.
|
2023-04-18 05:43:44 +00:00
|
|
|
lora_path: Path to a LoRA file to apply to the model.
|
2023-04-04 17:09:24 +00:00
|
|
|
verbose: Print verbose output to stderr.
|
2023-03-24 22:57:59 +00:00
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: If the model path does not exist.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
A Llama instance.
|
|
|
|
"""
|
2023-04-04 17:09:24 +00:00
|
|
|
self.verbose = verbose
|
2023-03-23 09:33:06 +00:00
|
|
|
self.model_path = model_path
|
|
|
|
|
|
|
|
self.params = llama_cpp.llama_context_default_params()
|
|
|
|
self.params.n_ctx = n_ctx
|
2023-05-14 04:04:22 +00:00
|
|
|
self.params.n_gpu_layers = n_gpu_layers
|
2023-03-23 09:33:06 +00:00
|
|
|
self.params.seed = seed
|
|
|
|
self.params.f16_kv = f16_kv
|
|
|
|
self.params.logits_all = logits_all
|
|
|
|
self.params.vocab_only = vocab_only
|
2023-04-23 18:53:17 +00:00
|
|
|
self.params.use_mmap = use_mmap if lora_path is None else False
|
2023-03-25 20:26:23 +00:00
|
|
|
self.params.use_mlock = use_mlock
|
|
|
|
self.params.embedding = embedding
|
2023-06-15 02:12:33 +00:00
|
|
|
self.params.low_vram = low_vram
|
2023-03-23 09:33:06 +00:00
|
|
|
|
2023-04-01 17:01:27 +00:00
|
|
|
self.last_n_tokens_size = last_n_tokens_size
|
2023-04-04 17:08:21 +00:00
|
|
|
self.n_batch = min(n_ctx, n_batch)
|
2023-05-19 15:59:33 +00:00
|
|
|
self.eval_tokens: Deque[int] = deque(maxlen=n_ctx)
|
2023-05-07 17:19:56 +00:00
|
|
|
self.eval_logits: Deque[List[float]] = deque(maxlen=n_ctx if logits_all else 1)
|
2023-03-23 09:33:06 +00:00
|
|
|
|
2023-06-08 17:19:23 +00:00
|
|
|
self.cache: Optional[BaseLlamaCache] = None
|
2023-04-15 16:03:09 +00:00
|
|
|
|
2023-04-08 23:54:04 +00:00
|
|
|
self.n_threads = n_threads or max(multiprocessing.cpu_count() // 2, 1)
|
2023-03-23 09:33:06 +00:00
|
|
|
|
2023-04-25 13:00:53 +00:00
|
|
|
self.lora_base = lora_base
|
|
|
|
self.lora_path = lora_path
|
|
|
|
|
2023-05-21 21:47:21 +00:00
|
|
|
### DEPRECATED ###
|
|
|
|
self.n_parts = n_parts
|
|
|
|
### DEPRECATED ###
|
|
|
|
|
2023-03-24 19:47:17 +00:00
|
|
|
if not os.path.exists(model_path):
|
|
|
|
raise ValueError(f"Model path does not exist: {model_path}")
|
|
|
|
|
2023-03-23 09:33:06 +00:00
|
|
|
self.ctx = llama_cpp.llama_init_from_file(
|
|
|
|
self.model_path.encode("utf-8"), self.params
|
|
|
|
)
|
|
|
|
|
2023-04-25 13:00:53 +00:00
|
|
|
assert self.ctx is not None
|
|
|
|
|
2023-04-19 03:45:25 +00:00
|
|
|
if self.lora_path:
|
2023-04-18 05:43:44 +00:00
|
|
|
if llama_cpp.llama_apply_lora_from_file(
|
2023-06-08 17:19:23 +00:00
|
|
|
self.ctx,
|
|
|
|
llama_cpp.c_char_p(self.lora_path.encode("utf-8")),
|
|
|
|
llama_cpp.c_char_p(self.lora_base.encode("utf-8"))
|
|
|
|
if self.lora_base is not None
|
|
|
|
else llama_cpp.c_char_p(0),
|
|
|
|
llama_cpp.c_int(self.n_threads),
|
2023-04-18 05:43:44 +00:00
|
|
|
):
|
2023-04-19 03:45:25 +00:00
|
|
|
raise RuntimeError(
|
|
|
|
f"Failed to apply LoRA from lora path: {self.lora_path} to base path: {self.lora_base}"
|
|
|
|
)
|
2023-04-18 05:43:44 +00:00
|
|
|
|
2023-04-04 17:09:24 +00:00
|
|
|
if self.verbose:
|
2023-04-28 10:50:30 +00:00
|
|
|
print(llama_cpp.llama_print_system_info().decode("utf-8"), file=sys.stderr)
|
2023-05-21 22:36:34 +00:00
|
|
|
|
2023-05-23 21:56:21 +00:00
|
|
|
self._n_vocab = self.n_vocab()
|
|
|
|
self._n_ctx = self.n_ctx()
|
|
|
|
size = llama_cpp.c_size_t(self._n_vocab)
|
2023-05-26 20:12:45 +00:00
|
|
|
sorted = llama_cpp.c_bool(False)
|
|
|
|
self._candidates_data = np.array(
|
2023-05-27 02:04:31 +00:00
|
|
|
[],
|
|
|
|
dtype=np.dtype(
|
|
|
|
[("id", np.intc), ("logit", np.single), ("p", np.single)], align=True
|
|
|
|
),
|
2023-05-26 20:12:45 +00:00
|
|
|
)
|
2023-06-06 15:37:57 +00:00
|
|
|
self._candidates_data.resize(3, self._n_vocab, refcheck=False)
|
2023-05-21 22:36:34 +00:00
|
|
|
candidates = llama_cpp.llama_token_data_array(
|
2023-05-26 20:12:45 +00:00
|
|
|
data=self._candidates_data.ctypes.data_as(llama_cpp.llama_token_data_p),
|
2023-05-21 22:36:34 +00:00
|
|
|
size=size,
|
|
|
|
sorted=sorted,
|
|
|
|
)
|
|
|
|
self._candidates = candidates
|
2023-05-21 23:18:56 +00:00
|
|
|
self._token_nl = Llama.token_nl()
|
|
|
|
self._token_eos = Llama.token_eos()
|
2023-04-04 17:09:24 +00:00
|
|
|
|
2023-05-26 20:12:45 +00:00
|
|
|
self._input_ids = np.array([], dtype=np.intc)
|
|
|
|
self._scores = np.ndarray((0, self._n_vocab), dtype=np.single)
|
|
|
|
|
2023-05-19 15:59:33 +00:00
|
|
|
def tokenize(self, text: bytes, add_bos: bool = True) -> List[int]:
|
2023-03-28 05:45:37 +00:00
|
|
|
"""Tokenize a string.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
text: The utf-8 encoded string to tokenize.
|
|
|
|
|
2023-04-01 17:01:27 +00:00
|
|
|
Raises:
|
|
|
|
RuntimeError: If the tokenization failed.
|
|
|
|
|
2023-03-28 05:45:37 +00:00
|
|
|
Returns:
|
|
|
|
A list of tokens.
|
|
|
|
"""
|
2023-04-01 17:01:27 +00:00
|
|
|
assert self.ctx is not None
|
2023-05-23 21:56:21 +00:00
|
|
|
n_ctx = self._n_ctx
|
|
|
|
tokens = (llama_cpp.llama_token * n_ctx)()
|
2023-03-28 05:45:37 +00:00
|
|
|
n_tokens = llama_cpp.llama_tokenize(
|
|
|
|
self.ctx,
|
|
|
|
text,
|
|
|
|
tokens,
|
2023-05-19 15:59:33 +00:00
|
|
|
llama_cpp.c_int(n_ctx),
|
2023-05-12 18:28:22 +00:00
|
|
|
llama_cpp.c_bool(add_bos),
|
2023-03-28 05:45:37 +00:00
|
|
|
)
|
2023-05-23 21:56:21 +00:00
|
|
|
if n_tokens < 0:
|
2023-05-12 18:28:22 +00:00
|
|
|
n_tokens = abs(n_tokens)
|
2023-05-23 21:56:21 +00:00
|
|
|
tokens = (llama_cpp.llama_token * n_tokens)()
|
2023-05-12 18:28:22 +00:00
|
|
|
n_tokens = llama_cpp.llama_tokenize(
|
|
|
|
self.ctx,
|
|
|
|
text,
|
|
|
|
tokens,
|
|
|
|
llama_cpp.c_int(n_tokens),
|
|
|
|
llama_cpp.c_bool(add_bos),
|
|
|
|
)
|
|
|
|
if n_tokens < 0:
|
|
|
|
raise RuntimeError(
|
|
|
|
f'Failed to tokenize: text="{text}" n_tokens={n_tokens}'
|
|
|
|
)
|
2023-03-28 05:45:37 +00:00
|
|
|
return list(tokens[:n_tokens])
|
|
|
|
|
2023-05-19 15:59:33 +00:00
|
|
|
def detokenize(self, tokens: List[int]) -> bytes:
|
2023-03-28 05:45:37 +00:00
|
|
|
"""Detokenize a list of tokens.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
tokens: The list of tokens to detokenize.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
The detokenized string.
|
|
|
|
"""
|
2023-04-01 17:01:27 +00:00
|
|
|
assert self.ctx is not None
|
2023-03-28 05:45:37 +00:00
|
|
|
output = b""
|
|
|
|
for token in tokens:
|
2023-05-19 15:59:33 +00:00
|
|
|
output += llama_cpp.llama_token_to_str(
|
|
|
|
self.ctx, llama_cpp.llama_token(token)
|
|
|
|
)
|
2023-03-28 05:45:37 +00:00
|
|
|
return output
|
|
|
|
|
2023-06-08 17:19:23 +00:00
|
|
|
def set_cache(self, cache: Optional[BaseLlamaCache]):
|
2023-04-15 16:03:09 +00:00
|
|
|
"""Set the cache.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
cache: The cache to set.
|
|
|
|
"""
|
2023-04-24 23:54:41 +00:00
|
|
|
self.cache = cache
|
2023-04-15 16:03:09 +00:00
|
|
|
|
2023-04-02 04:02:47 +00:00
|
|
|
def reset(self):
|
|
|
|
"""Reset the model state."""
|
2023-04-24 19:47:54 +00:00
|
|
|
self.eval_tokens.clear()
|
|
|
|
self.eval_logits.clear()
|
2023-05-27 00:03:31 +00:00
|
|
|
self._input_ids = np.array([], dtype=np.intc)
|
|
|
|
self._scores = np.ndarray((0, self._n_vocab), dtype=np.single)
|
2023-04-02 04:02:47 +00:00
|
|
|
|
2023-05-19 15:59:33 +00:00
|
|
|
def eval(self, tokens: Sequence[int]):
|
2023-04-02 04:02:47 +00:00
|
|
|
"""Evaluate a list of tokens.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
tokens: The list of tokens to evaluate.
|
|
|
|
"""
|
|
|
|
assert self.ctx is not None
|
2023-05-23 21:56:21 +00:00
|
|
|
n_ctx = self._n_ctx
|
2023-04-02 04:02:47 +00:00
|
|
|
for i in range(0, len(tokens), self.n_batch):
|
2023-06-08 17:19:23 +00:00
|
|
|
batch = tokens[i : min(len(tokens), i + self.n_batch)]
|
2023-05-27 00:03:31 +00:00
|
|
|
n_past = min(n_ctx - len(batch), len(self._input_ids))
|
2023-04-24 19:47:54 +00:00
|
|
|
n_tokens = len(batch)
|
2023-04-02 04:02:47 +00:00
|
|
|
return_code = llama_cpp.llama_eval(
|
|
|
|
ctx=self.ctx,
|
|
|
|
tokens=(llama_cpp.llama_token * len(batch))(*batch),
|
2023-04-24 19:47:54 +00:00
|
|
|
n_tokens=llama_cpp.c_int(n_tokens),
|
|
|
|
n_past=llama_cpp.c_int(n_past),
|
2023-04-02 04:02:47 +00:00
|
|
|
n_threads=llama_cpp.c_int(self.n_threads),
|
|
|
|
)
|
2023-05-23 21:56:21 +00:00
|
|
|
if return_code != 0:
|
2023-04-02 04:02:47 +00:00
|
|
|
raise RuntimeError(f"llama_eval returned {return_code}")
|
2023-05-01 18:47:55 +00:00
|
|
|
# Save tokens
|
2023-04-24 19:47:54 +00:00
|
|
|
self.eval_tokens.extend(batch)
|
2023-05-26 20:12:45 +00:00
|
|
|
self._input_ids: npt.NDArray[np.intc] = np.concatenate(
|
|
|
|
(self._input_ids, np.array(batch, dtype=np.intc)), axis=0
|
|
|
|
)
|
2023-05-01 18:47:55 +00:00
|
|
|
# Save logits
|
|
|
|
rows = n_tokens if self.params.logits_all else 1
|
2023-05-23 21:56:21 +00:00
|
|
|
n_vocab = self._n_vocab
|
|
|
|
cols = n_vocab
|
2023-05-01 18:47:55 +00:00
|
|
|
logits_view = llama_cpp.llama_get_logits(self.ctx)
|
2023-06-08 17:19:23 +00:00
|
|
|
logits = [logits_view[i * cols : (i + 1) * cols] for i in range(rows)]
|
2023-05-01 18:47:55 +00:00
|
|
|
self.eval_logits.extend(logits)
|
2023-05-26 20:12:45 +00:00
|
|
|
self._scores: npt.NDArray[np.single] = np.concatenate(
|
|
|
|
(self._scores, np.array(logits, dtype=np.single)), axis=0
|
|
|
|
)
|
2023-05-01 18:47:55 +00:00
|
|
|
|
2023-05-08 05:30:18 +00:00
|
|
|
def _sample(
|
2023-06-08 17:19:23 +00:00
|
|
|
self,
|
|
|
|
last_n_tokens_data, # type: llama_cpp.Array[llama_cpp.llama_token]
|
|
|
|
last_n_tokens_size: llama_cpp.c_int,
|
|
|
|
top_k: llama_cpp.c_int,
|
|
|
|
top_p: llama_cpp.c_float,
|
|
|
|
temp: llama_cpp.c_float,
|
|
|
|
tfs_z: llama_cpp.c_float,
|
|
|
|
repeat_penalty: llama_cpp.c_float,
|
|
|
|
frequency_penalty: llama_cpp.c_float,
|
|
|
|
presence_penalty: llama_cpp.c_float,
|
|
|
|
mirostat_mode: llama_cpp.c_int,
|
|
|
|
mirostat_tau: llama_cpp.c_float,
|
|
|
|
mirostat_eta: llama_cpp.c_float,
|
|
|
|
penalize_nl: bool = True,
|
|
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
2023-05-01 18:47:55 +00:00
|
|
|
):
|
|
|
|
assert self.ctx is not None
|
|
|
|
assert len(self.eval_logits) > 0
|
2023-05-27 00:03:31 +00:00
|
|
|
assert self._scores.shape[0] > 0
|
2023-05-23 21:56:21 +00:00
|
|
|
n_vocab = self._n_vocab
|
|
|
|
n_ctx = self._n_ctx
|
2023-05-17 05:41:42 +00:00
|
|
|
top_k = llama_cpp.c_int(n_vocab) if top_k.value <= 0 else top_k
|
2023-05-17 06:00:39 +00:00
|
|
|
last_n_tokens_size = (
|
|
|
|
llama_cpp.c_int(n_ctx)
|
|
|
|
if last_n_tokens_size.value < 0
|
|
|
|
else last_n_tokens_size
|
|
|
|
)
|
2023-05-26 20:12:45 +00:00
|
|
|
logits: npt.NDArray[np.single] = self._scores[-1, :]
|
2023-05-24 19:55:44 +00:00
|
|
|
|
2023-05-25 18:04:54 +00:00
|
|
|
if logits_processor is not None:
|
2023-05-26 20:12:45 +00:00
|
|
|
logits = np.array(
|
2023-05-27 00:03:31 +00:00
|
|
|
logits_processor(self._input_ids.tolist(), logits.tolist()),
|
2023-05-26 20:12:45 +00:00
|
|
|
dtype=np.single,
|
|
|
|
)
|
|
|
|
self._scores[-1, :] = logits
|
|
|
|
self.eval_logits[-1] = logits.tolist()
|
2023-05-25 18:04:54 +00:00
|
|
|
|
2023-05-21 23:18:56 +00:00
|
|
|
nl_logit = logits[self._token_nl]
|
2023-05-21 22:36:34 +00:00
|
|
|
candidates = self._candidates
|
2023-05-26 20:12:45 +00:00
|
|
|
candidates_data = self._candidates_data
|
|
|
|
candidates_data["id"] = np.arange(n_vocab, dtype=np.intc) # type: ignore
|
|
|
|
candidates_data["logit"] = logits
|
|
|
|
candidates_data["p"] = np.zeros(n_vocab, dtype=np.single)
|
|
|
|
candidates.data = candidates_data.ctypes.data_as(llama_cpp.llama_token_data_p)
|
2023-05-21 22:36:34 +00:00
|
|
|
candidates.sorted = llama_cpp.c_bool(False)
|
|
|
|
candidates.size = llama_cpp.c_size_t(n_vocab)
|
2023-05-01 18:47:55 +00:00
|
|
|
llama_cpp.llama_sample_repetition_penalty(
|
|
|
|
ctx=self.ctx,
|
|
|
|
last_tokens_data=last_n_tokens_data,
|
|
|
|
last_tokens_size=last_n_tokens_size,
|
2023-05-08 00:01:34 +00:00
|
|
|
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
2023-05-01 18:47:55 +00:00
|
|
|
penalty=repeat_penalty,
|
|
|
|
)
|
2023-05-09 01:21:25 +00:00
|
|
|
llama_cpp.llama_sample_frequency_and_presence_penalties(
|
|
|
|
ctx=self.ctx,
|
|
|
|
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
|
|
|
last_tokens_data=last_n_tokens_data,
|
|
|
|
last_tokens_size=last_n_tokens_size,
|
|
|
|
alpha_frequency=frequency_penalty,
|
|
|
|
alpha_presence=presence_penalty,
|
|
|
|
)
|
2023-05-17 05:53:26 +00:00
|
|
|
if not penalize_nl:
|
2023-05-21 23:18:56 +00:00
|
|
|
candidates.data[self._token_nl].logit = llama_cpp.c_float(nl_logit)
|
2023-05-09 01:21:25 +00:00
|
|
|
if temp.value == 0.0:
|
|
|
|
return llama_cpp.llama_sample_token_greedy(
|
|
|
|
ctx=self.ctx,
|
|
|
|
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
|
|
|
)
|
|
|
|
elif mirostat_mode.value == 1:
|
|
|
|
mirostat_mu = llama_cpp.c_float(2.0 * mirostat_tau.value)
|
|
|
|
mirostat_m = llama_cpp.c_int(100)
|
2023-05-06 20:47:47 +00:00
|
|
|
llama_cpp.llama_sample_temperature(
|
|
|
|
ctx=self.ctx,
|
2023-05-09 01:21:25 +00:00
|
|
|
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
2023-05-06 20:47:47 +00:00
|
|
|
temp=temp,
|
|
|
|
)
|
2023-05-09 01:21:25 +00:00
|
|
|
return llama_cpp.llama_sample_token_mirostat(
|
2023-05-06 20:47:47 +00:00
|
|
|
ctx=self.ctx,
|
2023-05-09 01:21:25 +00:00
|
|
|
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
2023-05-06 20:47:47 +00:00
|
|
|
tau=mirostat_tau,
|
|
|
|
eta=mirostat_eta,
|
2023-05-09 01:21:25 +00:00
|
|
|
mu=llama_cpp.ctypes.byref(mirostat_mu), # type: ignore
|
|
|
|
m=mirostat_m,
|
2023-05-06 20:47:47 +00:00
|
|
|
)
|
2023-05-08 23:57:09 +00:00
|
|
|
elif mirostat_mode.value == 2:
|
2023-05-09 01:21:25 +00:00
|
|
|
mirostat_mu = llama_cpp.c_float(2.0 * mirostat_tau.value)
|
2023-05-06 20:47:47 +00:00
|
|
|
llama_cpp.llama_sample_temperature(
|
|
|
|
ctx=self.ctx,
|
|
|
|
candidates=llama_cpp.ctypes.pointer(candidates),
|
|
|
|
temp=temp,
|
|
|
|
)
|
2023-05-09 01:21:25 +00:00
|
|
|
return llama_cpp.llama_sample_token_mirostat_v2(
|
2023-05-06 20:47:47 +00:00
|
|
|
ctx=self.ctx,
|
2023-05-09 01:21:25 +00:00
|
|
|
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
2023-05-06 20:47:47 +00:00
|
|
|
tau=mirostat_tau,
|
|
|
|
eta=mirostat_eta,
|
2023-05-09 01:21:25 +00:00
|
|
|
mu=llama_cpp.ctypes.byref(mirostat_mu), # type: ignore
|
2023-05-01 18:47:55 +00:00
|
|
|
)
|
|
|
|
else:
|
|
|
|
llama_cpp.llama_sample_top_k(
|
|
|
|
ctx=self.ctx,
|
2023-05-08 00:01:34 +00:00
|
|
|
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
2023-05-01 18:47:55 +00:00
|
|
|
k=top_k,
|
2023-05-07 04:12:47 +00:00
|
|
|
min_keep=llama_cpp.c_size_t(1),
|
2023-05-01 18:47:55 +00:00
|
|
|
)
|
|
|
|
llama_cpp.llama_sample_tail_free(
|
|
|
|
ctx=self.ctx,
|
2023-05-08 00:01:34 +00:00
|
|
|
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
2023-05-09 01:21:25 +00:00
|
|
|
z=tfs_z,
|
2023-05-07 04:12:47 +00:00
|
|
|
min_keep=llama_cpp.c_size_t(1),
|
2023-05-01 18:47:55 +00:00
|
|
|
)
|
|
|
|
llama_cpp.llama_sample_typical(
|
|
|
|
ctx=self.ctx,
|
2023-05-08 00:01:34 +00:00
|
|
|
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
2023-05-02 01:51:16 +00:00
|
|
|
p=llama_cpp.c_float(1.0),
|
2023-05-07 04:12:47 +00:00
|
|
|
min_keep=llama_cpp.c_size_t(1),
|
2023-05-01 18:47:55 +00:00
|
|
|
)
|
|
|
|
llama_cpp.llama_sample_top_p(
|
|
|
|
ctx=self.ctx,
|
2023-05-08 00:01:34 +00:00
|
|
|
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
2023-05-01 18:47:55 +00:00
|
|
|
p=top_p,
|
2023-05-07 04:12:47 +00:00
|
|
|
min_keep=llama_cpp.c_size_t(1),
|
2023-05-01 18:47:55 +00:00
|
|
|
)
|
|
|
|
llama_cpp.llama_sample_temperature(
|
|
|
|
ctx=self.ctx,
|
2023-05-08 00:01:34 +00:00
|
|
|
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
2023-05-01 18:47:55 +00:00
|
|
|
temp=temp,
|
|
|
|
)
|
|
|
|
return llama_cpp.llama_sample_token(
|
|
|
|
ctx=self.ctx,
|
2023-05-08 00:01:34 +00:00
|
|
|
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
2023-05-01 18:47:55 +00:00
|
|
|
)
|
2023-04-02 04:02:47 +00:00
|
|
|
|
|
|
|
def sample(
|
2023-06-08 17:19:23 +00:00
|
|
|
self,
|
|
|
|
top_k: int = 40,
|
|
|
|
top_p: float = 0.95,
|
|
|
|
temp: float = 0.80,
|
|
|
|
repeat_penalty: float = 1.1,
|
|
|
|
frequency_penalty: float = 0.0,
|
|
|
|
presence_penalty: float = 0.0,
|
|
|
|
tfs_z: float = 1.0,
|
|
|
|
mirostat_mode: int = 0,
|
|
|
|
mirostat_eta: float = 0.1,
|
|
|
|
mirostat_tau: float = 5.0,
|
|
|
|
penalize_nl: bool = True,
|
|
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
2023-04-02 04:02:47 +00:00
|
|
|
):
|
|
|
|
"""Sample a token from the model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
top_k: The top-k sampling parameter.
|
|
|
|
top_p: The top-p sampling parameter.
|
|
|
|
temp: The temperature parameter.
|
|
|
|
repeat_penalty: The repeat penalty parameter.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
The sampled token.
|
|
|
|
"""
|
|
|
|
assert self.ctx is not None
|
2023-04-24 19:47:54 +00:00
|
|
|
last_n_tokens_data = [llama_cpp.llama_token(0)] * max(
|
2023-05-27 00:03:31 +00:00
|
|
|
0, self.last_n_tokens_size - len(self._input_ids)
|
2023-06-08 17:19:23 +00:00
|
|
|
) + self._input_ids[-self.last_n_tokens_size :].tolist()
|
2023-05-08 05:30:18 +00:00
|
|
|
return self._sample(
|
2023-04-02 04:02:47 +00:00
|
|
|
last_n_tokens_data=(llama_cpp.llama_token * self.last_n_tokens_size)(
|
2023-04-24 19:47:54 +00:00
|
|
|
*last_n_tokens_data
|
2023-04-02 04:02:47 +00:00
|
|
|
),
|
|
|
|
last_n_tokens_size=llama_cpp.c_int(self.last_n_tokens_size),
|
|
|
|
top_k=llama_cpp.c_int(top_k),
|
|
|
|
top_p=llama_cpp.c_float(top_p),
|
|
|
|
temp=llama_cpp.c_float(temp),
|
2023-05-09 01:21:25 +00:00
|
|
|
tfs_z=llama_cpp.c_float(tfs_z),
|
2023-04-02 04:02:47 +00:00
|
|
|
repeat_penalty=llama_cpp.c_float(repeat_penalty),
|
2023-05-08 05:30:18 +00:00
|
|
|
frequency_penalty=llama_cpp.c_float(frequency_penalty),
|
|
|
|
presence_penalty=llama_cpp.c_float(presence_penalty),
|
2023-05-09 01:21:25 +00:00
|
|
|
mirostat_mode=llama_cpp.c_int(mirostat_mode),
|
|
|
|
mirostat_tau=llama_cpp.c_float(mirostat_tau),
|
|
|
|
mirostat_eta=llama_cpp.c_float(mirostat_eta),
|
2023-05-17 05:53:26 +00:00
|
|
|
penalize_nl=penalize_nl,
|
2023-05-25 18:04:54 +00:00
|
|
|
logits_processor=logits_processor,
|
2023-04-02 04:02:47 +00:00
|
|
|
)
|
|
|
|
|
2023-04-01 17:01:27 +00:00
|
|
|
def generate(
|
2023-06-08 17:19:23 +00:00
|
|
|
self,
|
|
|
|
tokens: Sequence[int],
|
|
|
|
top_k: int = 40,
|
|
|
|
top_p: float = 0.95,
|
|
|
|
temp: float = 0.80,
|
|
|
|
repeat_penalty: float = 1.1,
|
|
|
|
reset: bool = True,
|
|
|
|
frequency_penalty: float = 0.0,
|
|
|
|
presence_penalty: float = 0.0,
|
|
|
|
tfs_z: float = 1.0,
|
|
|
|
mirostat_mode: int = 0,
|
|
|
|
mirostat_tau: float = 5.0,
|
|
|
|
mirostat_eta: float = 0.1,
|
|
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
|
|
|
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
2023-05-19 15:59:33 +00:00
|
|
|
) -> Generator[int, Optional[Sequence[int]], None]:
|
2023-04-02 04:02:47 +00:00
|
|
|
"""Create a generator of tokens from a prompt.
|
2023-04-01 21:36:30 +00:00
|
|
|
|
2023-04-01 21:39:35 +00:00
|
|
|
Examples:
|
|
|
|
>>> llama = Llama("models/ggml-7b.bin")
|
|
|
|
>>> tokens = llama.tokenize(b"Hello, world!")
|
|
|
|
>>> for token in llama.generate(tokens, top_k=40, top_p=0.95, temp=1.0, repeat_penalty=1.1):
|
|
|
|
... print(llama.detokenize([token]))
|
2023-04-01 21:36:30 +00:00
|
|
|
|
|
|
|
Args:
|
|
|
|
tokens: The prompt tokens.
|
|
|
|
top_k: The top-k sampling parameter.
|
|
|
|
top_p: The top-p sampling parameter.
|
|
|
|
temp: The temperature parameter.
|
|
|
|
repeat_penalty: The repeat penalty parameter.
|
2023-04-13 04:28:00 +00:00
|
|
|
reset: Whether to reset the model state.
|
2023-04-01 21:36:30 +00:00
|
|
|
|
|
|
|
Yields:
|
|
|
|
The generated tokens.
|
|
|
|
"""
|
2023-04-01 17:01:27 +00:00
|
|
|
assert self.ctx is not None
|
2023-04-24 23:54:41 +00:00
|
|
|
|
2023-05-27 00:03:31 +00:00
|
|
|
if reset and len(self._input_ids) > 0:
|
2023-05-05 01:58:27 +00:00
|
|
|
longest_prefix = 0
|
2023-05-27 00:03:31 +00:00
|
|
|
for a, b in zip(self._input_ids, tokens[:-1]):
|
2023-05-05 01:58:27 +00:00
|
|
|
if a == b:
|
|
|
|
longest_prefix += 1
|
|
|
|
else:
|
|
|
|
break
|
|
|
|
if longest_prefix > 0:
|
|
|
|
if self.verbose:
|
|
|
|
print("Llama.generate: prefix-match hit", file=sys.stderr)
|
|
|
|
reset = False
|
|
|
|
tokens = tokens[longest_prefix:]
|
2023-05-27 00:03:31 +00:00
|
|
|
self._input_ids = self._input_ids[:longest_prefix]
|
|
|
|
self._scores = self._scores[:longest_prefix, :]
|
2023-05-05 01:58:27 +00:00
|
|
|
for _ in range(len(self.eval_tokens) - longest_prefix):
|
|
|
|
self.eval_tokens.pop()
|
|
|
|
try:
|
|
|
|
self.eval_logits.pop()
|
|
|
|
except IndexError:
|
|
|
|
pass
|
2023-04-24 23:54:41 +00:00
|
|
|
|
2023-04-13 04:28:00 +00:00
|
|
|
if reset:
|
|
|
|
self.reset()
|
2023-05-05 01:58:27 +00:00
|
|
|
|
2023-04-01 17:01:27 +00:00
|
|
|
while True:
|
2023-04-02 04:02:47 +00:00
|
|
|
self.eval(tokens)
|
|
|
|
token = self.sample(
|
|
|
|
top_k=top_k,
|
|
|
|
top_p=top_p,
|
|
|
|
temp=temp,
|
2023-05-09 01:21:25 +00:00
|
|
|
repeat_penalty=repeat_penalty,
|
|
|
|
frequency_penalty=frequency_penalty,
|
|
|
|
presence_penalty=presence_penalty,
|
2023-05-12 01:56:19 +00:00
|
|
|
tfs_z=tfs_z,
|
2023-05-06 20:47:47 +00:00
|
|
|
mirostat_mode=mirostat_mode,
|
|
|
|
mirostat_tau=mirostat_tau,
|
|
|
|
mirostat_eta=mirostat_eta,
|
2023-05-25 18:04:54 +00:00
|
|
|
logits_processor=logits_processor,
|
2023-04-01 17:01:27 +00:00
|
|
|
)
|
2023-05-25 18:04:54 +00:00
|
|
|
if stopping_criteria is not None and stopping_criteria(
|
2023-06-08 17:19:23 +00:00
|
|
|
self._input_ids.tolist(), self._scores[-1, :].tolist()
|
2023-05-25 18:04:54 +00:00
|
|
|
):
|
|
|
|
return
|
2023-04-01 17:01:27 +00:00
|
|
|
tokens_or_none = yield token
|
|
|
|
tokens = [token]
|
|
|
|
if tokens_or_none is not None:
|
|
|
|
tokens.extend(tokens_or_none)
|
|
|
|
|
2023-05-19 23:23:32 +00:00
|
|
|
def create_embedding(
|
2023-06-08 17:19:23 +00:00
|
|
|
self, input: Union[str, List[str]], model: Optional[str] = None
|
2023-05-19 23:23:32 +00:00
|
|
|
) -> Embedding:
|
2023-03-28 08:59:54 +00:00
|
|
|
"""Embed a string.
|
|
|
|
|
|
|
|
Args:
|
2023-04-01 17:01:27 +00:00
|
|
|
input: The utf-8 encoded string to embed.
|
2023-03-28 08:59:54 +00:00
|
|
|
|
|
|
|
Returns:
|
2023-04-01 17:01:27 +00:00
|
|
|
An embedding object.
|
2023-03-28 08:59:54 +00:00
|
|
|
"""
|
2023-04-01 17:01:27 +00:00
|
|
|
assert self.ctx is not None
|
2023-05-16 22:07:25 +00:00
|
|
|
model_name: str = model if model is not None else self.model_path
|
2023-04-04 17:09:24 +00:00
|
|
|
|
2023-04-05 07:25:37 +00:00
|
|
|
if self.params.embedding == False:
|
|
|
|
raise RuntimeError(
|
|
|
|
"Llama model must be created with embedding=True to call this method"
|
|
|
|
)
|
|
|
|
|
2023-04-04 17:09:24 +00:00
|
|
|
if self.verbose:
|
|
|
|
llama_cpp.llama_reset_timings(self.ctx)
|
|
|
|
|
2023-05-19 23:23:32 +00:00
|
|
|
if isinstance(input, str):
|
|
|
|
inputs = [input]
|
|
|
|
else:
|
|
|
|
inputs = input
|
2023-04-04 17:09:24 +00:00
|
|
|
|
2023-05-22 01:30:03 +00:00
|
|
|
data: List[EmbeddingData] = []
|
2023-05-19 23:23:32 +00:00
|
|
|
total_tokens = 0
|
2023-05-22 01:30:03 +00:00
|
|
|
for index, input in enumerate(inputs):
|
2023-05-19 23:23:32 +00:00
|
|
|
tokens = self.tokenize(input.encode("utf-8"))
|
|
|
|
self.reset()
|
|
|
|
self.eval(tokens)
|
|
|
|
n_tokens = len(tokens)
|
|
|
|
total_tokens += n_tokens
|
|
|
|
embedding = llama_cpp.llama_get_embeddings(self.ctx)[
|
2023-06-08 17:19:23 +00:00
|
|
|
: llama_cpp.llama_n_embd(self.ctx)
|
|
|
|
]
|
2023-04-04 17:09:24 +00:00
|
|
|
|
2023-05-19 23:23:32 +00:00
|
|
|
data.append(
|
2023-04-01 17:01:27 +00:00
|
|
|
{
|
|
|
|
"object": "embedding",
|
|
|
|
"embedding": embedding,
|
2023-05-22 01:30:03 +00:00
|
|
|
"index": index,
|
2023-04-01 17:01:27 +00:00
|
|
|
}
|
2023-05-19 23:23:32 +00:00
|
|
|
)
|
2023-05-22 01:30:03 +00:00
|
|
|
if self.verbose:
|
|
|
|
llama_cpp.llama_print_timings(self.ctx)
|
2023-05-19 23:23:32 +00:00
|
|
|
|
|
|
|
return {
|
|
|
|
"object": "list",
|
|
|
|
"data": data,
|
2023-05-22 01:30:03 +00:00
|
|
|
"model": model_name,
|
2023-04-01 17:01:27 +00:00
|
|
|
"usage": {
|
2023-05-19 23:23:32 +00:00
|
|
|
"prompt_tokens": total_tokens,
|
|
|
|
"total_tokens": total_tokens,
|
2023-04-01 17:01:27 +00:00
|
|
|
},
|
|
|
|
}
|
2023-03-28 06:42:22 +00:00
|
|
|
|
2023-04-03 22:46:19 +00:00
|
|
|
def embed(self, input: str) -> List[float]:
|
|
|
|
"""Embed a string.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
input: The utf-8 encoded string to embed.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
A list of embeddings
|
|
|
|
"""
|
|
|
|
return list(map(float, self.create_embedding(input)["data"][0]["embedding"]))
|
|
|
|
|
2023-04-01 17:01:27 +00:00
|
|
|
def _create_completion(
|
2023-06-08 17:19:23 +00:00
|
|
|
self,
|
|
|
|
prompt: str,
|
|
|
|
suffix: Optional[str] = None,
|
|
|
|
max_tokens: int = 16,
|
|
|
|
temperature: float = 0.8,
|
|
|
|
top_p: float = 0.95,
|
|
|
|
logprobs: Optional[int] = None,
|
|
|
|
echo: bool = False,
|
|
|
|
stop: Optional[Union[str, List[str]]] = [],
|
|
|
|
frequency_penalty: float = 0.0,
|
|
|
|
presence_penalty: float = 0.0,
|
|
|
|
repeat_penalty: float = 1.1,
|
|
|
|
top_k: int = 40,
|
|
|
|
stream: bool = False,
|
|
|
|
tfs_z: float = 1.0,
|
|
|
|
mirostat_mode: int = 0,
|
|
|
|
mirostat_tau: float = 5.0,
|
|
|
|
mirostat_eta: float = 0.1,
|
|
|
|
model: Optional[str] = None,
|
|
|
|
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
|
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
2023-04-12 18:06:22 +00:00
|
|
|
) -> Union[Iterator[Completion], Iterator[CompletionChunk]]:
|
2023-04-01 17:01:27 +00:00
|
|
|
assert self.ctx is not None
|
2023-05-24 20:02:06 +00:00
|
|
|
|
2023-04-15 15:39:21 +00:00
|
|
|
completion_id: str = f"cmpl-{str(uuid.uuid4())}"
|
|
|
|
created: int = int(time.time())
|
2023-05-19 15:59:33 +00:00
|
|
|
completion_tokens: List[int] = []
|
2023-04-01 17:01:27 +00:00
|
|
|
# Add blank space to start of prompt to match OG llama tokenizer
|
2023-05-19 15:59:33 +00:00
|
|
|
prompt_tokens: List[int] = self.tokenize(b" " + prompt.encode("utf-8"))
|
2023-04-15 15:39:21 +00:00
|
|
|
text: bytes = b""
|
2023-05-18 15:35:59 +00:00
|
|
|
returned_tokens: int = 0
|
2023-05-19 15:59:33 +00:00
|
|
|
stop = (
|
|
|
|
stop if isinstance(stop, list) else [stop] if isinstance(stop, str) else []
|
|
|
|
)
|
2023-05-16 22:07:25 +00:00
|
|
|
model_name: str = model if model is not None else self.model_path
|
2023-03-23 09:33:06 +00:00
|
|
|
|
2023-04-04 17:09:24 +00:00
|
|
|
if self.verbose:
|
|
|
|
llama_cpp.llama_reset_timings(self.ctx)
|
|
|
|
|
2023-06-09 14:57:36 +00:00
|
|
|
if len(prompt_tokens) > self._n_ctx:
|
2023-06-16 08:41:57 +00:00
|
|
|
raise ValueError(f"Requested tokens ({len(prompt_tokens)}) exceed context window of {self._n_ctx}")
|
2023-03-23 09:33:06 +00:00
|
|
|
|
2023-06-09 14:57:36 +00:00
|
|
|
# Truncate max_tokens if requested tokens would exceed the context window
|
|
|
|
max_tokens = (
|
|
|
|
max_tokens
|
|
|
|
if max_tokens + len(prompt_tokens) < self._n_ctx
|
|
|
|
else (self._n_ctx - len(prompt_tokens))
|
|
|
|
)
|
|
|
|
|
2023-04-01 17:01:27 +00:00
|
|
|
if stop != []:
|
2023-04-29 10:19:22 +00:00
|
|
|
stop_sequences = [s.encode("utf-8") for s in stop]
|
2023-04-01 17:01:27 +00:00
|
|
|
else:
|
2023-04-02 07:59:19 +00:00
|
|
|
stop_sequences = []
|
2023-03-24 18:33:38 +00:00
|
|
|
|
2023-04-12 18:05:11 +00:00
|
|
|
if logprobs is not None and self.params.logits_all is False:
|
|
|
|
raise ValueError(
|
|
|
|
"logprobs is not supported for models created with logits_all=False"
|
|
|
|
)
|
|
|
|
|
2023-06-10 16:22:31 +00:00
|
|
|
if self.cache:
|
2023-05-07 23:31:26 +00:00
|
|
|
try:
|
|
|
|
cache_item = self.cache[prompt_tokens]
|
|
|
|
cache_prefix_len = Llama.longest_token_prefix(
|
2023-05-27 00:12:05 +00:00
|
|
|
cache_item.input_ids.tolist(), prompt_tokens
|
2023-05-07 23:31:26 +00:00
|
|
|
)
|
|
|
|
eval_prefix_len = Llama.longest_token_prefix(
|
2023-05-27 00:12:05 +00:00
|
|
|
self._input_ids.tolist(), prompt_tokens
|
2023-05-07 23:31:26 +00:00
|
|
|
)
|
|
|
|
if cache_prefix_len > eval_prefix_len:
|
|
|
|
self.load_state(cache_item)
|
|
|
|
if self.verbose:
|
|
|
|
print("Llama._create_completion: cache hit", file=sys.stderr)
|
|
|
|
except KeyError:
|
|
|
|
if self.verbose:
|
|
|
|
print("Llama._create_completion: cache miss", file=sys.stderr)
|
2023-04-15 16:03:09 +00:00
|
|
|
|
2023-04-12 18:05:11 +00:00
|
|
|
finish_reason = "length"
|
2023-04-28 10:50:30 +00:00
|
|
|
multibyte_fix = 0
|
2023-04-14 13:59:33 +00:00
|
|
|
for token in self.generate(
|
2023-06-08 17:19:23 +00:00
|
|
|
prompt_tokens,
|
|
|
|
top_k=top_k,
|
|
|
|
top_p=top_p,
|
|
|
|
temp=temperature,
|
|
|
|
tfs_z=tfs_z,
|
|
|
|
mirostat_mode=mirostat_mode,
|
|
|
|
mirostat_tau=mirostat_tau,
|
|
|
|
mirostat_eta=mirostat_eta,
|
|
|
|
frequency_penalty=frequency_penalty,
|
|
|
|
presence_penalty=presence_penalty,
|
|
|
|
repeat_penalty=repeat_penalty,
|
|
|
|
stopping_criteria=stopping_criteria,
|
|
|
|
logits_processor=logits_processor,
|
2023-04-14 13:59:33 +00:00
|
|
|
):
|
2023-05-21 23:18:56 +00:00
|
|
|
if token == self._token_eos:
|
2023-04-02 07:59:19 +00:00
|
|
|
text = self.detokenize(completion_tokens)
|
2023-03-23 09:33:06 +00:00
|
|
|
finish_reason = "stop"
|
|
|
|
break
|
2023-04-24 23:54:41 +00:00
|
|
|
|
2023-03-28 05:45:37 +00:00
|
|
|
completion_tokens.append(token)
|
2023-03-23 09:33:06 +00:00
|
|
|
|
2023-04-28 11:16:18 +00:00
|
|
|
all_text = self.detokenize(completion_tokens)
|
|
|
|
|
|
|
|
# Contains multi-byte UTF8
|
2023-05-01 18:47:55 +00:00
|
|
|
for k, char in enumerate(all_text[-3:]):
|
2023-04-28 11:16:18 +00:00
|
|
|
k = 3 - k
|
2023-05-01 18:47:55 +00:00
|
|
|
for num, pattern in [(2, 192), (3, 224), (4, 240)]:
|
2023-04-28 11:16:18 +00:00
|
|
|
# Bitwise AND check
|
2023-05-01 18:47:55 +00:00
|
|
|
if num > k and pattern & char == pattern:
|
2023-04-28 11:16:18 +00:00
|
|
|
multibyte_fix = num - k
|
|
|
|
|
2023-04-28 10:50:30 +00:00
|
|
|
# Stop incomplete bytes from passing
|
2023-05-01 18:47:55 +00:00
|
|
|
if multibyte_fix > 0:
|
2023-04-28 10:50:30 +00:00
|
|
|
multibyte_fix -= 1
|
|
|
|
continue
|
|
|
|
|
2023-04-02 07:59:19 +00:00
|
|
|
any_stop = [s for s in stop_sequences if s in all_text]
|
2023-03-23 09:33:06 +00:00
|
|
|
if len(any_stop) > 0:
|
|
|
|
first_stop = any_stop[0]
|
2023-04-02 07:59:19 +00:00
|
|
|
text = all_text[: all_text.index(first_stop)]
|
2023-03-23 09:33:06 +00:00
|
|
|
finish_reason = "stop"
|
|
|
|
break
|
|
|
|
|
2023-03-28 08:03:57 +00:00
|
|
|
if stream:
|
2023-05-27 00:23:49 +00:00
|
|
|
remaining_tokens = completion_tokens[returned_tokens:]
|
|
|
|
remaining_text = self.detokenize(remaining_tokens)
|
|
|
|
remaining_length = len(remaining_text)
|
|
|
|
|
2023-04-02 07:59:19 +00:00
|
|
|
# We want to avoid yielding any characters from
|
|
|
|
# the generated text if they are part of a stop
|
|
|
|
# sequence.
|
2023-05-19 06:20:27 +00:00
|
|
|
first_stop_position = 0
|
2023-04-02 07:59:19 +00:00
|
|
|
for s in stop_sequences:
|
2023-05-27 00:23:49 +00:00
|
|
|
for i in range(min(len(s), remaining_length), 0, -1):
|
|
|
|
if remaining_text.endswith(s[:i]):
|
2023-05-19 06:20:27 +00:00
|
|
|
if i > first_stop_position:
|
|
|
|
first_stop_position = i
|
2023-03-28 08:03:57 +00:00
|
|
|
break
|
2023-05-18 15:35:59 +00:00
|
|
|
|
2023-05-19 06:20:27 +00:00
|
|
|
token_end_position = 0
|
2023-05-18 15:35:59 +00:00
|
|
|
for token in remaining_tokens:
|
2023-05-19 06:20:27 +00:00
|
|
|
token_end_position += len(self.detokenize([token]))
|
|
|
|
# Check if stop sequence is in the token
|
2023-05-19 15:59:33 +00:00
|
|
|
if token_end_position >= (
|
2023-06-08 17:19:23 +00:00
|
|
|
remaining_length - first_stop_position - 1
|
2023-05-19 15:59:33 +00:00
|
|
|
):
|
2023-05-18 15:35:59 +00:00
|
|
|
break
|
2023-05-19 06:20:27 +00:00
|
|
|
logprobs_or_none: Optional[CompletionLogprobs] = None
|
|
|
|
if logprobs is not None:
|
|
|
|
token_str = self.detokenize([token]).decode(
|
|
|
|
"utf-8", errors="ignore"
|
|
|
|
)
|
|
|
|
text_offset = len(prompt) + len(
|
|
|
|
self.detokenize(completion_tokens[:returned_tokens])
|
|
|
|
)
|
|
|
|
token_offset = len(prompt_tokens) + returned_tokens
|
2023-05-27 00:03:31 +00:00
|
|
|
logits = self._scores[token_offset - 1, :].tolist()
|
2023-05-19 06:20:27 +00:00
|
|
|
current_logprobs = Llama.logits_to_logprobs(logits)
|
|
|
|
sorted_logprobs = list(
|
|
|
|
sorted(
|
|
|
|
zip(current_logprobs, range(len(current_logprobs))),
|
|
|
|
reverse=True,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
top_logprob = {
|
2023-05-19 15:59:33 +00:00
|
|
|
self.detokenize([i]).decode(
|
2023-05-19 06:20:27 +00:00
|
|
|
"utf-8", errors="ignore"
|
|
|
|
): logprob
|
|
|
|
for logprob, i in sorted_logprobs[:logprobs]
|
|
|
|
}
|
|
|
|
top_logprob.update({token_str: current_logprobs[int(token)]})
|
|
|
|
logprobs_or_none = {
|
|
|
|
"tokens": [
|
|
|
|
self.detokenize([token]).decode(
|
|
|
|
"utf-8", errors="ignore"
|
|
|
|
)
|
|
|
|
],
|
|
|
|
"text_offset": [text_offset],
|
|
|
|
"token_logprobs": [sorted_logprobs[int(token)][0]],
|
|
|
|
"top_logprobs": [top_logprob],
|
|
|
|
}
|
2023-05-18 15:35:59 +00:00
|
|
|
returned_tokens += 1
|
|
|
|
yield {
|
|
|
|
"id": completion_id,
|
|
|
|
"object": "text_completion",
|
|
|
|
"created": created,
|
|
|
|
"model": model_name,
|
|
|
|
"choices": [
|
|
|
|
{
|
|
|
|
"text": self.detokenize([token]).decode(
|
|
|
|
"utf-8", errors="ignore"
|
|
|
|
),
|
|
|
|
"index": 0,
|
2023-05-19 06:20:27 +00:00
|
|
|
"logprobs": logprobs_or_none,
|
2023-05-18 15:35:59 +00:00
|
|
|
"finish_reason": None,
|
|
|
|
}
|
|
|
|
],
|
|
|
|
}
|
2023-04-12 18:05:11 +00:00
|
|
|
|
2023-04-02 07:59:19 +00:00
|
|
|
if len(completion_tokens) >= max_tokens:
|
|
|
|
text = self.detokenize(completion_tokens)
|
|
|
|
finish_reason = "length"
|
|
|
|
break
|
2023-03-23 09:33:06 +00:00
|
|
|
|
2023-05-26 07:13:24 +00:00
|
|
|
if stopping_criteria is not None and stopping_criteria(
|
2023-06-08 17:19:23 +00:00
|
|
|
self._input_ids.tolist(), self._scores[-1, :].tolist()
|
2023-05-26 07:13:24 +00:00
|
|
|
):
|
2023-05-26 14:25:28 +00:00
|
|
|
text = self.detokenize(completion_tokens)
|
2023-05-26 07:13:24 +00:00
|
|
|
finish_reason = "stop"
|
|
|
|
|
2023-05-10 20:12:17 +00:00
|
|
|
if self.verbose:
|
|
|
|
llama_cpp.llama_print_timings(self.ctx)
|
|
|
|
|
2023-03-28 08:03:57 +00:00
|
|
|
if stream:
|
2023-05-18 15:35:59 +00:00
|
|
|
remaining_tokens = completion_tokens[returned_tokens:]
|
|
|
|
all_text = self.detokenize(remaining_tokens)
|
|
|
|
any_stop = [s for s in stop_sequences if s in all_text]
|
|
|
|
if len(any_stop) > 0:
|
|
|
|
end = min(all_text.index(stop) for stop in any_stop)
|
|
|
|
else:
|
|
|
|
end = len(all_text)
|
|
|
|
|
2023-05-19 06:20:27 +00:00
|
|
|
token_end_position = 0
|
2023-05-18 15:35:59 +00:00
|
|
|
for token in remaining_tokens:
|
2023-05-19 06:20:27 +00:00
|
|
|
token_end_position += len(self.detokenize([token]))
|
|
|
|
|
|
|
|
logprobs_or_none: Optional[CompletionLogprobs] = None
|
|
|
|
if logprobs is not None:
|
|
|
|
token_str = self.detokenize([token]).decode(
|
|
|
|
"utf-8", errors="ignore"
|
|
|
|
)
|
|
|
|
text_offset = len(prompt) + len(
|
|
|
|
self.detokenize(completion_tokens[:returned_tokens])
|
|
|
|
)
|
|
|
|
token_offset = len(prompt_tokens) + returned_tokens - 1
|
2023-05-27 00:03:31 +00:00
|
|
|
logits = self._scores[token_offset, :].tolist()
|
2023-05-19 06:20:27 +00:00
|
|
|
current_logprobs = Llama.logits_to_logprobs(logits)
|
|
|
|
sorted_logprobs = list(
|
|
|
|
sorted(
|
|
|
|
zip(current_logprobs, range(len(current_logprobs))),
|
|
|
|
reverse=True,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
top_logprob = {
|
2023-05-19 15:59:33 +00:00
|
|
|
self.detokenize([i]).decode("utf-8", errors="ignore"): logprob
|
2023-05-19 06:20:27 +00:00
|
|
|
for logprob, i in sorted_logprobs[:logprobs]
|
|
|
|
}
|
|
|
|
top_logprob.update({token_str: current_logprobs[int(token)]})
|
|
|
|
logprobs_or_none = {
|
|
|
|
"tokens": [
|
|
|
|
self.detokenize([token]).decode("utf-8", errors="ignore")
|
|
|
|
],
|
|
|
|
"text_offset": [text_offset],
|
|
|
|
"token_logprobs": [sorted_logprobs[int(token)][0]],
|
|
|
|
"top_logprobs": [top_logprob],
|
|
|
|
}
|
|
|
|
|
|
|
|
if token_end_position >= end:
|
2023-05-18 15:35:59 +00:00
|
|
|
last_text = self.detokenize([token])
|
2023-05-19 06:20:27 +00:00
|
|
|
if token_end_position == end - 1:
|
2023-05-18 15:35:59 +00:00
|
|
|
break
|
2023-05-19 06:20:27 +00:00
|
|
|
returned_tokens += 1
|
2023-05-18 15:35:59 +00:00
|
|
|
yield {
|
|
|
|
"id": completion_id,
|
|
|
|
"object": "text_completion",
|
|
|
|
"created": created,
|
|
|
|
"model": model_name,
|
|
|
|
"choices": [
|
|
|
|
{
|
|
|
|
"text": last_text[
|
2023-06-08 17:19:23 +00:00
|
|
|
: len(last_text) - (token_end_position - end)
|
|
|
|
].decode("utf-8", errors="ignore"),
|
2023-05-18 15:35:59 +00:00
|
|
|
"index": 0,
|
2023-05-19 06:20:27 +00:00
|
|
|
"logprobs": logprobs_or_none,
|
2023-05-18 15:35:59 +00:00
|
|
|
"finish_reason": finish_reason,
|
|
|
|
}
|
|
|
|
],
|
2023-03-28 08:03:57 +00:00
|
|
|
}
|
2023-05-18 15:35:59 +00:00
|
|
|
break
|
|
|
|
returned_tokens += 1
|
|
|
|
yield {
|
|
|
|
"id": completion_id,
|
|
|
|
"object": "text_completion",
|
|
|
|
"created": created,
|
|
|
|
"model": model_name,
|
|
|
|
"choices": [
|
|
|
|
{
|
|
|
|
"text": self.detokenize([token]).decode(
|
|
|
|
"utf-8", errors="ignore"
|
|
|
|
),
|
|
|
|
"index": 0,
|
2023-05-19 06:20:27 +00:00
|
|
|
"logprobs": logprobs_or_none,
|
2023-05-18 15:35:59 +00:00
|
|
|
"finish_reason": finish_reason
|
|
|
|
if returned_tokens == len(completion_tokens)
|
|
|
|
else None,
|
|
|
|
}
|
|
|
|
],
|
|
|
|
}
|
2023-06-10 16:22:31 +00:00
|
|
|
if self.cache:
|
2023-05-26 07:03:01 +00:00
|
|
|
if self.verbose:
|
|
|
|
print("Llama._create_completion: cache save", file=sys.stderr)
|
|
|
|
self.cache[prompt_tokens + completion_tokens] = self.save_state()
|
2023-06-08 17:19:23 +00:00
|
|
|
print("Llama._create_completion: cache saved", file=sys.stderr)
|
2023-03-28 08:03:57 +00:00
|
|
|
return
|
|
|
|
|
2023-06-10 16:22:31 +00:00
|
|
|
if self.cache:
|
2023-05-26 07:03:01 +00:00
|
|
|
if self.verbose:
|
|
|
|
print("Llama._create_completion: cache save", file=sys.stderr)
|
|
|
|
self.cache[prompt_tokens + completion_tokens] = self.save_state()
|
|
|
|
|
2023-04-26 12:37:06 +00:00
|
|
|
text_str = text.decode("utf-8", errors="ignore")
|
2023-03-23 20:25:13 +00:00
|
|
|
|
2023-03-23 09:33:06 +00:00
|
|
|
if echo:
|
2023-04-15 16:03:09 +00:00
|
|
|
text_str = prompt + text_str
|
2023-03-23 09:33:06 +00:00
|
|
|
|
|
|
|
if suffix is not None:
|
2023-04-15 16:03:09 +00:00
|
|
|
text_str = text_str + suffix
|
2023-03-23 09:33:06 +00:00
|
|
|
|
2023-04-12 18:05:11 +00:00
|
|
|
logprobs_or_none: Optional[CompletionLogprobs] = None
|
2023-03-23 19:51:05 +00:00
|
|
|
if logprobs is not None:
|
2023-05-19 06:20:27 +00:00
|
|
|
text_offset = 0 if echo else len(prompt)
|
|
|
|
token_offset = 0 if echo else len(prompt_tokens[1:])
|
2023-04-14 13:59:33 +00:00
|
|
|
text_offsets: List[int] = []
|
2023-05-19 06:20:27 +00:00
|
|
|
token_logprobs: List[Optional[float]] = []
|
2023-04-14 13:59:33 +00:00
|
|
|
tokens: List[str] = []
|
2023-05-19 06:20:27 +00:00
|
|
|
top_logprobs: List[Optional[Dict[str, float]]] = []
|
|
|
|
|
|
|
|
if echo:
|
|
|
|
# Remove leading BOS token
|
|
|
|
all_tokens = prompt_tokens[1:] + completion_tokens
|
|
|
|
else:
|
|
|
|
all_tokens = completion_tokens
|
2023-04-14 13:59:33 +00:00
|
|
|
|
|
|
|
all_token_strs = [
|
2023-05-01 18:47:55 +00:00
|
|
|
self.detokenize([token]).decode("utf-8", errors="ignore")
|
|
|
|
for token in all_tokens
|
2023-04-14 13:59:33 +00:00
|
|
|
]
|
2023-05-05 01:58:36 +00:00
|
|
|
all_logprobs = [
|
2023-06-08 17:19:23 +00:00
|
|
|
Llama.logits_to_logprobs(row.tolist()) for row in self._scores
|
|
|
|
][token_offset:]
|
2023-04-14 13:59:33 +00:00
|
|
|
for token, token_str, logprobs_token in zip(
|
2023-06-08 17:19:23 +00:00
|
|
|
all_tokens, all_token_strs, all_logprobs
|
2023-04-14 13:59:33 +00:00
|
|
|
):
|
|
|
|
text_offsets.append(text_offset)
|
|
|
|
text_offset += len(token_str)
|
|
|
|
tokens.append(token_str)
|
|
|
|
sorted_logprobs = list(
|
|
|
|
sorted(
|
|
|
|
zip(logprobs_token, range(len(logprobs_token))), reverse=True
|
|
|
|
)
|
|
|
|
)
|
|
|
|
token_logprobs.append(sorted_logprobs[int(token)][0])
|
2023-05-19 06:20:27 +00:00
|
|
|
top_logprob: Optional[Dict[str, float]] = {
|
2023-05-19 15:59:33 +00:00
|
|
|
self.detokenize([i]).decode("utf-8", errors="ignore"): logprob
|
2023-04-14 13:59:33 +00:00
|
|
|
for logprob, i in sorted_logprobs[:logprobs]
|
|
|
|
}
|
2023-05-19 06:20:27 +00:00
|
|
|
top_logprob.update({token_str: logprobs_token[int(token)]})
|
2023-04-14 13:59:33 +00:00
|
|
|
top_logprobs.append(top_logprob)
|
2023-05-19 06:20:27 +00:00
|
|
|
# Weird idosincracy of the OpenAI API where
|
|
|
|
# token_logprobs and top_logprobs are null for
|
|
|
|
# the first token.
|
|
|
|
if echo and len(all_tokens) > 0:
|
|
|
|
token_logprobs[0] = None
|
|
|
|
top_logprobs[0] = None
|
2023-04-12 18:05:11 +00:00
|
|
|
logprobs_or_none = {
|
|
|
|
"tokens": tokens,
|
|
|
|
"text_offset": text_offsets,
|
|
|
|
"token_logprobs": token_logprobs,
|
|
|
|
"top_logprobs": top_logprobs,
|
|
|
|
}
|
2023-03-23 19:51:05 +00:00
|
|
|
|
2023-03-28 08:03:57 +00:00
|
|
|
yield {
|
2023-03-28 06:42:22 +00:00
|
|
|
"id": completion_id,
|
2023-03-23 09:33:06 +00:00
|
|
|
"object": "text_completion",
|
2023-03-28 06:42:22 +00:00
|
|
|
"created": created,
|
2023-05-16 22:07:25 +00:00
|
|
|
"model": model_name,
|
2023-03-23 09:33:06 +00:00
|
|
|
"choices": [
|
|
|
|
{
|
2023-04-15 16:03:09 +00:00
|
|
|
"text": text_str,
|
2023-03-23 09:33:06 +00:00
|
|
|
"index": 0,
|
2023-04-12 18:05:11 +00:00
|
|
|
"logprobs": logprobs_or_none,
|
2023-03-23 09:33:06 +00:00
|
|
|
"finish_reason": finish_reason,
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"usage": {
|
2023-03-28 05:45:37 +00:00
|
|
|
"prompt_tokens": len(prompt_tokens),
|
|
|
|
"completion_tokens": len(completion_tokens),
|
|
|
|
"total_tokens": len(prompt_tokens) + len(completion_tokens),
|
2023-03-23 09:33:06 +00:00
|
|
|
},
|
|
|
|
}
|
|
|
|
|
2023-04-01 17:01:27 +00:00
|
|
|
def create_completion(
|
2023-06-08 17:19:23 +00:00
|
|
|
self,
|
|
|
|
prompt: str,
|
|
|
|
suffix: Optional[str] = None,
|
|
|
|
max_tokens: int = 128,
|
|
|
|
temperature: float = 0.8,
|
|
|
|
top_p: float = 0.95,
|
|
|
|
logprobs: Optional[int] = None,
|
|
|
|
echo: bool = False,
|
|
|
|
stop: Optional[Union[str, List[str]]] = [],
|
|
|
|
frequency_penalty: float = 0.0,
|
|
|
|
presence_penalty: float = 0.0,
|
|
|
|
repeat_penalty: float = 1.1,
|
|
|
|
top_k: int = 40,
|
|
|
|
stream: bool = False,
|
|
|
|
tfs_z: float = 1.0,
|
|
|
|
mirostat_mode: int = 0,
|
|
|
|
mirostat_tau: float = 5.0,
|
|
|
|
mirostat_eta: float = 0.1,
|
|
|
|
model: Optional[str] = None,
|
|
|
|
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
|
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
2023-04-04 00:12:14 +00:00
|
|
|
) -> Union[Completion, Iterator[CompletionChunk]]:
|
2023-04-01 17:01:27 +00:00
|
|
|
"""Generate text from a prompt.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prompt: The prompt to generate text from.
|
|
|
|
suffix: A suffix to append to the generated text. If None, no suffix is appended.
|
|
|
|
max_tokens: The maximum number of tokens to generate.
|
|
|
|
temperature: The temperature to use for sampling.
|
|
|
|
top_p: The top-p value to use for sampling.
|
|
|
|
logprobs: The number of logprobs to return. If None, no logprobs are returned.
|
|
|
|
echo: Whether to echo the prompt.
|
|
|
|
stop: A list of strings to stop generation when encountered.
|
|
|
|
repeat_penalty: The penalty to apply to repeated tokens.
|
|
|
|
top_k: The top-k value to use for sampling.
|
|
|
|
stream: Whether to stream the results.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: If the requested tokens exceed the context window.
|
|
|
|
RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Response object containing the generated text.
|
|
|
|
"""
|
|
|
|
completion_or_chunks = self._create_completion(
|
|
|
|
prompt=prompt,
|
|
|
|
suffix=suffix,
|
|
|
|
max_tokens=max_tokens,
|
|
|
|
temperature=temperature,
|
|
|
|
top_p=top_p,
|
|
|
|
logprobs=logprobs,
|
|
|
|
echo=echo,
|
|
|
|
stop=stop,
|
2023-05-08 05:30:18 +00:00
|
|
|
frequency_penalty=frequency_penalty,
|
|
|
|
presence_penalty=presence_penalty,
|
2023-04-01 17:01:27 +00:00
|
|
|
repeat_penalty=repeat_penalty,
|
|
|
|
top_k=top_k,
|
|
|
|
stream=stream,
|
2023-05-12 01:56:19 +00:00
|
|
|
tfs_z=tfs_z,
|
2023-05-09 01:21:25 +00:00
|
|
|
mirostat_mode=mirostat_mode,
|
|
|
|
mirostat_tau=mirostat_tau,
|
|
|
|
mirostat_eta=mirostat_eta,
|
2023-05-16 21:22:00 +00:00
|
|
|
model=model,
|
2023-05-26 07:13:24 +00:00
|
|
|
stopping_criteria=stopping_criteria,
|
|
|
|
logits_processor=logits_processor,
|
2023-04-01 17:01:27 +00:00
|
|
|
)
|
|
|
|
if stream:
|
2023-04-04 00:12:14 +00:00
|
|
|
chunks: Iterator[CompletionChunk] = completion_or_chunks
|
2023-04-01 17:01:27 +00:00
|
|
|
return chunks
|
|
|
|
completion: Completion = next(completion_or_chunks) # type: ignore
|
|
|
|
return completion
|
|
|
|
|
2023-03-28 08:03:57 +00:00
|
|
|
def __call__(
|
2023-06-08 17:19:23 +00:00
|
|
|
self,
|
|
|
|
prompt: str,
|
|
|
|
suffix: Optional[str] = None,
|
|
|
|
max_tokens: int = 128,
|
|
|
|
temperature: float = 0.8,
|
|
|
|
top_p: float = 0.95,
|
|
|
|
logprobs: Optional[int] = None,
|
|
|
|
echo: bool = False,
|
|
|
|
stop: Optional[Union[str, List[str]]] = [],
|
|
|
|
frequency_penalty: float = 0.0,
|
|
|
|
presence_penalty: float = 0.0,
|
|
|
|
repeat_penalty: float = 1.1,
|
|
|
|
top_k: int = 40,
|
|
|
|
stream: bool = False,
|
|
|
|
tfs_z: float = 1.0,
|
|
|
|
mirostat_mode: int = 0,
|
|
|
|
mirostat_tau: float = 5.0,
|
|
|
|
mirostat_eta: float = 0.1,
|
|
|
|
model: Optional[str] = None,
|
|
|
|
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
|
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
2023-04-04 00:26:08 +00:00
|
|
|
) -> Union[Completion, Iterator[CompletionChunk]]:
|
2023-03-28 08:03:57 +00:00
|
|
|
"""Generate text from a prompt.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prompt: The prompt to generate text from.
|
|
|
|
suffix: A suffix to append to the generated text. If None, no suffix is appended.
|
|
|
|
max_tokens: The maximum number of tokens to generate.
|
|
|
|
temperature: The temperature to use for sampling.
|
|
|
|
top_p: The top-p value to use for sampling.
|
|
|
|
logprobs: The number of logprobs to return. If None, no logprobs are returned.
|
|
|
|
echo: Whether to echo the prompt.
|
|
|
|
stop: A list of strings to stop generation when encountered.
|
|
|
|
repeat_penalty: The penalty to apply to repeated tokens.
|
|
|
|
top_k: The top-k value to use for sampling.
|
|
|
|
stream: Whether to stream the results.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: If the requested tokens exceed the context window.
|
|
|
|
RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Response object containing the generated text.
|
|
|
|
"""
|
2023-04-01 17:01:27 +00:00
|
|
|
return self.create_completion(
|
2023-03-28 08:03:57 +00:00
|
|
|
prompt=prompt,
|
|
|
|
suffix=suffix,
|
|
|
|
max_tokens=max_tokens,
|
|
|
|
temperature=temperature,
|
|
|
|
top_p=top_p,
|
|
|
|
logprobs=logprobs,
|
|
|
|
echo=echo,
|
|
|
|
stop=stop,
|
2023-05-08 05:30:18 +00:00
|
|
|
frequency_penalty=frequency_penalty,
|
|
|
|
presence_penalty=presence_penalty,
|
2023-03-28 08:03:57 +00:00
|
|
|
repeat_penalty=repeat_penalty,
|
|
|
|
top_k=top_k,
|
|
|
|
stream=stream,
|
2023-05-12 01:56:19 +00:00
|
|
|
tfs_z=tfs_z,
|
2023-05-09 01:21:25 +00:00
|
|
|
mirostat_mode=mirostat_mode,
|
|
|
|
mirostat_tau=mirostat_tau,
|
|
|
|
mirostat_eta=mirostat_eta,
|
2023-05-16 21:22:00 +00:00
|
|
|
model=model,
|
2023-05-26 07:13:24 +00:00
|
|
|
stopping_criteria=stopping_criteria,
|
|
|
|
logits_processor=logits_processor,
|
2023-03-28 08:03:57 +00:00
|
|
|
)
|
|
|
|
|
2023-04-04 00:12:44 +00:00
|
|
|
def _convert_text_completion_to_chat(
|
2023-06-08 17:19:23 +00:00
|
|
|
self, completion: Completion
|
2023-04-04 00:12:44 +00:00
|
|
|
) -> ChatCompletion:
|
|
|
|
return {
|
|
|
|
"id": "chat" + completion["id"],
|
|
|
|
"object": "chat.completion",
|
|
|
|
"created": completion["created"],
|
|
|
|
"model": completion["model"],
|
|
|
|
"choices": [
|
|
|
|
{
|
|
|
|
"index": 0,
|
|
|
|
"message": {
|
|
|
|
"role": "assistant",
|
|
|
|
"content": completion["choices"][0]["text"],
|
|
|
|
},
|
|
|
|
"finish_reason": completion["choices"][0]["finish_reason"],
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"usage": completion["usage"],
|
|
|
|
}
|
|
|
|
|
|
|
|
def _convert_text_completion_chunks_to_chat(
|
2023-06-08 17:19:23 +00:00
|
|
|
self,
|
|
|
|
chunks: Iterator[CompletionChunk],
|
2023-04-04 00:12:44 +00:00
|
|
|
) -> Iterator[ChatCompletionChunk]:
|
|
|
|
for i, chunk in enumerate(chunks):
|
|
|
|
if i == 0:
|
|
|
|
yield {
|
|
|
|
"id": "chat" + chunk["id"],
|
|
|
|
"model": chunk["model"],
|
|
|
|
"created": chunk["created"],
|
|
|
|
"object": "chat.completion.chunk",
|
|
|
|
"choices": [
|
|
|
|
{
|
|
|
|
"index": 0,
|
|
|
|
"delta": {
|
|
|
|
"role": "assistant",
|
|
|
|
},
|
|
|
|
"finish_reason": None,
|
|
|
|
}
|
|
|
|
],
|
|
|
|
}
|
|
|
|
yield {
|
|
|
|
"id": "chat" + chunk["id"],
|
|
|
|
"model": chunk["model"],
|
|
|
|
"created": chunk["created"],
|
|
|
|
"object": "chat.completion.chunk",
|
|
|
|
"choices": [
|
|
|
|
{
|
|
|
|
"index": 0,
|
|
|
|
"delta": {
|
|
|
|
"content": chunk["choices"][0]["text"],
|
|
|
|
},
|
|
|
|
"finish_reason": chunk["choices"][0]["finish_reason"],
|
|
|
|
}
|
|
|
|
],
|
|
|
|
}
|
|
|
|
|
|
|
|
def create_chat_completion(
|
2023-06-08 17:19:23 +00:00
|
|
|
self,
|
|
|
|
messages: List[ChatCompletionMessage],
|
|
|
|
temperature: float = 0.2,
|
|
|
|
top_p: float = 0.95,
|
|
|
|
top_k: int = 40,
|
|
|
|
stream: bool = False,
|
|
|
|
stop: Optional[Union[str, List[str]]] = [],
|
|
|
|
max_tokens: int = 256,
|
|
|
|
presence_penalty: float = 0.0,
|
|
|
|
frequency_penalty: float = 0.0,
|
|
|
|
repeat_penalty: float = 1.1,
|
|
|
|
tfs_z: float = 1.0,
|
|
|
|
mirostat_mode: int = 0,
|
|
|
|
mirostat_tau: float = 5.0,
|
|
|
|
mirostat_eta: float = 0.1,
|
|
|
|
model: Optional[str] = None,
|
2023-06-09 17:13:08 +00:00
|
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
2023-04-04 00:12:44 +00:00
|
|
|
) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]:
|
2023-04-04 00:24:20 +00:00
|
|
|
"""Generate a chat completion from a list of messages.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
messages: A list of messages to generate a response for.
|
|
|
|
temperature: The temperature to use for sampling.
|
|
|
|
top_p: The top-p value to use for sampling.
|
|
|
|
top_k: The top-k value to use for sampling.
|
|
|
|
stream: Whether to stream the results.
|
|
|
|
stop: A list of strings to stop generation when encountered.
|
|
|
|
max_tokens: The maximum number of tokens to generate.
|
|
|
|
repeat_penalty: The penalty to apply to repeated tokens.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Generated chat completion or a stream of chat completion chunks.
|
|
|
|
"""
|
2023-05-19 15:59:33 +00:00
|
|
|
stop = (
|
|
|
|
stop if isinstance(stop, list) else [stop] if isinstance(stop, str) else []
|
|
|
|
)
|
2023-04-15 15:58:19 +00:00
|
|
|
chat_history = "".join(
|
|
|
|
f'### {"Human" if message["role"] == "user" else "Assistant"}:{message["content"]}'
|
2023-04-04 00:12:44 +00:00
|
|
|
for message in messages
|
|
|
|
)
|
2023-04-15 15:58:19 +00:00
|
|
|
PROMPT = chat_history + "### Assistant:"
|
2023-04-15 16:02:48 +00:00
|
|
|
PROMPT_STOP = ["### Assistant:", "### Human:"]
|
2023-04-04 00:12:44 +00:00
|
|
|
completion_or_chunks = self(
|
|
|
|
prompt=PROMPT,
|
|
|
|
stop=PROMPT_STOP + stop,
|
|
|
|
temperature=temperature,
|
|
|
|
top_p=top_p,
|
|
|
|
top_k=top_k,
|
|
|
|
stream=stream,
|
|
|
|
max_tokens=max_tokens,
|
|
|
|
repeat_penalty=repeat_penalty,
|
2023-05-08 05:30:18 +00:00
|
|
|
presence_penalty=presence_penalty,
|
|
|
|
frequency_penalty=frequency_penalty,
|
2023-05-12 01:56:19 +00:00
|
|
|
tfs_z=tfs_z,
|
2023-05-09 01:21:25 +00:00
|
|
|
mirostat_mode=mirostat_mode,
|
|
|
|
mirostat_tau=mirostat_tau,
|
|
|
|
mirostat_eta=mirostat_eta,
|
2023-05-16 21:22:00 +00:00
|
|
|
model=model,
|
2023-06-09 17:13:08 +00:00
|
|
|
logits_processor=logits_processor,
|
2023-04-04 00:12:44 +00:00
|
|
|
)
|
|
|
|
if stream:
|
|
|
|
chunks: Iterator[CompletionChunk] = completion_or_chunks # type: ignore
|
|
|
|
return self._convert_text_completion_chunks_to_chat(chunks)
|
|
|
|
else:
|
|
|
|
completion: Completion = completion_or_chunks # type: ignore
|
|
|
|
return self._convert_text_completion_to_chat(completion)
|
|
|
|
|
2023-03-23 09:33:06 +00:00
|
|
|
def __del__(self):
|
2023-04-01 17:01:27 +00:00
|
|
|
if self.ctx is not None:
|
|
|
|
llama_cpp.llama_free(self.ctx)
|
|
|
|
self.ctx = None
|
2023-04-01 21:29:30 +00:00
|
|
|
|
2023-04-05 10:52:17 +00:00
|
|
|
def __getstate__(self):
|
|
|
|
return dict(
|
|
|
|
verbose=self.verbose,
|
|
|
|
model_path=self.model_path,
|
|
|
|
n_ctx=self.params.n_ctx,
|
2023-05-14 04:04:22 +00:00
|
|
|
n_gpu_layers=self.params.n_gpu_layers,
|
2023-04-05 10:52:17 +00:00
|
|
|
seed=self.params.seed,
|
|
|
|
f16_kv=self.params.f16_kv,
|
|
|
|
logits_all=self.params.logits_all,
|
|
|
|
vocab_only=self.params.vocab_only,
|
2023-04-10 06:11:35 +00:00
|
|
|
use_mmap=self.params.use_mmap,
|
2023-04-05 10:52:17 +00:00
|
|
|
use_mlock=self.params.use_mlock,
|
|
|
|
embedding=self.params.embedding,
|
2023-06-15 02:12:33 +00:00
|
|
|
low_vram=self.params.low_vram,
|
2023-04-05 10:52:17 +00:00
|
|
|
last_n_tokens_size=self.last_n_tokens_size,
|
|
|
|
n_batch=self.n_batch,
|
|
|
|
n_threads=self.n_threads,
|
2023-04-18 14:20:46 +00:00
|
|
|
lora_base=self.lora_base,
|
2023-04-18 05:43:44 +00:00
|
|
|
lora_path=self.lora_path,
|
2023-05-21 21:47:21 +00:00
|
|
|
### DEPRECATED ###
|
|
|
|
n_parts=self.n_parts,
|
|
|
|
### DEPRECATED ###
|
2023-04-05 10:52:17 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
def __setstate__(self, state):
|
|
|
|
self.__init__(
|
|
|
|
model_path=state["model_path"],
|
|
|
|
n_ctx=state["n_ctx"],
|
|
|
|
n_parts=state["n_parts"],
|
2023-05-14 04:04:22 +00:00
|
|
|
n_gpu_layers=state["n_gpu_layers"],
|
2023-04-05 10:52:17 +00:00
|
|
|
seed=state["seed"],
|
|
|
|
f16_kv=state["f16_kv"],
|
|
|
|
logits_all=state["logits_all"],
|
|
|
|
vocab_only=state["vocab_only"],
|
2023-04-10 06:11:35 +00:00
|
|
|
use_mmap=state["use_mmap"],
|
2023-04-05 10:52:17 +00:00
|
|
|
use_mlock=state["use_mlock"],
|
|
|
|
embedding=state["embedding"],
|
2023-06-15 02:12:33 +00:00
|
|
|
low_vram=state["low_vram"],
|
2023-04-05 10:52:17 +00:00
|
|
|
n_threads=state["n_threads"],
|
|
|
|
n_batch=state["n_batch"],
|
|
|
|
last_n_tokens_size=state["last_n_tokens_size"],
|
2023-04-18 14:20:46 +00:00
|
|
|
lora_base=state["lora_base"],
|
2023-04-18 05:43:44 +00:00
|
|
|
lora_path=state["lora_path"],
|
2023-04-05 10:52:17 +00:00
|
|
|
verbose=state["verbose"],
|
|
|
|
)
|
|
|
|
|
2023-04-24 21:51:25 +00:00
|
|
|
def save_state(self) -> LlamaState:
|
|
|
|
assert self.ctx is not None
|
2023-06-08 17:19:23 +00:00
|
|
|
if self.verbose:
|
|
|
|
print("Llama.save_state: saving llama state", file=sys.stderr)
|
2023-04-24 21:51:25 +00:00
|
|
|
state_size = llama_cpp.llama_get_state_size(self.ctx)
|
2023-06-08 17:19:23 +00:00
|
|
|
if self.verbose:
|
|
|
|
print(f"Llama.save_state: got state size: {state_size}", file=sys.stderr)
|
2023-04-24 21:51:25 +00:00
|
|
|
llama_state = (llama_cpp.c_uint8 * int(state_size))()
|
2023-06-08 17:19:23 +00:00
|
|
|
if self.verbose:
|
|
|
|
print("Llama.save_state: allocated state", file=sys.stderr)
|
2023-05-03 13:33:50 +00:00
|
|
|
n_bytes = llama_cpp.llama_copy_state_data(self.ctx, llama_state)
|
2023-06-08 17:19:23 +00:00
|
|
|
if self.verbose:
|
|
|
|
print(f"Llama.save_state: copied llama state: {n_bytes}", file=sys.stderr)
|
2023-05-03 13:33:50 +00:00
|
|
|
if int(n_bytes) > int(state_size):
|
2023-04-24 21:51:25 +00:00
|
|
|
raise RuntimeError("Failed to copy llama state data")
|
2023-05-03 13:33:50 +00:00
|
|
|
llama_state_compact = (llama_cpp.c_uint8 * int(n_bytes))()
|
|
|
|
llama_cpp.ctypes.memmove(llama_state_compact, llama_state, int(n_bytes))
|
2023-05-03 14:28:10 +00:00
|
|
|
if self.verbose:
|
2023-05-05 01:58:36 +00:00
|
|
|
print(
|
|
|
|
f"Llama.save_state: saving {n_bytes} bytes of llama state",
|
|
|
|
file=sys.stderr,
|
|
|
|
)
|
2023-04-24 21:51:25 +00:00
|
|
|
return LlamaState(
|
|
|
|
eval_tokens=self.eval_tokens.copy(),
|
|
|
|
eval_logits=self.eval_logits.copy(),
|
2023-05-26 20:12:45 +00:00
|
|
|
scores=self._scores.copy(),
|
|
|
|
input_ids=self._input_ids.copy(),
|
2023-05-03 13:33:50 +00:00
|
|
|
llama_state=llama_state_compact,
|
|
|
|
llama_state_size=n_bytes,
|
2023-04-24 21:51:25 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
def load_state(self, state: LlamaState) -> None:
|
|
|
|
assert self.ctx is not None
|
|
|
|
self.eval_tokens = state.eval_tokens.copy()
|
|
|
|
self.eval_logits = state.eval_logits.copy()
|
2023-05-26 20:12:45 +00:00
|
|
|
self._scores = state.scores.copy()
|
|
|
|
self._input_ids = state.input_ids.copy()
|
2023-05-03 13:33:50 +00:00
|
|
|
state_size = state.llama_state_size
|
2023-04-24 21:51:25 +00:00
|
|
|
if llama_cpp.llama_set_state_data(self.ctx, state.llama_state) != state_size:
|
|
|
|
raise RuntimeError("Failed to set llama state data")
|
|
|
|
|
2023-05-20 12:13:41 +00:00
|
|
|
def n_ctx(self) -> int:
|
|
|
|
"""Return the context window size."""
|
|
|
|
assert self.ctx is not None
|
|
|
|
return llama_cpp.llama_n_ctx(self.ctx)
|
|
|
|
|
|
|
|
def n_embd(self) -> int:
|
|
|
|
"""Return the embedding size."""
|
|
|
|
assert self.ctx is not None
|
|
|
|
return llama_cpp.llama_n_embd(self.ctx)
|
|
|
|
|
|
|
|
def n_vocab(self) -> int:
|
|
|
|
"""Return the vocabulary size."""
|
|
|
|
assert self.ctx is not None
|
|
|
|
return llama_cpp.llama_n_vocab(self.ctx)
|
|
|
|
|
2023-05-25 18:11:33 +00:00
|
|
|
def tokenizer(self) -> "LlamaTokenizer":
|
|
|
|
"""Return the tokenizer for this model."""
|
|
|
|
assert self.ctx is not None
|
|
|
|
return LlamaTokenizer(self)
|
|
|
|
|
2023-04-01 21:29:30 +00:00
|
|
|
@staticmethod
|
2023-05-19 15:59:33 +00:00
|
|
|
def token_eos() -> int:
|
2023-04-01 21:29:30 +00:00
|
|
|
"""Return the end-of-sequence token."""
|
|
|
|
return llama_cpp.llama_token_eos()
|
|
|
|
|
|
|
|
@staticmethod
|
2023-05-19 15:59:33 +00:00
|
|
|
def token_bos() -> int:
|
2023-04-01 21:29:30 +00:00
|
|
|
"""Return the beginning-of-sequence token."""
|
|
|
|
return llama_cpp.llama_token_bos()
|
2023-04-12 18:05:11 +00:00
|
|
|
|
2023-05-17 05:53:26 +00:00
|
|
|
@staticmethod
|
2023-05-19 15:59:33 +00:00
|
|
|
def token_nl() -> int:
|
2023-05-17 05:53:26 +00:00
|
|
|
"""Return the newline token."""
|
|
|
|
return llama_cpp.llama_token_nl()
|
|
|
|
|
2023-04-12 18:05:11 +00:00
|
|
|
@staticmethod
|
2023-05-04 16:18:40 +00:00
|
|
|
def logits_to_logprobs(logits: List[float]) -> List[float]:
|
2023-05-01 21:45:08 +00:00
|
|
|
exps = [math.exp(float(x)) for x in logits]
|
|
|
|
sum_exps = sum(exps)
|
2023-05-04 16:18:40 +00:00
|
|
|
return [math.log(x / sum_exps) for x in exps]
|
2023-05-07 23:31:26 +00:00
|
|
|
|
|
|
|
@staticmethod
|
2023-05-19 15:59:33 +00:00
|
|
|
def longest_token_prefix(a: Sequence[int], b: Sequence[int]):
|
2023-05-07 23:31:26 +00:00
|
|
|
longest_prefix = 0
|
|
|
|
for _a, _b in zip(a, b):
|
|
|
|
if _a == _b:
|
|
|
|
longest_prefix += 1
|
|
|
|
else:
|
|
|
|
break
|
|
|
|
return longest_prefix
|
2023-05-25 18:11:33 +00:00
|
|
|
|
|
|
|
|
|
|
|
class LlamaTokenizer:
|
|
|
|
def __init__(self, llama: Llama):
|
|
|
|
self.llama = llama
|
|
|
|
|
2023-05-26 07:00:51 +00:00
|
|
|
def encode(self, text: str, add_bos: bool = True) -> List[int]:
|
|
|
|
return self.llama.tokenize(
|
|
|
|
text.encode("utf-8", errors="ignore"), add_bos=add_bos
|
|
|
|
)
|
2023-05-25 18:11:33 +00:00
|
|
|
|
|
|
|
def decode(self, tokens: List[int]) -> str:
|
|
|
|
return self.llama.detokenize(tokens).decode("utf-8", errors="ignore")
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_ggml_file(cls, path: str) -> "LlamaTokenizer":
|
|
|
|
return cls(Llama(model_path=path, vocab_only=True))
|