Refactor Llama class and add tokenize / detokenize methods Closes #3

This commit is contained in:
Andrei Betlen 2023-03-28 01:45:37 -04:00
parent 6dbff7679c
commit 1c823f6d0f

View file

@ -3,6 +3,7 @@ import uuid
import time
import multiprocessing
from typing import List, Optional
from collections import deque
from . import llama_cpp
@ -46,9 +47,6 @@ class Llama:
"""
self.model_path = model_path
self.last_n = 64
self.max_chunk_size = 32
self.params = llama_cpp.llama_context_default_params()
self.params.n_ctx = n_ctx
self.params.n_parts = n_parts
@ -59,9 +57,10 @@ class Llama:
self.params.use_mlock = use_mlock
self.params.embedding = embedding
self.n_threads = n_threads or multiprocessing.cpu_count()
self.last_n = 64
self.max_chunk_size = n_ctx
self.tokens = (llama_cpp.llama_token * self.params.n_ctx)()
self.n_threads = n_threads or multiprocessing.cpu_count()
if not os.path.exists(model_path):
raise ValueError(f"Model path does not exist: {model_path}")
@ -70,6 +69,65 @@ class Llama:
self.model_path.encode("utf-8"), self.params
)
def tokenize(self, text: bytes) -> List[int]:
"""Tokenize a string.
Args:
text: The utf-8 encoded string to tokenize.
Returns:
A list of tokens.
"""
n_ctx = llama_cpp.llama_n_ctx(self.ctx)
tokens = (llama_cpp.llama_token * n_ctx)()
n_tokens = llama_cpp.llama_tokenize(
self.ctx,
text,
tokens,
n_ctx,
True,
)
if n_tokens < 0:
raise RuntimeError(f"Failed to tokenize: text=\"{text}\" n_tokens={n_tokens}")
return list(tokens[:n_tokens])
def detokenize(self, tokens: List[int]) -> bytes:
"""Detokenize a list of tokens.
Args:
tokens: The list of tokens to detokenize.
Returns:
The detokenized string.
"""
output = b""
for token in tokens:
output += llama_cpp.llama_token_to_str(self.ctx, token)
return output
def _eval(self, tokens: List[int], n_past):
rc = llama_cpp.llama_eval(
self.ctx,
(llama_cpp.llama_token * len(tokens))(*tokens),
len(tokens),
n_past,
self.n_threads,
)
if rc != 0:
raise RuntimeError(f"Failed to evaluate: {rc}")
def _sample(self, last_n_tokens, top_p, top_k, temp, repeat_penalty):
return llama_cpp.llama_sample_top_p_top_k(
self.ctx,
(llama_cpp.llama_token * len(last_n_tokens))(*last_n_tokens),
len(last_n_tokens),
top_k=top_k,
top_p=top_p,
temp=temp,
repeat_penalty=repeat_penalty,
)
def __call__(
self,
prompt: str,
@ -106,61 +164,38 @@ class Llama:
"""
text = b""
finish_reason = "length"
completion_tokens = 0
completion_tokens = []
last_n_tokens = deque([0] * self.last_n, maxlen=self.last_n)
if stop is not None:
stop = [s.encode("utf-8") for s in stop]
prompt_tokens = self.tokenize(prompt.encode("utf-8"))
prompt_tokens = llama_cpp.llama_tokenize(
self.ctx,
prompt.encode("utf-8"),
self.tokens,
llama_cpp.llama_n_ctx(self.ctx),
True,
)
if prompt_tokens < 0:
raise RuntimeError(f"Failed to tokenize prompt: {prompt_tokens}")
if prompt_tokens + max_tokens > self.params.n_ctx:
if len(prompt_tokens) + max_tokens > llama_cpp.llama_n_ctx(self.ctx):
raise ValueError(
f"Requested tokens exceed context window of {llama_cpp.llama_n_ctx(self.ctx)}"
)
# Process prompt in chunks to avoid running out of memory
for i in range(0, prompt_tokens, self.max_chunk_size):
chunk = self.tokens[i : min(prompt_tokens, i + self.max_chunk_size)]
rc = llama_cpp.llama_eval(
self.ctx,
(llama_cpp.llama_token * len(chunk))(*chunk),
len(chunk),
max(0, i - 1),
self.n_threads,
)
if rc != 0:
raise RuntimeError(f"Failed to evaluate prompt: {rc}")
for i in range(0, len(prompt_tokens), self.max_chunk_size):
chunk = prompt_tokens[i : min(len(prompt_tokens), i + self.max_chunk_size)]
self._eval(chunk, n_past=i)
if stop is not None:
stop = [s.encode("utf-8") for s in stop]
for i in range(max_tokens):
tokens_seen = prompt_tokens + completion_tokens
last_n_tokens = [0] * max(0, self.last_n - tokens_seen) + [
self.tokens[j]
for j in range(max(tokens_seen - self.last_n, 0), tokens_seen)
]
token = llama_cpp.llama_sample_top_p_top_k(
self.ctx,
(llama_cpp.llama_token * len(last_n_tokens))(*last_n_tokens),
len(last_n_tokens),
top_k=top_k,
token = self._sample(
last_n_tokens,
top_p=top_p,
top_k=top_k,
temp=temperature,
repeat_penalty=repeat_penalty,
repeat_penalty=repeat_penalty
)
if token == llama_cpp.llama_token_eos():
finish_reason = "stop"
break
text += llama_cpp.llama_token_to_str(self.ctx, token)
self.tokens[prompt_tokens + i] = token
completion_tokens += 1
text += self.detokenize([token])
last_n_tokens.append(token)
completion_tokens.append(token)
any_stop = [s for s in stop if s in text]
if len(any_stop) > 0:
@ -169,15 +204,7 @@ class Llama:
finish_reason = "stop"
break
rc = llama_cpp.llama_eval(
self.ctx,
(llama_cpp.llama_token * 1)(self.tokens[prompt_tokens + i]),
1,
prompt_tokens + completion_tokens,
self.n_threads,
)
if rc != 0:
raise RuntimeError(f"Failed to evaluate next token: {rc}")
self._eval([token], len(prompt_tokens) + len(completion_tokens))
text = text.decode("utf-8")
@ -206,9 +233,9 @@ class Llama:
}
],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
"prompt_tokens": len(prompt_tokens),
"completion_tokens": len(completion_tokens),
"total_tokens": len(prompt_tokens) + len(completion_tokens),
},
}