Fix llama_cpp and Llama type signatures. Closes #221
This commit is contained in:
parent
fb57b9470b
commit
01a010be52
3 changed files with 58 additions and 64 deletions
|
@ -15,9 +15,7 @@ class LlamaCache:
|
|||
"""Cache for a llama.cpp model."""
|
||||
|
||||
def __init__(self, capacity_bytes: int = (2 << 30)):
|
||||
self.cache_state: OrderedDict[
|
||||
Tuple[llama_cpp.llama_token, ...], "LlamaState"
|
||||
] = OrderedDict()
|
||||
self.cache_state: OrderedDict[Tuple[int, ...], "LlamaState"] = OrderedDict()
|
||||
self.capacity_bytes = capacity_bytes
|
||||
|
||||
@property
|
||||
|
@ -26,8 +24,8 @@ class LlamaCache:
|
|||
|
||||
def _find_longest_prefix_key(
|
||||
self,
|
||||
key: Tuple[llama_cpp.llama_token, ...],
|
||||
) -> Optional[Tuple[llama_cpp.llama_token, ...]]:
|
||||
key: Tuple[int, ...],
|
||||
) -> Optional[Tuple[int, ...]]:
|
||||
min_len = 0
|
||||
min_key = None
|
||||
keys = (
|
||||
|
@ -39,7 +37,7 @@ class LlamaCache:
|
|||
min_key = k
|
||||
return min_key
|
||||
|
||||
def __getitem__(self, key: Sequence[llama_cpp.llama_token]) -> "LlamaState":
|
||||
def __getitem__(self, key: Sequence[int]) -> "LlamaState":
|
||||
key = tuple(key)
|
||||
_key = self._find_longest_prefix_key(key)
|
||||
if _key is None:
|
||||
|
@ -48,10 +46,10 @@ class LlamaCache:
|
|||
self.cache_state.move_to_end(_key)
|
||||
return value
|
||||
|
||||
def __contains__(self, key: Sequence[llama_cpp.llama_token]) -> bool:
|
||||
def __contains__(self, key: Sequence[int]) -> bool:
|
||||
return self._find_longest_prefix_key(tuple(key)) is not None
|
||||
|
||||
def __setitem__(self, key: Sequence[llama_cpp.llama_token], value: "LlamaState"):
|
||||
def __setitem__(self, key: Sequence[int], value: "LlamaState"):
|
||||
key = tuple(key)
|
||||
if key in self.cache_state:
|
||||
del self.cache_state[key]
|
||||
|
@ -63,7 +61,7 @@ class LlamaCache:
|
|||
class LlamaState:
|
||||
def __init__(
|
||||
self,
|
||||
eval_tokens: Deque[llama_cpp.llama_token],
|
||||
eval_tokens: Deque[int],
|
||||
eval_logits: Deque[List[float]],
|
||||
llama_state, # type: llama_cpp.Array[llama_cpp.c_uint8]
|
||||
llama_state_size: int,
|
||||
|
@ -141,7 +139,7 @@ class Llama:
|
|||
|
||||
self.last_n_tokens_size = last_n_tokens_size
|
||||
self.n_batch = min(n_ctx, n_batch)
|
||||
self.eval_tokens: Deque[llama_cpp.llama_token] = deque(maxlen=n_ctx)
|
||||
self.eval_tokens: Deque[int] = deque(maxlen=n_ctx)
|
||||
self.eval_logits: Deque[List[float]] = deque(maxlen=n_ctx if logits_all else 1)
|
||||
|
||||
self.cache: Optional[LlamaCache] = None
|
||||
|
@ -176,9 +174,7 @@ class Llama:
|
|||
if self.verbose:
|
||||
print(llama_cpp.llama_print_system_info().decode("utf-8"), file=sys.stderr)
|
||||
|
||||
def tokenize(
|
||||
self, text: bytes, add_bos: bool = True
|
||||
) -> List[llama_cpp.llama_token]:
|
||||
def tokenize(self, text: bytes, add_bos: bool = True) -> List[int]:
|
||||
"""Tokenize a string.
|
||||
|
||||
Args:
|
||||
|
@ -197,7 +193,7 @@ class Llama:
|
|||
self.ctx,
|
||||
text,
|
||||
tokens,
|
||||
n_ctx,
|
||||
llama_cpp.c_int(n_ctx),
|
||||
llama_cpp.c_bool(add_bos),
|
||||
)
|
||||
if int(n_tokens) < 0:
|
||||
|
@ -216,7 +212,7 @@ class Llama:
|
|||
)
|
||||
return list(tokens[:n_tokens])
|
||||
|
||||
def detokenize(self, tokens: List[llama_cpp.llama_token]) -> bytes:
|
||||
def detokenize(self, tokens: List[int]) -> bytes:
|
||||
"""Detokenize a list of tokens.
|
||||
|
||||
Args:
|
||||
|
@ -228,7 +224,9 @@ class Llama:
|
|||
assert self.ctx is not None
|
||||
output = b""
|
||||
for token in tokens:
|
||||
output += llama_cpp.llama_token_to_str(self.ctx, token)
|
||||
output += llama_cpp.llama_token_to_str(
|
||||
self.ctx, llama_cpp.llama_token(token)
|
||||
)
|
||||
return output
|
||||
|
||||
def set_cache(self, cache: Optional[LlamaCache]):
|
||||
|
@ -244,7 +242,7 @@ class Llama:
|
|||
self.eval_tokens.clear()
|
||||
self.eval_logits.clear()
|
||||
|
||||
def eval(self, tokens: Sequence[llama_cpp.llama_token]):
|
||||
def eval(self, tokens: Sequence[int]):
|
||||
"""Evaluate a list of tokens.
|
||||
|
||||
Args:
|
||||
|
@ -458,7 +456,7 @@ class Llama:
|
|||
|
||||
def generate(
|
||||
self,
|
||||
tokens: Sequence[llama_cpp.llama_token],
|
||||
tokens: Sequence[int],
|
||||
top_k: int = 40,
|
||||
top_p: float = 0.95,
|
||||
temp: float = 0.80,
|
||||
|
@ -470,9 +468,7 @@ class Llama:
|
|||
mirostat_mode: int = 0,
|
||||
mirostat_tau: float = 5.0,
|
||||
mirostat_eta: float = 0.1,
|
||||
) -> Generator[
|
||||
llama_cpp.llama_token, Optional[Sequence[llama_cpp.llama_token]], None
|
||||
]:
|
||||
) -> Generator[int, Optional[Sequence[int]], None]:
|
||||
"""Create a generator of tokens from a prompt.
|
||||
|
||||
Examples:
|
||||
|
@ -617,14 +613,14 @@ class Llama:
|
|||
assert self.ctx is not None
|
||||
completion_id: str = f"cmpl-{str(uuid.uuid4())}"
|
||||
created: int = int(time.time())
|
||||
completion_tokens: List[llama_cpp.llama_token] = []
|
||||
completion_tokens: List[int] = []
|
||||
# Add blank space to start of prompt to match OG llama tokenizer
|
||||
prompt_tokens: List[llama_cpp.llama_token] = self.tokenize(
|
||||
b" " + prompt.encode("utf-8")
|
||||
)
|
||||
prompt_tokens: List[int] = self.tokenize(b" " + prompt.encode("utf-8"))
|
||||
text: bytes = b""
|
||||
returned_tokens: int = 0
|
||||
stop = stop if isinstance(stop, list) else [stop] if isinstance(stop, str) else []
|
||||
stop = (
|
||||
stop if isinstance(stop, list) else [stop] if isinstance(stop, str) else []
|
||||
)
|
||||
model_name: str = model if model is not None else self.model_path
|
||||
|
||||
if self.verbose:
|
||||
|
@ -724,7 +720,9 @@ class Llama:
|
|||
for token in remaining_tokens:
|
||||
token_end_position += len(self.detokenize([token]))
|
||||
# Check if stop sequence is in the token
|
||||
if token_end_position >= (remaining_length - first_stop_position - 1):
|
||||
if token_end_position >= (
|
||||
remaining_length - first_stop_position - 1
|
||||
):
|
||||
break
|
||||
logprobs_or_none: Optional[CompletionLogprobs] = None
|
||||
if logprobs is not None:
|
||||
|
@ -744,7 +742,7 @@ class Llama:
|
|||
)
|
||||
)
|
||||
top_logprob = {
|
||||
self.detokenize([llama_cpp.llama_token(i)]).decode(
|
||||
self.detokenize([i]).decode(
|
||||
"utf-8", errors="ignore"
|
||||
): logprob
|
||||
for logprob, i in sorted_logprobs[:logprobs]
|
||||
|
@ -822,9 +820,7 @@ class Llama:
|
|||
)
|
||||
)
|
||||
top_logprob = {
|
||||
self.detokenize([llama_cpp.llama_token(i)]).decode(
|
||||
"utf-8", errors="ignore"
|
||||
): logprob
|
||||
self.detokenize([i]).decode("utf-8", errors="ignore"): logprob
|
||||
for logprob, i in sorted_logprobs[:logprobs]
|
||||
}
|
||||
top_logprob.update({token_str: current_logprobs[int(token)]})
|
||||
|
@ -924,9 +920,7 @@ class Llama:
|
|||
)
|
||||
token_logprobs.append(sorted_logprobs[int(token)][0])
|
||||
top_logprob: Optional[Dict[str, float]] = {
|
||||
self.detokenize([llama_cpp.llama_token(i)]).decode(
|
||||
"utf-8", errors="ignore"
|
||||
): logprob
|
||||
self.detokenize([i]).decode("utf-8", errors="ignore"): logprob
|
||||
for logprob, i in sorted_logprobs[:logprobs]
|
||||
}
|
||||
top_logprob.update({token_str: logprobs_token[int(token)]})
|
||||
|
@ -1188,7 +1182,9 @@ class Llama:
|
|||
Returns:
|
||||
Generated chat completion or a stream of chat completion chunks.
|
||||
"""
|
||||
stop = stop if isinstance(stop, list) else [stop] if isinstance(stop, str) else []
|
||||
stop = (
|
||||
stop if isinstance(stop, list) else [stop] if isinstance(stop, str) else []
|
||||
)
|
||||
chat_history = "".join(
|
||||
f'### {"Human" if message["role"] == "user" else "Assistant"}:{message["content"]}'
|
||||
for message in messages
|
||||
|
@ -1296,17 +1292,17 @@ class Llama:
|
|||
raise RuntimeError("Failed to set llama state data")
|
||||
|
||||
@staticmethod
|
||||
def token_eos() -> llama_cpp.llama_token:
|
||||
def token_eos() -> int:
|
||||
"""Return the end-of-sequence token."""
|
||||
return llama_cpp.llama_token_eos()
|
||||
|
||||
@staticmethod
|
||||
def token_bos() -> llama_cpp.llama_token:
|
||||
def token_bos() -> int:
|
||||
"""Return the beginning-of-sequence token."""
|
||||
return llama_cpp.llama_token_bos()
|
||||
|
||||
@staticmethod
|
||||
def token_nl() -> llama_cpp.llama_token:
|
||||
def token_nl() -> int:
|
||||
"""Return the newline token."""
|
||||
return llama_cpp.llama_token_nl()
|
||||
|
||||
|
@ -1317,9 +1313,7 @@ class Llama:
|
|||
return [math.log(x / sum_exps) for x in exps]
|
||||
|
||||
@staticmethod
|
||||
def longest_token_prefix(
|
||||
a: Sequence[llama_cpp.llama_token], b: Sequence[llama_cpp.llama_token]
|
||||
):
|
||||
def longest_token_prefix(a: Sequence[int], b: Sequence[int]):
|
||||
longest_prefix = 0
|
||||
for _a, _b in zip(a, b):
|
||||
if _a == _b:
|
||||
|
|
|
@ -44,13 +44,13 @@ def _load_shared_library(lib_base_name: str):
|
|||
_base_path = _lib.parent.resolve()
|
||||
_lib_paths = [_lib.resolve()]
|
||||
|
||||
cdll_args = dict() # type: ignore
|
||||
cdll_args = dict() # type: ignore
|
||||
# Add the library directory to the DLL search path on Windows (if needed)
|
||||
if sys.platform == "win32" and sys.version_info >= (3, 8):
|
||||
os.add_dll_directory(str(_base_path))
|
||||
if "CUDA_PATH" in os.environ:
|
||||
os.add_dll_directory(os.path.join(os.environ["CUDA_PATH"],"bin"))
|
||||
os.add_dll_directory(os.path.join(os.environ["CUDA_PATH"],"lib"))
|
||||
os.add_dll_directory(os.path.join(os.environ["CUDA_PATH"], "bin"))
|
||||
os.add_dll_directory(os.path.join(os.environ["CUDA_PATH"], "lib"))
|
||||
cdll_args["winmode"] = 0
|
||||
|
||||
# Try to load the shared library, handling potential errors
|
||||
|
@ -194,7 +194,7 @@ _lib.llama_init_from_file.restype = llama_context_p
|
|||
|
||||
# Frees all allocated memory
|
||||
def llama_free(ctx: llama_context_p):
|
||||
_lib.llama_free(ctx)
|
||||
return _lib.llama_free(ctx)
|
||||
|
||||
|
||||
_lib.llama_free.argtypes = [llama_context_p]
|
||||
|
@ -206,7 +206,7 @@ _lib.llama_free.restype = None
|
|||
# nthread - how many threads to use. If <=0, will use std::thread::hardware_concurrency(), else the number given
|
||||
def llama_model_quantize(
|
||||
fname_inp: bytes, fname_out: bytes, ftype: c_int, nthread: c_int
|
||||
) -> c_int:
|
||||
) -> int:
|
||||
return _lib.llama_model_quantize(fname_inp, fname_out, ftype, nthread)
|
||||
|
||||
|
||||
|
@ -225,7 +225,7 @@ def llama_apply_lora_from_file(
|
|||
path_lora: c_char_p,
|
||||
path_base_model: c_char_p,
|
||||
n_threads: c_int,
|
||||
) -> c_int:
|
||||
) -> int:
|
||||
return _lib.llama_apply_lora_from_file(ctx, path_lora, path_base_model, n_threads)
|
||||
|
||||
|
||||
|
@ -234,7 +234,7 @@ _lib.llama_apply_lora_from_file.restype = c_int
|
|||
|
||||
|
||||
# Returns the number of tokens in the KV cache
|
||||
def llama_get_kv_cache_token_count(ctx: llama_context_p) -> c_int:
|
||||
def llama_get_kv_cache_token_count(ctx: llama_context_p) -> int:
|
||||
return _lib.llama_get_kv_cache_token_count(ctx)
|
||||
|
||||
|
||||
|
@ -253,7 +253,7 @@ _lib.llama_set_rng_seed.restype = None
|
|||
|
||||
# Returns the maximum size in bytes of the state (rng, logits, embedding
|
||||
# and kv_cache) - will often be smaller after compacting tokens
|
||||
def llama_get_state_size(ctx: llama_context_p) -> c_size_t:
|
||||
def llama_get_state_size(ctx: llama_context_p) -> int:
|
||||
return _lib.llama_get_state_size(ctx)
|
||||
|
||||
|
||||
|
@ -293,7 +293,7 @@ def llama_load_session_file(
|
|||
tokens_out, # type: Array[llama_token]
|
||||
n_token_capacity: c_size_t,
|
||||
n_token_count_out, # type: _Pointer[c_size_t]
|
||||
) -> c_size_t:
|
||||
) -> int:
|
||||
return _lib.llama_load_session_file(
|
||||
ctx, path_session, tokens_out, n_token_capacity, n_token_count_out
|
||||
)
|
||||
|
@ -314,7 +314,7 @@ def llama_save_session_file(
|
|||
path_session: bytes,
|
||||
tokens, # type: Array[llama_token]
|
||||
n_token_count: c_size_t,
|
||||
) -> c_size_t:
|
||||
) -> int:
|
||||
return _lib.llama_save_session_file(ctx, path_session, tokens, n_token_count)
|
||||
|
||||
|
||||
|
@ -337,7 +337,7 @@ def llama_eval(
|
|||
n_tokens: c_int,
|
||||
n_past: c_int,
|
||||
n_threads: c_int,
|
||||
) -> c_int:
|
||||
) -> int:
|
||||
return _lib.llama_eval(ctx, tokens, n_tokens, n_past, n_threads)
|
||||
|
||||
|
||||
|
@ -364,7 +364,7 @@ _lib.llama_tokenize.argtypes = [llama_context_p, c_char_p, llama_token_p, c_int,
|
|||
_lib.llama_tokenize.restype = c_int
|
||||
|
||||
|
||||
def llama_n_vocab(ctx: llama_context_p) -> c_int:
|
||||
def llama_n_vocab(ctx: llama_context_p) -> int:
|
||||
return _lib.llama_n_vocab(ctx)
|
||||
|
||||
|
||||
|
@ -372,7 +372,7 @@ _lib.llama_n_vocab.argtypes = [llama_context_p]
|
|||
_lib.llama_n_vocab.restype = c_int
|
||||
|
||||
|
||||
def llama_n_ctx(ctx: llama_context_p) -> c_int:
|
||||
def llama_n_ctx(ctx: llama_context_p) -> int:
|
||||
return _lib.llama_n_ctx(ctx)
|
||||
|
||||
|
||||
|
@ -380,7 +380,7 @@ _lib.llama_n_ctx.argtypes = [llama_context_p]
|
|||
_lib.llama_n_ctx.restype = c_int
|
||||
|
||||
|
||||
def llama_n_embd(ctx: llama_context_p) -> c_int:
|
||||
def llama_n_embd(ctx: llama_context_p) -> int:
|
||||
return _lib.llama_n_embd(ctx)
|
||||
|
||||
|
||||
|
@ -426,7 +426,7 @@ _lib.llama_token_to_str.restype = c_char_p
|
|||
# Special tokens
|
||||
|
||||
|
||||
def llama_token_bos() -> llama_token:
|
||||
def llama_token_bos() -> int:
|
||||
return _lib.llama_token_bos()
|
||||
|
||||
|
||||
|
@ -434,7 +434,7 @@ _lib.llama_token_bos.argtypes = []
|
|||
_lib.llama_token_bos.restype = llama_token
|
||||
|
||||
|
||||
def llama_token_eos() -> llama_token:
|
||||
def llama_token_eos() -> int:
|
||||
return _lib.llama_token_eos()
|
||||
|
||||
|
||||
|
@ -442,7 +442,7 @@ _lib.llama_token_eos.argtypes = []
|
|||
_lib.llama_token_eos.restype = llama_token
|
||||
|
||||
|
||||
def llama_token_nl() -> llama_token:
|
||||
def llama_token_nl() -> int:
|
||||
return _lib.llama_token_nl()
|
||||
|
||||
|
||||
|
@ -625,7 +625,7 @@ def llama_sample_token_mirostat(
|
|||
eta: c_float,
|
||||
m: c_int,
|
||||
mu, # type: _Pointer[c_float]
|
||||
) -> llama_token:
|
||||
) -> int:
|
||||
return _lib.llama_sample_token_mirostat(ctx, candidates, tau, eta, m, mu)
|
||||
|
||||
|
||||
|
@ -651,7 +651,7 @@ def llama_sample_token_mirostat_v2(
|
|||
tau: c_float,
|
||||
eta: c_float,
|
||||
mu, # type: _Pointer[c_float]
|
||||
) -> llama_token:
|
||||
) -> int:
|
||||
return _lib.llama_sample_token_mirostat_v2(ctx, candidates, tau, eta, mu)
|
||||
|
||||
|
||||
|
@ -669,7 +669,7 @@ _lib.llama_sample_token_mirostat_v2.restype = llama_token
|
|||
def llama_sample_token_greedy(
|
||||
ctx: llama_context_p,
|
||||
candidates, # type: _Pointer[llama_token_data_array]
|
||||
) -> llama_token:
|
||||
) -> int:
|
||||
return _lib.llama_sample_token_greedy(ctx, candidates)
|
||||
|
||||
|
||||
|
@ -684,7 +684,7 @@ _lib.llama_sample_token_greedy.restype = llama_token
|
|||
def llama_sample_token(
|
||||
ctx: llama_context_p,
|
||||
candidates, # type: _Pointer[llama_token_data_array]
|
||||
) -> llama_token:
|
||||
) -> int:
|
||||
return _lib.llama_sample_token(ctx, candidates)
|
||||
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@ def test_llama():
|
|||
# @pytest.mark.skip(reason="need to update sample mocking")
|
||||
def test_llama_patch(monkeypatch):
|
||||
llama = llama_cpp.Llama(model_path=MODEL, vocab_only=True)
|
||||
n_vocab = int(llama_cpp.llama_n_vocab(llama.ctx))
|
||||
n_vocab = llama_cpp.llama_n_vocab(llama.ctx)
|
||||
|
||||
## Set up mock function
|
||||
def mock_eval(*args, **kwargs):
|
||||
|
@ -107,7 +107,7 @@ def test_llama_pickle():
|
|||
|
||||
def test_utf8(monkeypatch):
|
||||
llama = llama_cpp.Llama(model_path=MODEL, vocab_only=True)
|
||||
n_vocab = int(llama_cpp.llama_n_vocab(llama.ctx))
|
||||
n_vocab = llama_cpp.llama_n_vocab(llama.ctx)
|
||||
|
||||
## Set up mock function
|
||||
def mock_eval(*args, **kwargs):
|
||||
|
|
Loading…
Add table
Reference in a new issue