Add support for numpy

This commit is contained in:
Andrei Betlen 2023-05-26 16:12:45 -04:00
parent 4c1b7f7a76
commit 8eb9769f78
2 changed files with 39 additions and 22 deletions

View file

@ -20,6 +20,9 @@ from collections import deque, OrderedDict
from . import llama_cpp
from .llama_types import *
import numpy as np
import numpy.typing as npt
class LlamaCache:
"""Cache for a llama.cpp model."""
@ -73,11 +76,15 @@ class LlamaState:
self,
eval_tokens: Deque[int],
eval_logits: Deque[List[float]],
input_ids: npt.NDArray[np.intc],
scores: npt.NDArray[np.single],
llama_state, # type: llama_cpp.Array[llama_cpp.c_uint8]
llama_state_size: int,
):
self.eval_tokens = eval_tokens
self.eval_logits = eval_logits
self.input_ids = input_ids
self.scores = scores
self.llama_state = llama_state
self.llama_state_size = llama_state_size
@ -207,20 +214,14 @@ class Llama:
self._n_vocab = self.n_vocab()
self._n_ctx = self.n_ctx()
data = (llama_cpp.llama_token_data * self._n_vocab)(
*[
llama_cpp.llama_token_data(
id=llama_cpp.llama_token(i),
logit=llama_cpp.c_float(0.0),
p=llama_cpp.c_float(0.0),
)
for i in range(self._n_vocab)
]
)
size = llama_cpp.c_size_t(self._n_vocab)
sorted = False
sorted = llama_cpp.c_bool(False)
self._candidates_data = np.array(
[], dtype=[("id", np.intc), ("logit", np.single), ("p", np.single)]
)
self._candidates_data.resize(3, self._n_vocab)
candidates = llama_cpp.llama_token_data_array(
data=data,
data=self._candidates_data.ctypes.data_as(llama_cpp.llama_token_data_p),
size=size,
sorted=sorted,
)
@ -228,6 +229,9 @@ class Llama:
self._token_nl = Llama.token_nl()
self._token_eos = Llama.token_eos()
self._input_ids = np.array([], dtype=np.intc)
self._scores = np.ndarray((0, self._n_vocab), dtype=np.single)
def tokenize(self, text: bytes, add_bos: bool = True) -> List[int]:
"""Tokenize a string.
@ -319,6 +323,9 @@ class Llama:
raise RuntimeError(f"llama_eval returned {return_code}")
# Save tokens
self.eval_tokens.extend(batch)
self._input_ids: npt.NDArray[np.intc] = np.concatenate(
(self._input_ids, np.array(batch, dtype=np.intc)), axis=0
)
# Save logits
rows = n_tokens if self.params.logits_all else 1
n_vocab = self._n_vocab
@ -326,6 +333,9 @@ class Llama:
logits_view = llama_cpp.llama_get_logits(self.ctx)
logits = [logits_view[i * cols : (i + 1) * cols] for i in range(rows)]
self.eval_logits.extend(logits)
self._scores: npt.NDArray[np.single] = np.concatenate(
(self._scores, np.array(logits, dtype=np.single)), axis=0
)
def _sample(
self,
@ -354,18 +364,23 @@ class Llama:
if last_n_tokens_size.value < 0
else last_n_tokens_size
)
logits = self.eval_logits[-1]
logits: npt.NDArray[np.single] = self._scores[-1, :]
if logits_processor is not None:
logits = logits_processor(list(self.eval_tokens), logits)
self.eval_logits[-1] = logits
logits = np.array(
logits_processor(list(self.eval_tokens), logits.tolist()),
dtype=np.single,
)
self._scores[-1, :] = logits
self.eval_logits[-1] = logits.tolist()
nl_logit = logits[self._token_nl]
candidates = self._candidates
for i, logit in enumerate(logits):
candidates.data[i].id = llama_cpp.llama_token(i)
candidates.data[i].logit = llama_cpp.c_float(logit)
candidates.data[i].p = llama_cpp.c_float(0.0)
candidates_data = self._candidates_data
candidates_data["id"] = np.arange(n_vocab, dtype=np.intc) # type: ignore
candidates_data["logit"] = logits
candidates_data["p"] = np.zeros(n_vocab, dtype=np.single)
candidates.data = candidates_data.ctypes.data_as(llama_cpp.llama_token_data_p)
candidates.sorted = llama_cpp.c_bool(False)
candidates.size = llama_cpp.c_size_t(n_vocab)
llama_cpp.llama_sample_repetition_penalty(
@ -1371,6 +1386,8 @@ class Llama:
return LlamaState(
eval_tokens=self.eval_tokens.copy(),
eval_logits=self.eval_logits.copy(),
scores=self._scores.copy(),
input_ids=self._input_ids.copy(),
llama_state=llama_state_compact,
llama_state_size=n_bytes,
)
@ -1379,6 +1396,8 @@ class Llama:
assert self.ctx is not None
self.eval_tokens = state.eval_tokens.copy()
self.eval_logits = state.eval_logits.copy()
self._scores = state.scores.copy()
self._input_ids = state.input_ids.copy()
state_size = state.llama_state_size
if llama_cpp.llama_set_state_data(self.ctx, state.llama_state) != state_size:
raise RuntimeError("Failed to set llama state data")

View file

@ -16,9 +16,7 @@ setup(
license="MIT",
package_dir={"llama_cpp": "llama_cpp", "llama_cpp.server": "llama_cpp/server"},
packages=["llama_cpp", "llama_cpp.server"],
install_requires=[
"typing-extensions>=4.5.0",
],
install_requires=["typing-extensions>=4.5.0", "numpy>=1.24.2"],
extras_require={
"server": ["uvicorn>=0.21.1", "fastapi>=0.95.0", "sse-starlette>=1.3.3"],
},