Update api to allow for easier interactive mode
This commit is contained in:
parent
eef627c09c
commit
a4a1bbeaa9
1 changed files with 76 additions and 32 deletions
|
@ -63,6 +63,11 @@ class Llama:
|
|||
self.params.embedding = embedding
|
||||
|
||||
self.last_n_tokens_size = last_n_tokens_size
|
||||
self.last_n_tokens_data = deque(
|
||||
[llama_cpp.llama_token(0)] * self.last_n_tokens_size,
|
||||
maxlen=self.last_n_tokens_size,
|
||||
)
|
||||
self.tokens_consumed = 0
|
||||
self.n_batch = n_batch
|
||||
|
||||
self.n_threads = n_threads or multiprocessing.cpu_count()
|
||||
|
@ -115,6 +120,67 @@ class Llama:
|
|||
output += llama_cpp.llama_token_to_str(self.ctx, token)
|
||||
return output
|
||||
|
||||
def reset(self):
|
||||
"""Reset the model state."""
|
||||
self.last_n_tokens_data.extend(
|
||||
[llama_cpp.llama_token(0)] * self.last_n_tokens_size
|
||||
)
|
||||
self.tokens_consumed = 0
|
||||
|
||||
def eval(self, tokens: Sequence[llama_cpp.llama_token]):
|
||||
"""Evaluate a list of tokens.
|
||||
|
||||
Args:
|
||||
tokens: The list of tokens to evaluate.
|
||||
"""
|
||||
assert self.ctx is not None
|
||||
n_ctx = int(llama_cpp.llama_n_ctx(self.ctx))
|
||||
for i in range(0, len(tokens), self.n_batch):
|
||||
batch = tokens[i : min(len(tokens), i + self.n_batch)]
|
||||
n_past = min(n_ctx - len(batch), self.tokens_consumed)
|
||||
return_code = llama_cpp.llama_eval(
|
||||
ctx=self.ctx,
|
||||
tokens=(llama_cpp.llama_token * len(batch))(*batch),
|
||||
n_tokens=llama_cpp.c_int(len(batch)),
|
||||
n_past=llama_cpp.c_int(n_past),
|
||||
n_threads=llama_cpp.c_int(self.n_threads),
|
||||
)
|
||||
if int(return_code) != 0:
|
||||
raise RuntimeError(f"llama_eval returned {return_code}")
|
||||
self.last_n_tokens_data.extend(batch)
|
||||
self.tokens_consumed += len(batch)
|
||||
|
||||
def sample(
|
||||
self,
|
||||
top_k: int,
|
||||
top_p: float,
|
||||
temp: float,
|
||||
repeat_penalty: float,
|
||||
):
|
||||
"""Sample a token from the model.
|
||||
|
||||
Args:
|
||||
top_k: The top-k sampling parameter.
|
||||
top_p: The top-p sampling parameter.
|
||||
temp: The temperature parameter.
|
||||
repeat_penalty: The repeat penalty parameter.
|
||||
|
||||
Returns:
|
||||
The sampled token.
|
||||
"""
|
||||
assert self.ctx is not None
|
||||
return llama_cpp.llama_sample_top_p_top_k(
|
||||
ctx=self.ctx,
|
||||
last_n_tokens_data=(llama_cpp.llama_token * self.last_n_tokens_size)(
|
||||
*self.last_n_tokens_data
|
||||
),
|
||||
last_n_tokens_size=llama_cpp.c_int(self.last_n_tokens_size),
|
||||
top_k=llama_cpp.c_int(top_k),
|
||||
top_p=llama_cpp.c_float(top_p),
|
||||
temp=llama_cpp.c_float(temp),
|
||||
repeat_penalty=llama_cpp.c_float(repeat_penalty),
|
||||
)
|
||||
|
||||
def generate(
|
||||
self,
|
||||
tokens: Sequence[llama_cpp.llama_token],
|
||||
|
@ -125,7 +191,7 @@ class Llama:
|
|||
) -> Generator[
|
||||
llama_cpp.llama_token, Optional[Sequence[llama_cpp.llama_token]], None
|
||||
]:
|
||||
"""Generate tokens.
|
||||
"""Create a generator of tokens from a prompt.
|
||||
|
||||
Examples:
|
||||
>>> llama = Llama("models/ggml-7b.bin")
|
||||
|
@ -149,37 +215,14 @@ class Llama:
|
|||
top_p = 0.0
|
||||
top_k = 1
|
||||
assert self.ctx is not None
|
||||
n_ctx = int(llama_cpp.llama_n_ctx(self.ctx))
|
||||
n_tokens = 0
|
||||
last_n_tokens = deque(
|
||||
[llama_cpp.llama_token(0)] * self.last_n_tokens_size,
|
||||
maxlen=self.last_n_tokens_size,
|
||||
)
|
||||
self.reset()
|
||||
while True:
|
||||
for i in range(0, len(tokens), self.n_batch):
|
||||
batch = tokens[i : min(len(tokens), i + self.n_batch)]
|
||||
n_past = min(n_ctx - len(batch), n_tokens)
|
||||
return_code = llama_cpp.llama_eval(
|
||||
ctx=self.ctx,
|
||||
tokens=(llama_cpp.llama_token * len(batch))(*batch),
|
||||
n_tokens=llama_cpp.c_int(len(batch)),
|
||||
n_past=llama_cpp.c_int(n_past),
|
||||
n_threads=llama_cpp.c_int(self.n_threads),
|
||||
)
|
||||
if int(return_code) != 0:
|
||||
raise RuntimeError(f"llama_eval returned {return_code}")
|
||||
last_n_tokens.extend(batch)
|
||||
n_tokens += len(batch)
|
||||
token = llama_cpp.llama_sample_top_p_top_k(
|
||||
ctx=self.ctx,
|
||||
last_n_tokens_data=(llama_cpp.llama_token * self.last_n_tokens_size)(
|
||||
*last_n_tokens
|
||||
),
|
||||
last_n_tokens_size=llama_cpp.c_int(self.last_n_tokens_size),
|
||||
top_k=llama_cpp.c_int(top_k),
|
||||
top_p=llama_cpp.c_float(top_p),
|
||||
temp=llama_cpp.c_float(temp),
|
||||
repeat_penalty=llama_cpp.c_float(repeat_penalty),
|
||||
self.eval(tokens)
|
||||
token = self.sample(
|
||||
top_k=top_k,
|
||||
top_p=top_p,
|
||||
temp=temp,
|
||||
repeat_penalty=repeat_penalty,
|
||||
)
|
||||
tokens_or_none = yield token
|
||||
tokens = [token]
|
||||
|
@ -197,7 +240,8 @@ class Llama:
|
|||
"""
|
||||
assert self.ctx is not None
|
||||
tokens = self.tokenize(input.encode("utf-8"))
|
||||
next(self.generate(tokens, top_k=0, top_p=0.0, temp=1.0, repeat_penalty=1.0))
|
||||
self.reset()
|
||||
self.eval(tokens)
|
||||
n_tokens = len(tokens)
|
||||
embedding = llama_cpp.llama_get_embeddings(self.ctx)[
|
||||
: llama_cpp.llama_n_embd(self.ctx)
|
||||
|
|
Loading…
Reference in a new issue