This should resolve a number of memory leak and stability defects by allowing
us to isolate llama.cpp in a separate process and shutdown when idle, and
gracefully restart if it has problems. This also serves as a first step to be
able to run multiple copies to support multiple models concurrently.
This refines where we extract the LLM libraries to by adding a new
OLLAMA_HOME env var, that defaults to `~/.ollama` The logic was already
idempotenent, so this should speed up startups after the first time a
new release is deployed. It also cleans up after itself.
We now build only a single ROCm version (latest major) on both windows
and linux. Given the large size of ROCms tensor files, we split the
dependency out. It's bundled into the installer on windows, and a
separate download on windows. The linux install script is now smart and
detects the presence of AMD GPUs and looks to see if rocm v6 is already
present, and if not, then downloads our dependency tar file.
For Linux discovery, we now use sysfs and check each GPU against what
ROCm supports so we can degrade to CPU gracefully instead of having
llama.cpp+rocm assert/crash on us. For Windows, we now use go's windows
dynamic library loading logic to access the amdhip64.dll APIs to query
the GPU information.
The memory changes and multi-variant change had some merge
glitches I missed. This fixes them so we actually get the cpu llm lib
and best variant for the given system.
This reduces the built-in linux version to not use any vector extensions
which enables the resulting builds to run under Rosetta on MacOS in
Docker. Then at runtime it checks for the actual CPU vector
extensions and loads the best CPU library available
In some cases we may want multiple variants for a given GPU type or CPU.
This adds logic to have an optional Variant which we can use to select
an optimal library, but also allows us to try multiple variants in case
some fail to load.
This can be useful for scenarios such as ROCm v5 vs v6 incompatibility
or potentially CPU features.
* increase minimum cuda overhead and fix minimum overhead for multi-gpu
* fix multi gpu overhead
* limit overhead to 10% of all gpus
* better wording
* allocate fixed amount before layers
* fixed only includes graph alloc
* select layers based on estimated model memory usage
* always account for scratch vram
* dont load +1 layers
* better estmation for graph alloc
* Update gpu/gpu_darwin.go
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
* Update llm/llm.go
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
* Update llm/llm.go
* add overhead for cuda memory
* Update llm/llm.go
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
* fix build error on linux
* address comments
---------
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
On linux, we link the CPU library in to the Go app and fall back to it
when no GPU match is found. On windows we do not link in the CPU library
so that we can better control our dependencies for the CLI. This fixes
the logic so we correctly fallback to the dynamic CPU library
on windows.
This switches the default llama.cpp to be CPU based, and builds the GPU variants
as dynamically loaded libraries which we can select at runtime.
This also bumps the ROCm library to version 6 given 5.7 builds don't work
on the latest ROCm library that just shipped.
- remove ggml runner
- automatically pull gguf models when ggml detected
- tell users to update to gguf in the case automatic pull fails
Co-Authored-By: Jeffrey Morgan <jmorganca@gmail.com>
- update chat docs
- add messages chat endpoint
- remove deprecated context and template generate parameters from docs
- context and template are still supported for the time being and will continue to work as expected
- add partial response to chat history
* remove tmp directories created by previous servers
* clean up on server stop
* Update routes.go
* Update server/routes.go
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
* create top-level temp ollama dir
* check file exists before creating
---------
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
Co-authored-by: Michael Yang <mxyng@pm.me>