Add cgo implementation for llama.cpp
Run the server.cpp directly inside the Go runtime via cgo while retaining the LLM Go abstractions.
This commit is contained in:
parent
5e7fd6906f
commit
d4cd695759
27 changed files with 1189 additions and 765 deletions
|
@ -2,7 +2,7 @@
|
|||
ollama
|
||||
app
|
||||
dist
|
||||
scripts
|
||||
llm/llama.cpp/gguf
|
||||
.env
|
||||
.cache
|
||||
test_data
|
3
.gitignore
vendored
3
.gitignore
vendored
|
@ -8,4 +8,5 @@ ollama
|
|||
ggml-metal.metal
|
||||
.cache
|
||||
*.exe
|
||||
.idea
|
||||
.idea
|
||||
test_data
|
2
go.mod
2
go.mod
|
@ -7,7 +7,7 @@ require (
|
|||
github.com/gin-gonic/gin v1.9.1
|
||||
github.com/olekukonko/tablewriter v0.0.5
|
||||
github.com/spf13/cobra v1.7.0
|
||||
github.com/stretchr/testify v1.8.3
|
||||
github.com/stretchr/testify v1.8.4
|
||||
golang.org/x/sync v0.3.0
|
||||
)
|
||||
|
||||
|
|
3
go.sum
3
go.sum
|
@ -98,8 +98,9 @@ github.com/stretchr/testify v1.7.1/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/
|
|||
github.com/stretchr/testify v1.8.0/go.mod h1:yNjHg4UonilssWZ8iaSj1OCr/vHnekPRkoO+kdMU+MU=
|
||||
github.com/stretchr/testify v1.8.1/go.mod h1:w2LPCIKwWwSfY2zedu0+kehJoqGctiVI29o6fzry7u4=
|
||||
github.com/stretchr/testify v1.8.2/go.mod h1:w2LPCIKwWwSfY2zedu0+kehJoqGctiVI29o6fzry7u4=
|
||||
github.com/stretchr/testify v1.8.3 h1:RP3t2pwF7cMEbC1dqtB6poj3niw/9gnV4Cjg5oW5gtY=
|
||||
github.com/stretchr/testify v1.8.3/go.mod h1:sz/lmYIOXD/1dqDmKjjqLyZ2RngseejIcXlSw2iwfAo=
|
||||
github.com/stretchr/testify v1.8.4 h1:CcVxjf3Q8PM0mHUKJCdn+eZZtm5yQwehR5yeSVQQcUk=
|
||||
github.com/stretchr/testify v1.8.4/go.mod h1:sz/lmYIOXD/1dqDmKjjqLyZ2RngseejIcXlSw2iwfAo=
|
||||
github.com/twitchyliquid64/golang-asm v0.15.1 h1:SU5vSMR7hnwNxj24w34ZyCi/FmDZTkS4MhqMhdFk5YI=
|
||||
github.com/twitchyliquid64/golang-asm v0.15.1/go.mod h1:a1lVb/DtPvCB8fslRZhAngC2+aY1QWCk3Cedj/Gdt08=
|
||||
github.com/ugorji/go v1.2.7/go.mod h1:nF9osbDWLy6bDVv/Rtoh6QgnvNDpmCalQV5urGCCS6M=
|
||||
|
|
325
llm/ext_server.go
Normal file
325
llm/ext_server.go
Normal file
|
@ -0,0 +1,325 @@
|
|||
package llm
|
||||
|
||||
/*
|
||||
#cgo CFLAGS: -I${SRCDIR}/llama.cpp/gguf -I${SRCDIR}/llama.cpp/gguf/common
|
||||
#cgo CFLAGS: -DNDEBUG -DLLAMA_SERVER_LIBRARY=1 -D_XOPEN_SOURCE=600 -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
|
||||
#cgo CFLAGS: -Wmissing-noreturn -Wall -Wextra -Wcast-qual -Wno-unused-function -Wno-array-bounds
|
||||
#cgo CPPFLAGS: -Ofast -Wall -Wextra -Wno-unused-function -Wno-unused-variable -Wno-deprecated-declarations -Wno-unused-but-set-variable
|
||||
#cgo darwin CFLAGS: -D_DARWIN_C_SOURCE
|
||||
#cgo darwin CPPFLAGS: -DGGML_USE_ACCELERATE
|
||||
#cgo darwin,arm64 CPPFLAGS: -DGGML_USE_METAL -DGGML_METAL_NDEBUG
|
||||
#cgo darwin LDFLAGS: -lc++ -framework Accelerate
|
||||
#cgo darwin,arm64 LDFLAGS: -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
|
||||
#cgo darwin,arm64 LDFLAGS: ${SRCDIR}/llama.cpp/gguf/build/metal/common/libcommon.a
|
||||
#cgo darwin,arm64 LDFLAGS: ${SRCDIR}/llama.cpp/gguf/build/metal/examples/server/libext_server.a
|
||||
#cgo darwin,arm64 LDFLAGS: ${SRCDIR}/llama.cpp/gguf/build/metal/libllama.a
|
||||
#cgo darwin,arm64 LDFLAGS: ${SRCDIR}/llama.cpp/gguf/build/metal/libggml_static.a
|
||||
#cgo darwin,amd64 LDFLAGS: ${SRCDIR}/llama.cpp/gguf/build/cpu/common/libcommon.a
|
||||
#cgo darwin,amd64 LDFLAGS: ${SRCDIR}/llama.cpp/gguf/build/cpu/examples/server/libext_server.a
|
||||
#cgo darwin,amd64 LDFLAGS: ${SRCDIR}/llama.cpp/gguf/build/cpu/libllama.a
|
||||
#cgo darwin,amd64 LDFLAGS: ${SRCDIR}/llama.cpp/gguf/build/cpu/libggml_static.a
|
||||
#cgo linux CFLAGS: -D_GNU_SOURCE
|
||||
#cgo linux windows CFLAGS: -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_MMV_Y=1 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_USE_CUBLAS
|
||||
#cgo linux LDFLAGS: -L/usr/local/cuda/targets/x86_64-linux/lib -L/usr/local/cuda/lib64 -L/usr/local/cuda/targets/x86_64-linux/lib/stubs
|
||||
#cgo linux LDFLAGS: ${SRCDIR}/llama.cpp/gguf/build/cuda/examples/server/libext_server.a
|
||||
#cgo linux LDFLAGS: ${SRCDIR}/llama.cpp/gguf/build/cuda/common/libcommon.a
|
||||
#cgo linux LDFLAGS: ${SRCDIR}/llama.cpp/gguf/build/cuda/libllama.a
|
||||
#cgo linux LDFLAGS: ${SRCDIR}/llama.cpp/gguf/build/cuda/libggml_static.a
|
||||
#cgo linux LDFLAGS: /usr/local/cuda/lib64/libcudart_static.a
|
||||
#cgo linux LDFLAGS: /usr/local/cuda/lib64/libcublas_static.a
|
||||
#cgo linux LDFLAGS: /usr/local/cuda/lib64/libcublasLt_static.a
|
||||
#cgo linux LDFLAGS: /usr/local/cuda/lib64/libcudadevrt.a
|
||||
#cgo linux LDFLAGS: /usr/local/cuda/lib64/libculibos.a
|
||||
#cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
|
||||
#cgo windows LDFLAGS: -L${SRCDIR}/llama.cpp/gguf/build/wincuda/dist/bin
|
||||
#cgo windows LDFLAGS: -lext_server_shared -lpthread
|
||||
|
||||
#include <stdlib.h>
|
||||
#include "examples/server/server.h"
|
||||
|
||||
*/
|
||||
import "C"
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"log"
|
||||
"os"
|
||||
"runtime"
|
||||
"sync"
|
||||
"time"
|
||||
"unsafe"
|
||||
|
||||
"github.com/jmorganca/ollama/api"
|
||||
)
|
||||
|
||||
func errWrap(resp C.ext_server_err) error {
|
||||
if resp.code == 0 {
|
||||
return nil
|
||||
}
|
||||
err := fmt.Errorf(C.GoString(resp.err))
|
||||
C.free(unsafe.Pointer(resp.err))
|
||||
return err
|
||||
}
|
||||
|
||||
type llamaExtServer struct {
|
||||
api.Options
|
||||
}
|
||||
|
||||
// Note: current implementation does not support concurrent instantiations
|
||||
var mutex sync.Mutex
|
||||
|
||||
func newLlamaExtServer(model string, adapters, projectors []string, numLayers int64, opts api.Options) (*llamaExtServer, error) {
|
||||
if !mutex.TryLock() {
|
||||
log.Printf("concurrent llm servers not yet supported, waiting for prior server to complete")
|
||||
mutex.Lock()
|
||||
}
|
||||
server := &llamaExtServer{opts}
|
||||
fileInfo, err := os.Stat(model)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
var sparams C.ext_server_params
|
||||
sparams.model = C.CString(model)
|
||||
defer C.free(unsafe.Pointer(sparams.model))
|
||||
|
||||
numGPU := NumGPU(numLayers, fileInfo.Size(), opts)
|
||||
|
||||
sparams.embedding = true
|
||||
sparams.n_ctx = C.uint(opts.NumCtx)
|
||||
sparams.n_batch = C.uint(opts.NumBatch)
|
||||
sparams.n_gpu_layers = C.int(numGPU)
|
||||
sparams.main_gpu = C.int(opts.MainGPU)
|
||||
sparams.n_parallel = 2 // TODO - wire up concurrency
|
||||
|
||||
// Always use the value encoded in the model
|
||||
sparams.rope_freq_base = 0.0
|
||||
sparams.rope_freq_scale = 0.0
|
||||
|
||||
sparams.lora_adapters = nil
|
||||
for i := 0; i < len(adapters); i++ {
|
||||
la := (*C.ext_server_lora_adapter)(C.malloc(C.sizeof_struct_ext_server_lora_adapter))
|
||||
defer C.free(unsafe.Pointer(la))
|
||||
la.adapter = C.CString(adapters[i])
|
||||
defer C.free(unsafe.Pointer(la.adapter))
|
||||
la.scale = C.float(1.0) // TODO expose scale/weights up through ollama UX
|
||||
la.next = nil
|
||||
if i == 0 {
|
||||
sparams.lora_adapters = la
|
||||
} else {
|
||||
tmp := sparams.lora_adapters
|
||||
for ; tmp.next != nil; tmp = tmp.next {
|
||||
}
|
||||
tmp.next = la
|
||||
}
|
||||
}
|
||||
|
||||
// TODO - implement ME
|
||||
// if len(projectors) > 0 {
|
||||
// // TODO: applying multiple projectors is not supported by the llama.cpp server yet
|
||||
// params = append(params, "--mmproj", projectors[0])
|
||||
// }
|
||||
|
||||
if opts.NumThread > 0 {
|
||||
sparams.n_threads = C.uint(opts.NumThread)
|
||||
} else {
|
||||
sparams.n_threads = C.uint(runtime.NumCPU())
|
||||
}
|
||||
|
||||
sparams.memory_f16 = false
|
||||
if opts.F16KV {
|
||||
sparams.memory_f16 = true
|
||||
}
|
||||
sparams.use_mlock = false
|
||||
if opts.UseMLock {
|
||||
sparams.use_mlock = true
|
||||
}
|
||||
sparams.use_mmap = true
|
||||
if !opts.UseMMap {
|
||||
sparams.use_mmap = false
|
||||
}
|
||||
sparams.numa = false
|
||||
if opts.UseNUMA {
|
||||
sparams.numa = true
|
||||
}
|
||||
|
||||
log.Printf("Initializing internal llama server")
|
||||
err = errWrap(C.llama_server_init(&sparams))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
log.Printf("Starting internal llama main loop")
|
||||
C.llama_server_start()
|
||||
return server, nil
|
||||
}
|
||||
|
||||
func (llm *llamaExtServer) Predict(ctx context.Context, predict PredictOpts, fn func(PredictResult)) error {
|
||||
|
||||
request := map[string]any{
|
||||
"prompt": predict.Prompt,
|
||||
"stream": true,
|
||||
"n_predict": llm.NumPredict,
|
||||
"n_keep": llm.NumKeep,
|
||||
"temperature": llm.Temperature,
|
||||
"top_k": llm.TopK,
|
||||
"top_p": llm.TopP,
|
||||
"tfs_z": llm.TFSZ,
|
||||
"typical_p": llm.TypicalP,
|
||||
"repeat_last_n": llm.RepeatLastN,
|
||||
"repeat_penalty": llm.RepeatPenalty,
|
||||
"presence_penalty": llm.PresencePenalty,
|
||||
"frequency_penalty": llm.FrequencyPenalty,
|
||||
"mirostat": llm.Mirostat,
|
||||
"mirostat_tau": llm.MirostatTau,
|
||||
"mirostat_eta": llm.MirostatEta,
|
||||
"penalize_nl": llm.PenalizeNewline,
|
||||
"seed": llm.Seed,
|
||||
"stop": llm.Stop,
|
||||
}
|
||||
|
||||
if predict.Format == "json" {
|
||||
request["grammar"] = jsonGrammar
|
||||
}
|
||||
|
||||
// Handling JSON marshaling with special characters unescaped.
|
||||
buffer := &bytes.Buffer{}
|
||||
enc := json.NewEncoder(buffer)
|
||||
enc.SetEscapeHTML(false)
|
||||
|
||||
if err := enc.Encode(request); err != nil {
|
||||
return fmt.Errorf("failed to marshal data: %w", err)
|
||||
}
|
||||
|
||||
req := C.CString(buffer.String())
|
||||
defer C.free(unsafe.Pointer(req))
|
||||
|
||||
cmpCtx := C.llama_server_completion(req)
|
||||
if cmpCtx.task_id < 0 {
|
||||
defer C.free(unsafe.Pointer(cmpCtx.err))
|
||||
return fmt.Errorf(C.GoString(cmpCtx.err))
|
||||
}
|
||||
|
||||
for {
|
||||
select {
|
||||
case <-ctx.Done():
|
||||
// This handles the request cancellation
|
||||
return errWrap(C.llama_server_completion_cancel(cmpCtx.task_id))
|
||||
default:
|
||||
result := C.llama_server_completion_next_result(cmpCtx.task_id)
|
||||
if result.result_json != nil {
|
||||
defer C.free(unsafe.Pointer(result.result_json))
|
||||
}
|
||||
var p prediction
|
||||
if err := json.Unmarshal([]byte(C.GoString(result.result_json)), &p); err != nil {
|
||||
err2 := errWrap(C.llama_server_completion_cancel(cmpCtx.task_id))
|
||||
return errors.Join(fmt.Errorf("error unmarshaling llm prediction response: %w", err), err2)
|
||||
}
|
||||
|
||||
if p.Content != "" {
|
||||
fn(PredictResult{
|
||||
// Model: predict.Model, // XXX remove or replace?
|
||||
CreatedAt: time.Now().UTC(),
|
||||
Content: p.Content,
|
||||
})
|
||||
}
|
||||
|
||||
if p.Stop {
|
||||
fn(PredictResult{
|
||||
// Model: predict.Model, // XXX remove or replace?
|
||||
CreatedAt: time.Now().UTC(),
|
||||
TotalDuration: time.Since(predict.CheckpointStart),
|
||||
Done: true,
|
||||
PromptEvalCount: p.Timings.PromptN,
|
||||
PromptEvalDuration: parseDurationMs(p.Timings.PromptMS),
|
||||
EvalCount: p.Timings.PredictedN,
|
||||
EvalDuration: parseDurationMs(p.Timings.PredictedMS),
|
||||
})
|
||||
return nil
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (llm *llamaExtServer) Encode(ctx context.Context, prompt string) ([]int, error) {
|
||||
data, err := json.Marshal(TokenizeRequest{Content: prompt})
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("marshaling encode data: %w", err)
|
||||
}
|
||||
req := C.CString(string(data))
|
||||
defer C.free(unsafe.Pointer(req))
|
||||
var resp C.ext_server_resp
|
||||
err = errWrap(C.llama_server_tokenize(req, &resp))
|
||||
if resp.json_resp != nil {
|
||||
defer C.free(unsafe.Pointer(resp.json_resp))
|
||||
}
|
||||
|
||||
var encoded TokenizeResponse
|
||||
if err2 := json.Unmarshal([]byte(C.GoString(resp.json_resp)), &encoded); err2 != nil {
|
||||
return nil, fmt.Errorf("unmarshal encode response: %w", err2)
|
||||
}
|
||||
|
||||
return encoded.Tokens, err
|
||||
}
|
||||
|
||||
func (llm *llamaExtServer) Decode(ctx context.Context, tokens []int) (string, error) {
|
||||
if len(tokens) == 0 {
|
||||
return "", nil
|
||||
}
|
||||
data, err := json.Marshal(DetokenizeRequest{Tokens: tokens})
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("marshaling decode data: %w", err)
|
||||
}
|
||||
|
||||
req := C.CString(string(data))
|
||||
defer C.free(unsafe.Pointer(req))
|
||||
var resp C.ext_server_resp
|
||||
err = errWrap(C.llama_server_detokenize(req, &resp))
|
||||
if resp.json_resp != nil {
|
||||
defer C.free(unsafe.Pointer(resp.json_resp))
|
||||
}
|
||||
|
||||
var decoded DetokenizeResponse
|
||||
if err2 := json.Unmarshal([]byte(C.GoString(resp.json_resp)), &decoded); err2 != nil {
|
||||
return "", fmt.Errorf("unmarshal encode response: %w", err2)
|
||||
}
|
||||
|
||||
return decoded.Content, err
|
||||
}
|
||||
|
||||
func (llm *llamaExtServer) Embedding(ctx context.Context, input string) ([]float64, error) {
|
||||
data, err := json.Marshal(TokenizeRequest{Content: input})
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("error marshaling embed data: %w", err)
|
||||
}
|
||||
|
||||
req := C.CString(string(data))
|
||||
defer C.free(unsafe.Pointer(req))
|
||||
var resp C.ext_server_resp
|
||||
err = errWrap(C.llama_server_embedding(req, &resp))
|
||||
if resp.json_resp != nil {
|
||||
defer C.free(unsafe.Pointer(resp.json_resp))
|
||||
}
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var embedding EmbeddingResponse
|
||||
if err := json.Unmarshal([]byte(C.GoString(resp.json_resp)), &embedding); err != nil {
|
||||
return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
|
||||
}
|
||||
|
||||
return embedding.Embedding, nil
|
||||
}
|
||||
|
||||
func (llm *llamaExtServer) Ping(ctx context.Context) error {
|
||||
// TODO - consider some mechanism to check if the main loop and llama.cpp are in a good state
|
||||
return nil
|
||||
}
|
||||
|
||||
func (llm *llamaExtServer) Close() {
|
||||
C.llama_server_stop()
|
||||
mutex.Unlock()
|
||||
}
|
57
llm/gpu_cuda.go
Normal file
57
llm/gpu_cuda.go
Normal file
|
@ -0,0 +1,57 @@
|
|||
//go:build linux || windows
|
||||
|
||||
package llm
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"log"
|
||||
|
||||
"github.com/jmorganca/ollama/api"
|
||||
)
|
||||
|
||||
/*
|
||||
#cgo windows LDFLAGS: -L"/Program Files/NVIDIA Corporation/NVSMI/"
|
||||
#cgo linux LDFLAGS: -lnvidia-ml
|
||||
|
||||
#include <stdlib.h>
|
||||
#include "examples/server/server.h"
|
||||
*/
|
||||
import "C"
|
||||
|
||||
// CheckVRAM returns the free VRAM in bytes on Linux machines with NVIDIA GPUs
|
||||
func CheckVRAM() (int64, error) {
|
||||
return int64(C.check_vram()), nil
|
||||
}
|
||||
|
||||
func NumGPU(numLayer, fileSizeBytes int64, opts api.Options) int {
|
||||
if opts.NumGPU != -1 {
|
||||
return opts.NumGPU
|
||||
}
|
||||
freeBytes, err := CheckVRAM()
|
||||
if err != nil {
|
||||
if !errors.Is(err, errNvidiaSMI) {
|
||||
log.Print(err.Error())
|
||||
}
|
||||
// nvidia driver not installed or no nvidia GPU found
|
||||
return 0
|
||||
}
|
||||
|
||||
/*
|
||||
Calculate bytes per layer, this will roughly be the size of the model file divided by the number of layers.
|
||||
We can store the model weights and the kv cache in vram,
|
||||
to enable kv chache vram storage add two additional layers to the number of layers retrieved from the model file.
|
||||
*/
|
||||
bytesPerLayer := fileSizeBytes / numLayer
|
||||
|
||||
// 75% of the absolute max number of layers we can fit in available VRAM, off-loading too many layers to the GPU can cause OOM errors
|
||||
layers := int(freeBytes/bytesPerLayer) * 3 / 4
|
||||
|
||||
// TODO - not sure on this part... if we can't fit all the layers, just fallback to CPU
|
||||
// if int64(layers) < numLayer {
|
||||
// log.Printf("%d MB VRAM available, insufficient to load current model (reuires %d MB) - falling back to CPU %d", freeBytes/(1024*1024), fileSizeBytes/(1024*1024))
|
||||
// return 0
|
||||
// }
|
||||
log.Printf("%d MB VRAM available, loading up to %d GPU layers out of %d", freeBytes/(1024*1024), layers, numLayer)
|
||||
|
||||
return layers
|
||||
}
|
19
llm/gpu_darwin.go
Normal file
19
llm/gpu_darwin.go
Normal file
|
@ -0,0 +1,19 @@
|
|||
//go:build darwin
|
||||
|
||||
package llm
|
||||
|
||||
import (
|
||||
"github.com/jmorganca/ollama/api"
|
||||
)
|
||||
|
||||
// CheckVRAM returns the free VRAM in bytes on Linux machines with NVIDIA GPUs
|
||||
func CheckVRAM() (int64, error) {
|
||||
// TODO - assume metal, and return free memory?
|
||||
return 0, errNvidiaSMI
|
||||
|
||||
}
|
||||
|
||||
func NumGPU(numLayer, fileSizeBytes int64, opts api.Options) int {
|
||||
// default to enable metal on macOS
|
||||
return 1
|
||||
}
|
34
llm/llama.cpp/gen_common.sh
Normal file
34
llm/llama.cpp/gen_common.sh
Normal file
|
@ -0,0 +1,34 @@
|
|||
# common logic accross linux and darwin
|
||||
|
||||
init_vars() {
|
||||
PATCHES="0001-Expose-callable-API-for-server.patch"
|
||||
CMAKE_DEFS="-DLLAMA_ACCELERATE=on"
|
||||
# TODO - LLAMA_K_QUANTS is stale and needs to be mapped to newer cmake settings
|
||||
CMAKE_TARGETS="--target ggml --target ggml_static --target llama --target build_info --target common --target ext_server"
|
||||
if echo "${CGO_CFLAGS}" | grep -- '-g' > /dev/null ; then
|
||||
CMAKE_DEFS="-DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_VERBOSE_MAKEFILE=on -DLLAMA_GPROF=on ${CMAKE_DEFS}"
|
||||
else
|
||||
# TODO - add additional optimization flags...
|
||||
CMAKE_DEFS="-DCMAKE_BUILD_TYPE=Release ${CMAKE_DEFS}"
|
||||
fi
|
||||
}
|
||||
|
||||
git_module_setup() {
|
||||
# TODO add flags to skip the init/patch logic to make it easier to mod llama.cpp code in-repo
|
||||
git submodule init
|
||||
git submodule update --force gguf
|
||||
|
||||
}
|
||||
|
||||
apply_patches() {
|
||||
# Workaround git apply not handling creation well for iteration
|
||||
rm -f gguf/examples/server/server.h
|
||||
for patch in ${PATCHES} ; do
|
||||
git -C gguf apply ../patches/${patch}
|
||||
done
|
||||
}
|
||||
|
||||
build() {
|
||||
cmake -S gguf -B ${BUILD_DIR} ${CMAKE_DEFS}
|
||||
cmake --build ${BUILD_DIR} ${CMAKE_TARGETS} -j8
|
||||
}
|
36
llm/llama.cpp/gen_darwin.sh
Executable file
36
llm/llama.cpp/gen_darwin.sh
Executable file
|
@ -0,0 +1,36 @@
|
|||
#!/bin/sh
|
||||
# This script is intended to run inside the go generate
|
||||
# working directory must be ../llm/llama.cpp
|
||||
|
||||
# TODO - add hardening to detect missing tools (cmake, etc.)
|
||||
|
||||
set -ex
|
||||
set -o pipefail
|
||||
echo "Starting darwin generate script"
|
||||
source $(dirname $0)/gen_common.sh
|
||||
init_vars
|
||||
CMAKE_DEFS="-DCMAKE_OSX_DEPLOYMENT_TARGET=11.0 ${CMAKE_DEFS}"
|
||||
case "${GOARCH}" in
|
||||
"amd64")
|
||||
CMAKE_DEFS="-DLLAMA_METAL=off -DCMAKE_SYSTEM_PROCESSOR=x86_64 -DCMAKE_OSX_ARCHITECTURES=x86_64 ${CMAKE_DEFS}"
|
||||
BUILD_DIR="gguf/build/cpu"
|
||||
;;
|
||||
"arm64")
|
||||
CMAKE_DEFS="-DLLAMA_METAL=on -DCMAKE_SYSTEM_PROCESSOR=arm64 -DCMAKE_OSX_ARCHITECTURES=arm64 ${CMAKE_DEFS}"
|
||||
BUILD_DIR="gguf/build/metal"
|
||||
;;
|
||||
*)
|
||||
echo "GOARCH must be set"
|
||||
echo "this script is meant to be run from within go generate"
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
|
||||
git_module_setup
|
||||
apply_patches
|
||||
build
|
||||
|
||||
# Enable local debug/run usecase
|
||||
if [ -e "gguf/ggml-metal.metal" ]; then
|
||||
cp gguf/ggml-metal.metal ../../
|
||||
fi
|
17
llm/llama.cpp/gen_linux.sh
Executable file
17
llm/llama.cpp/gen_linux.sh
Executable file
|
@ -0,0 +1,17 @@
|
|||
#!/bin/sh
|
||||
# This script is intended to run inside the go generate
|
||||
# working directory must be ../llm/llama.cpp
|
||||
|
||||
set -ex
|
||||
set -o pipefail
|
||||
|
||||
# TODO - stopped here - map the variables from above over and refine the case statement below
|
||||
|
||||
echo "Starting linux generate script"
|
||||
source $(dirname $0)/gen_common.sh
|
||||
init_vars
|
||||
CMAKE_DEFS="-DLLAMA_CUBLAS=on -DLLAMA_NATIVE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
|
||||
BUILD_DIR="gguf/build/cuda"
|
||||
git_module_setup
|
||||
apply_patches
|
||||
build
|
51
llm/llama.cpp/gen_windows.ps1
Normal file
51
llm/llama.cpp/gen_windows.ps1
Normal file
|
@ -0,0 +1,51 @@
|
|||
#!powershell
|
||||
|
||||
$ErrorActionPreference = "Stop"
|
||||
|
||||
function init_vars {
|
||||
$script:buildDir="gguf/build/wincuda"
|
||||
$script:installDir="gguf/build/wincuda/dist"
|
||||
$script:patches = @("0001-Expose-callable-API-for-server.patch")
|
||||
$script:cmakeDefs = @("-DLLAMA_NATIVE=off", "-DLLAMA_F16C=off", "-DLLAMA_FMA=off", "-DLLAMA_AVX512=off", "-DLLAMA_AVX2=off", "-DLLAMA_AVX=on", "-DLLAMA_K_QUANTS=on", "-DLLAMA_ACCELERATE=on", "-DLLAMA_CUBLAS=ON","-DCMAKE_VERBOSE_MAKEFILE=ON","-DBUILD_SHARED_LIBS=on","-A","x64")
|
||||
|
||||
if ($env:CGO_CFLAGS -contains "-g") {
|
||||
$script:cmakeDefs += @("-DCMAKE_VERBOSE_MAKEFILE=on")
|
||||
$script:config += "RelWithDebInfo"
|
||||
} else {
|
||||
$script:config += "Release"
|
||||
}
|
||||
}
|
||||
|
||||
function git_module_setup {
|
||||
# TODO add flags to skip the init/patch logic to make it easier to mod llama.cpp code in-repo
|
||||
& git submodule init
|
||||
& git submodule update --force gguf
|
||||
}
|
||||
|
||||
function apply_patches {
|
||||
rm -erroraction ignore -path "gguf/examples/server/server.h"
|
||||
foreach ($patch in $patches) {
|
||||
write-host "Applying patch $patch"
|
||||
& git -C gguf apply ../patches/$patch
|
||||
}
|
||||
}
|
||||
|
||||
function build {
|
||||
write-host "generating config with: cmake -S gguf -B $buildDir $cmakeDefs"
|
||||
& cmake --version
|
||||
& cmake -S gguf -B $buildDir $cmakeDefs
|
||||
write-host "building with: cmake --build $buildDir --config $config"
|
||||
& cmake --build $buildDir --config $config
|
||||
}
|
||||
|
||||
function install {
|
||||
rm -erroraction ignore -recurse -force -path $installDir
|
||||
& cmake --install $buildDir --prefix $installDir --config $config
|
||||
|
||||
}
|
||||
|
||||
init_vars
|
||||
git_module_setup
|
||||
apply_patches
|
||||
build
|
||||
install
|
3
llm/llama.cpp/generate_darwin.go
Normal file
3
llm/llama.cpp/generate_darwin.go
Normal file
|
@ -0,0 +1,3 @@
|
|||
package llm
|
||||
|
||||
//go:generate sh ./gen_darwin.sh
|
|
@ -1,9 +0,0 @@
|
|||
package llm
|
||||
|
||||
//go:generate git submodule init
|
||||
|
||||
//go:generate git submodule update --force gguf
|
||||
//go:generate git -C gguf apply ../patches/0001-update-default-log-target.patch
|
||||
//go:generate cmake -S gguf -B gguf/build/cpu -DLLAMA_METAL=off -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on -DCMAKE_SYSTEM_NAME=Darwin -DCMAKE_SYSTEM_PROCESSOR=x86_64 -DCMAKE_OSX_ARCHITECTURES=x86_64 -DCMAKE_OSX_DEPLOYMENT_TARGET=11.0 -DLLAMA_NATIVE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=on
|
||||
//go:generate cmake --build gguf/build/cpu --target server --config Release
|
||||
//go:generate mv gguf/build/cpu/bin/server gguf/build/cpu/bin/ollama-runner
|
|
@ -1,9 +0,0 @@
|
|||
package llm
|
||||
|
||||
//go:generate git submodule init
|
||||
|
||||
//go:generate git submodule update --force gguf
|
||||
//go:generate git -C gguf apply ../patches/0001-update-default-log-target.patch
|
||||
//go:generate cmake -S gguf -B gguf/build/metal -DLLAMA_METAL=on -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on -DCMAKE_SYSTEM_PROCESSOR=arm64 -DCMAKE_OSX_ARCHITECTURES=arm64 -DCMAKE_OSX_DEPLOYMENT_TARGET=11.0
|
||||
//go:generate cmake --build gguf/build/metal --target server --config Release
|
||||
//go:generate mv gguf/build/metal/bin/server gguf/build/metal/bin/ollama-runner
|
|
@ -1,14 +1,3 @@
|
|||
package llm
|
||||
|
||||
//go:generate git submodule init
|
||||
|
||||
//go:generate git submodule update --force gguf
|
||||
//go:generate git -C gguf apply ../patches/0001-copy-cuda-runtime-libraries.patch
|
||||
//go:generate git -C gguf apply ../patches/0001-update-default-log-target.patch
|
||||
//go:generate cmake -S gguf -B gguf/build/cpu -DLLAMA_K_QUANTS=on -DLLAMA_NATIVE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off
|
||||
//go:generate cmake --build gguf/build/cpu --target server --config Release
|
||||
//go:generate mv gguf/build/cpu/bin/server gguf/build/cpu/bin/ollama-runner
|
||||
|
||||
//go:generate cmake -S gguf -B gguf/build/cuda -DLLAMA_CUBLAS=on -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on -DLLAMA_NATIVE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off -DLLAMA_CUDA_PEER_MAX_BATCH_SIZE=0
|
||||
//go:generate cmake --build gguf/build/cuda --target server --config Release
|
||||
//go:generate mv gguf/build/cuda/bin/server gguf/build/cuda/bin/ollama-runner
|
||||
//go:generate sh ./gen_linux.sh
|
||||
|
|
|
@ -1,17 +1,3 @@
|
|||
package llm
|
||||
|
||||
//go:generate git submodule init
|
||||
|
||||
//go:generate git submodule update --force gguf
|
||||
//go:generate git -C gguf apply ../patches/0001-update-default-log-target.patch
|
||||
//go:generate cmake -S gguf -B gguf/build/cpu -DLLAMA_K_QUANTS=on -DLLAMA_NATIVE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off
|
||||
//go:generate cmake --build gguf/build/cpu --target server --config Release
|
||||
//go:generate cmd /c move gguf\build\cpu\bin\Release\server.exe gguf\build\cpu\bin\Release\ollama-runner.exe
|
||||
|
||||
//go:generate cmake -S ggml -B ggml/build/cuda -DLLAMA_CUBLAS=on -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on
|
||||
//go:generate cmake --build ggml/build/cuda --target server --config Release
|
||||
//go:generate cmd /c move ggml\build\cuda\bin\Release\server.exe ggml\build\cuda\bin\Release\ollama-runner.exe
|
||||
|
||||
//go:generate cmake -S gguf -B gguf/build/cuda -DLLAMA_CUBLAS=on -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on -DLLAMA_NATIVE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off
|
||||
//go:generate cmake --build gguf/build/cuda --target server --config Release
|
||||
//go:generate cmd /c move gguf\build\cuda\bin\Release\server.exe gguf\build\cuda\bin\Release\ollama-runner.exe
|
||||
//go:generate powershell -ExecutionPolicy Bypass -File ./gen_windows.ps1
|
||||
|
|
422
llm/llama.cpp/patches/0001-Expose-callable-API-for-server.patch
Normal file
422
llm/llama.cpp/patches/0001-Expose-callable-API-for-server.patch
Normal file
|
@ -0,0 +1,422 @@
|
|||
From 64b3fbb150d12b3ca63ac2fb4e57bc46f41d2ccd Mon Sep 17 00:00:00 2001
|
||||
From: Daniel Hiltgen <daniel@ollama.com>
|
||||
Date: Mon, 13 Nov 2023 12:25:58 -0800
|
||||
Subject: [PATCH] Expose callable API for server
|
||||
|
||||
This adds an extern "C" interface within the example server
|
||||
---
|
||||
examples/server/CMakeLists.txt | 24 ++++
|
||||
examples/server/server.cpp | 247 +++++++++++++++++++++++++++++++++
|
||||
examples/server/server.h | 83 +++++++++++
|
||||
ggml-cuda.cu | 1 +
|
||||
4 files changed, 355 insertions(+)
|
||||
create mode 100644 examples/server/server.h
|
||||
|
||||
diff --git a/examples/server/CMakeLists.txt b/examples/server/CMakeLists.txt
|
||||
index 859cd12..4ea47a7 100644
|
||||
--- a/examples/server/CMakeLists.txt
|
||||
+++ b/examples/server/CMakeLists.txt
|
||||
@@ -11,3 +11,27 @@ if (WIN32)
|
||||
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
|
||||
endif()
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
+
|
||||
+set(TARGET ext_server)
|
||||
+option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
|
||||
+add_library(${TARGET} STATIC server.cpp)
|
||||
+target_include_directories(${TARGET} PRIVATE ../../common)
|
||||
+target_include_directories(${TARGET} PRIVATE ../..)
|
||||
+target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
+target_compile_definitions(${TARGET} PUBLIC LLAMA_SERVER_LIBRARY=1)
|
||||
+target_link_libraries(${TARGET} PRIVATE common llama llava ${CMAKE_THREAD_LIBS_INIT})
|
||||
+
|
||||
+if (BUILD_SHARED_LIBS)
|
||||
+ set_target_properties(ext_server PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
+ target_compile_definitions(ext_server PRIVATE LLAMA_SHARED LLAMA_BUILD)
|
||||
+ add_library(ext_server_shared SHARED $<TARGET_OBJECTS:ext_server>)
|
||||
+ target_link_libraries(ext_server_shared PRIVATE ggml llama llava common ${CMAKE_THREAD_LIBS_INIT})
|
||||
+ install(TARGETS ext_server_shared LIBRARY)
|
||||
+endif()
|
||||
+
|
||||
+if (CUDAToolkit_FOUND)
|
||||
+ target_include_directories(${TARGET} PRIVATE ${CMAKE_CUDA_TOOLKIT_INCLUDE_DIRECTORIES})
|
||||
+ if (WIN32)
|
||||
+ target_link_libraries(ext_server_shared PRIVATE nvml)
|
||||
+ endif()
|
||||
+endif()
|
||||
\ No newline at end of file
|
||||
diff --git a/examples/server/server.cpp b/examples/server/server.cpp
|
||||
index 895f751..f939590 100644
|
||||
--- a/examples/server/server.cpp
|
||||
+++ b/examples/server/server.cpp
|
||||
@@ -5,6 +5,9 @@
|
||||
#include "../llava/clip.h"
|
||||
|
||||
#include "stb_image.h"
|
||||
+#if defined(LLAMA_SERVER_LIBRARY)
|
||||
+#include "server.h"
|
||||
+#endif
|
||||
|
||||
#ifndef NDEBUG
|
||||
// crash the server in debug mode, otherwise send an http 500 error
|
||||
@@ -2631,6 +2634,7 @@ static void append_to_generated_text_from_generated_token_probs(llama_server_con
|
||||
}
|
||||
}
|
||||
|
||||
+#ifndef LLAMA_SERVER_LIBRARY
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
// own arguments required by this example
|
||||
@@ -3065,3 +3069,246 @@ int main(int argc, char **argv)
|
||||
llama_backend_free();
|
||||
return 0;
|
||||
}
|
||||
+
|
||||
+#else // LLAMA_SERVER_LIBRARY
|
||||
+// Expose the llama server as a callable extern "C" API
|
||||
+llama_server_context llama;
|
||||
+std::atomic<bool> ext_server_running(false);
|
||||
+std::thread ext_server_thread;
|
||||
+inline ext_server_err makeErr(uint32_t code, std::string msg) {
|
||||
+ if (code == 0) {
|
||||
+ return ext_server_err{0, NULL};
|
||||
+ }
|
||||
+ const std::string::size_type size = msg.size();
|
||||
+ ext_server_err ret = {
|
||||
+ code,
|
||||
+ new char[size + 1],
|
||||
+ };
|
||||
+ memcpy(ret.err, msg.c_str(), size + 1);
|
||||
+ return ret;
|
||||
+}
|
||||
+
|
||||
+ext_server_err llama_server_init(ext_server_params *sparams)
|
||||
+{
|
||||
+ log_set_target(stdout);
|
||||
+ gpt_params params;
|
||||
+ params.n_ctx = sparams->n_ctx;
|
||||
+ params.n_batch = sparams->n_batch;
|
||||
+ params.n_threads = sparams->n_threads;
|
||||
+ params.n_parallel = sparams->n_parallel;
|
||||
+ params.rope_freq_base = sparams->rope_freq_base;
|
||||
+ params.rope_freq_scale = sparams->rope_freq_scale;
|
||||
+
|
||||
+ if (sparams->memory_f16) {
|
||||
+ params.cache_type_k = "f16";
|
||||
+ params.cache_type_v = "f16";
|
||||
+ } else {
|
||||
+ params.cache_type_k = "f32";
|
||||
+ params.cache_type_v = "f32";
|
||||
+ }
|
||||
+
|
||||
+ params.n_gpu_layers = sparams->n_gpu_layers;
|
||||
+ params.main_gpu = sparams->main_gpu;
|
||||
+ params.use_mlock = sparams->use_mlock;
|
||||
+ params.use_mmap = sparams->use_mmap;
|
||||
+ params.numa = sparams->numa;
|
||||
+ params.embedding = sparams->embedding;
|
||||
+ if (sparams->model != NULL) {
|
||||
+ params.model = sparams->model;
|
||||
+ }
|
||||
+
|
||||
+ for (ext_server_lora_adapter *la = sparams->lora_adapters; la != NULL; la = la->next) {
|
||||
+ params.lora_adapter.push_back(std::make_tuple(la->adapter, la->scale));
|
||||
+ }
|
||||
+
|
||||
+ try {
|
||||
+ llama_backend_init(params.numa);
|
||||
+
|
||||
+ // load the model
|
||||
+ if (!llama.load_model(params))
|
||||
+ {
|
||||
+ // TODO - consider modifying the logging logic or patching load_model so we can capture more detailed error messages
|
||||
+ // and pass them back to the caller for better UX
|
||||
+ return makeErr(1, "error loading model " + params.model);
|
||||
+ }
|
||||
+
|
||||
+ llama.initialize();
|
||||
+ } catch (std::exception &e) {
|
||||
+ return makeErr(1, e.what());
|
||||
+ } catch (...) {
|
||||
+ return makeErr(1, "Unknown Exception initializing llama server");
|
||||
+ }
|
||||
+ return makeErr(0, "");
|
||||
+}
|
||||
+
|
||||
+void llama_server_start()
|
||||
+{
|
||||
+ // TODO mutex to protect thread creation
|
||||
+ ext_server_thread = std::thread([&]()
|
||||
+ {
|
||||
+ ext_server_running = true;
|
||||
+ try {
|
||||
+ LOG_TEE("llama server main loop starting\n");
|
||||
+ ggml_time_init();
|
||||
+ while (ext_server_running.load())
|
||||
+ {
|
||||
+ if (!llama.update_slots()) {
|
||||
+ LOG_TEE("unexpected error in llama server update_slots - exiting main loop\n");
|
||||
+ break;
|
||||
+ }
|
||||
+ }
|
||||
+ } catch (std::exception &e) {
|
||||
+ LOG_TEE("caught exception in llama server main loop: %s\n", e.what());
|
||||
+ } catch (...) {
|
||||
+ LOG_TEE("caught unknown exception in llama server main loop\n");
|
||||
+ }
|
||||
+ LOG_TEE("\nllama server shutting down\n");
|
||||
+ llama_backend_free();
|
||||
+ });
|
||||
+}
|
||||
+
|
||||
+void llama_server_stop() {
|
||||
+ // TODO - too verbose, remove once things are solid
|
||||
+ LOG_TEE("requesting llama server shutdown\n");
|
||||
+ ext_server_running = false;
|
||||
+ ext_server_thread.join();
|
||||
+ LOG_TEE("llama server shutdown complete\n");
|
||||
+}
|
||||
+
|
||||
+ext_server_completion_resp llama_server_completion(const char *json_req) {
|
||||
+ std::string msg;
|
||||
+ ext_server_completion_resp resp = {
|
||||
+ 0,
|
||||
+ NULL,
|
||||
+ };
|
||||
+ try {
|
||||
+ json data = json::parse(json_req);
|
||||
+ resp.task_id = llama.request_completion(data, false, false, -1);
|
||||
+ return resp;
|
||||
+ } catch (std::exception &e) {
|
||||
+ msg = e.what();
|
||||
+ } catch (...) {
|
||||
+ msg = "Unknown Exception during completion";
|
||||
+ }
|
||||
+ const std::string::size_type size = msg.size();
|
||||
+ resp.task_id = 0;
|
||||
+ resp.err = new char[size + 1];
|
||||
+ memcpy(resp.err, msg.c_str(), size + 1);
|
||||
+ return resp;
|
||||
+}
|
||||
+
|
||||
+ext_task_result llama_server_completion_next_result(const int task_id) {
|
||||
+ std::string msg;
|
||||
+ ext_task_result resp = {-1,false,false,NULL};
|
||||
+ try {
|
||||
+ task_result result = llama.next_result(task_id);
|
||||
+ std::string result_json = result.result_json.dump(-1, ' ', false, json::error_handler_t::replace);
|
||||
+ const std::string::size_type size = result_json.size();
|
||||
+ resp.id = result.id;
|
||||
+ resp.stop = result.stop;
|
||||
+ resp.error = result.error;
|
||||
+ resp.result_json = new char[size + 1];
|
||||
+ memcpy(resp.result_json, result_json.c_str(), size + 1);
|
||||
+ if (result.error) {
|
||||
+ llama.request_cancel(task_id);
|
||||
+ } else if (result.stop) {
|
||||
+ llama.request_cancel(task_id);
|
||||
+ }
|
||||
+ return resp;
|
||||
+ } catch (std::exception &e) {
|
||||
+ msg = e.what(); // TODO - json?
|
||||
+ } catch (...) {
|
||||
+ msg = "Unknown Exception during completion";
|
||||
+ }
|
||||
+ resp.error = true;
|
||||
+ const std::string::size_type size = msg.size();
|
||||
+ resp.result_json = new char[size + 1];
|
||||
+ memcpy(resp.result_json, msg.c_str(), size + 1);
|
||||
+ return resp;
|
||||
+}
|
||||
+
|
||||
+ext_server_err llama_server_completion_cancel(const int task_id) {
|
||||
+ try {
|
||||
+ llama.request_cancel(task_id);
|
||||
+ } catch (std::exception &e) {
|
||||
+ return makeErr(1, e.what());
|
||||
+ } catch (...) {
|
||||
+ return makeErr(1, "Unknown Exception running llama server");
|
||||
+ }
|
||||
+ return makeErr(0, "");
|
||||
+}
|
||||
+
|
||||
+
|
||||
+ext_server_err llama_server_tokenize(const char *json_req, ext_server_resp *resp) {
|
||||
+ resp->json_resp = NULL;
|
||||
+ try {
|
||||
+ const json body = json::parse(json_req);
|
||||
+ std::vector<llama_token> tokens;
|
||||
+ if (body.count("content") != 0)
|
||||
+ {
|
||||
+ tokens = llama.tokenize(body["content"], false);
|
||||
+ }
|
||||
+ const json data = format_tokenizer_response(tokens);
|
||||
+ std::string result_json = data.dump();
|
||||
+ const std::string::size_type size = result_json.size();
|
||||
+ resp->json_resp = new char[size + 1];
|
||||
+ memcpy(resp->json_resp, result_json.c_str(), size + 1);
|
||||
+ } catch (std::exception &e) {
|
||||
+ return makeErr(1, e.what());
|
||||
+ } catch (...) {
|
||||
+ return makeErr(1, "Unknown Exception during tokenize");
|
||||
+ }
|
||||
+ return makeErr(0, "");
|
||||
+}
|
||||
+
|
||||
+ext_server_err llama_server_detokenize(const char *json_req, ext_server_resp *resp) {
|
||||
+ resp->json_resp = NULL;
|
||||
+ try {
|
||||
+ const json body = json::parse(json_req);
|
||||
+ std::string content;
|
||||
+ if (body.count("tokens") != 0)
|
||||
+ {
|
||||
+ const std::vector<llama_token> tokens = body["tokens"];
|
||||
+ content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend());
|
||||
+ }
|
||||
+ const json data = format_detokenized_response(content);
|
||||
+ std::string result_json = data.dump();
|
||||
+ const std::string::size_type size = result_json.size();
|
||||
+ resp->json_resp = new char[size + 1];
|
||||
+ memcpy(resp->json_resp, result_json.c_str(), size + 1);
|
||||
+ } catch (std::exception &e) {
|
||||
+ return makeErr(1, e.what());
|
||||
+ } catch (...) {
|
||||
+ return makeErr(1, "Unknown Exception during detokenize");
|
||||
+ }
|
||||
+ return makeErr(0, "");
|
||||
+}
|
||||
+
|
||||
+ext_server_err llama_server_embedding(const char *json_req, ext_server_resp *resp) {
|
||||
+ resp->json_resp = NULL;
|
||||
+ try {
|
||||
+ const json body = json::parse(json_req);
|
||||
+ json prompt;
|
||||
+ if (body.count("content") != 0)
|
||||
+ {
|
||||
+ prompt = body["content"];
|
||||
+ }
|
||||
+ else
|
||||
+ {
|
||||
+ prompt = "";
|
||||
+ }
|
||||
+ const int task_id = llama.request_completion({ {"prompt", prompt}, { "n_predict", 0} }, false, true, -1);
|
||||
+ task_result result = llama.next_result(task_id);
|
||||
+ std::string result_json = result.result_json.dump();
|
||||
+ const std::string::size_type size = result_json.size();
|
||||
+ resp->json_resp = new char[size + 1];
|
||||
+ memcpy(resp->json_resp, result_json.c_str(), size + 1);
|
||||
+ } catch (std::exception &e) {
|
||||
+ return makeErr(1, e.what());
|
||||
+ } catch (...) {
|
||||
+ return makeErr(1, "Unknown Exception during detokenize");
|
||||
+ }
|
||||
+ return makeErr(0, "");
|
||||
+}
|
||||
+
|
||||
+#endif // LLAMA_SERVER_LIBRARY
|
||||
\ No newline at end of file
|
||||
diff --git a/examples/server/server.h b/examples/server/server.h
|
||||
new file mode 100644
|
||||
index 0000000..4d03b1e
|
||||
--- /dev/null
|
||||
+++ b/examples/server/server.h
|
||||
@@ -0,0 +1,83 @@
|
||||
+#if defined(LLAMA_SERVER_LIBRARY)
|
||||
+#ifndef LLAMA_SERVER_H
|
||||
+#define LLAMA_SERVER_H
|
||||
+#include <stddef.h>
|
||||
+#include <stdint.h>
|
||||
+#include <stdio.h>
|
||||
+#include <stdbool.h>
|
||||
+
|
||||
+// This exposes extern C entrypoints into the llama_server
|
||||
+// To enable the server compile with LLAMA_SERVER_LIBRARY
|
||||
+
|
||||
+#ifdef __cplusplus
|
||||
+extern "C"
|
||||
+{
|
||||
+#endif
|
||||
+ // TODO - clean the type def's up a bit for better consistency
|
||||
+ typedef struct ext_server_err {
|
||||
+ uint32_t code; // 0 on success, > 0 on error
|
||||
+ char *err; // null if code == 0; else contains error message. Caller responsible for freeing memory
|
||||
+ } ext_server_err;
|
||||
+
|
||||
+ typedef struct ext_server_lora_adapter {
|
||||
+ char *adapter;
|
||||
+ float scale;
|
||||
+ struct ext_server_lora_adapter *next;
|
||||
+ } ext_server_lora_adapter;
|
||||
+ typedef struct ext_server_params
|
||||
+ {
|
||||
+ char *model;
|
||||
+ uint32_t n_ctx; // text context, 0 = from model
|
||||
+ uint32_t n_batch; // prompt processing maximum batch size
|
||||
+ uint32_t n_threads; // number of threads to use for generation
|
||||
+ int32_t n_parallel; // number of parallel sequences to decodewra
|
||||
+ float rope_freq_base; // RoPE base frequency, 0 = from model
|
||||
+ float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
|
||||
+ bool memory_f16; // use f16 instead of f32 for memory kv
|
||||
+ int32_t n_gpu_layers; // number of layers to store in VRAM (-1 - use default)
|
||||
+ int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||||
+ bool use_mlock; // force system to keep model in RAM
|
||||
+ bool use_mmap; // use mmap if possible
|
||||
+ bool numa; // attempt optimizations that help on some NUMA systems
|
||||
+ bool embedding; // get only sentence embedding
|
||||
+ ext_server_lora_adapter* lora_adapters;
|
||||
+ } ext_server_params;
|
||||
+
|
||||
+ // Initialize the server once per process
|
||||
+ ext_server_err llama_server_init(ext_server_params *sparams);
|
||||
+
|
||||
+ // Run the main loop
|
||||
+ void llama_server_start();
|
||||
+ // Stop the main loop
|
||||
+ void llama_server_stop();
|
||||
+
|
||||
+ typedef struct ext_task_result
|
||||
+ {
|
||||
+ int id;
|
||||
+ bool stop;
|
||||
+ bool error;
|
||||
+ char* result_json; // caller responsible to free this memory
|
||||
+ } ext_task_result;
|
||||
+
|
||||
+ typedef struct ext_server_completion_resp {
|
||||
+ int task_id; // < 0 on error, >= 0 on success
|
||||
+ char *err; // null if task_id >= 0; else contains error message. Caller responsible for freeing memory
|
||||
+ } ext_server_completion_resp;
|
||||
+ ext_server_completion_resp llama_server_completion(const char *json_req);
|
||||
+ ext_task_result llama_server_completion_next_result(const int task_id);
|
||||
+ ext_server_err llama_server_completion_cancel(const int task_id);
|
||||
+
|
||||
+ // Caller responsible for freeing json_resp
|
||||
+ typedef struct ext_server_resp {
|
||||
+ char *json_resp; // Caller responsible for freeing string
|
||||
+ } ext_server_resp;
|
||||
+ ext_server_err llama_server_tokenize(const char *json_req, ext_server_resp *resp);
|
||||
+ ext_server_err llama_server_detokenize(const char *json_req, ext_server_resp *resp);
|
||||
+ ext_server_err llama_server_embedding(const char *json_req, ext_server_resp *resp);
|
||||
+
|
||||
+#ifdef __cplusplus
|
||||
+}
|
||||
+#endif
|
||||
+
|
||||
+#endif
|
||||
+#endif // LLAMA_SERVER_LIBRARY
|
||||
\ No newline at end of file
|
||||
diff --git a/ggml-cuda.cu b/ggml-cuda.cu
|
||||
index 85f7a29..ce51364 100644
|
||||
--- a/ggml-cuda.cu
|
||||
+++ b/ggml-cuda.cu
|
||||
@@ -6410,6 +6410,7 @@ static cudaError_t ggml_cuda_cpy_tensor_2d(
|
||||
CUDA_CHECK(cudaGetDevice(&id));
|
||||
src_ptr = (char *) extra->data_device[id];
|
||||
} else {
|
||||
+ fprintf(stderr, "ggml_cuda_cpy_tensor_2d assert: backend: %d\n", src->backend);
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
char * dst_ptr = (char *) dst;
|
||||
--
|
||||
2.39.3 (Apple Git-145)
|
||||
|
|
@ -1,27 +0,0 @@
|
|||
From 5dd02993e8cc2ce309157736b95bb572f274a3fd Mon Sep 17 00:00:00 2001
|
||||
From: Michael Yang <mxyng@pm.me>
|
||||
Date: Wed, 20 Sep 2023 14:19:52 -0700
|
||||
Subject: [PATCH] copy cuda runtime libraries
|
||||
|
||||
---
|
||||
CMakeLists.txt | 4 ++++
|
||||
1 file changed, 4 insertions(+)
|
||||
|
||||
diff --git a/CMakeLists.txt b/CMakeLists.txt
|
||||
index 824d9f2..dd24137 100644
|
||||
--- a/CMakeLists.txt
|
||||
+++ b/CMakeLists.txt
|
||||
@@ -274,6 +274,10 @@ if (LLAMA_CUBLAS)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
|
||||
endif()
|
||||
|
||||
+ configure_file(${CUDAToolkit_LIBRARY_DIR}/libcudart.so ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/libcudart.so.${CUDAToolkit_VERSION_MAJOR}.0 COPYONLY)
|
||||
+ configure_file(${CUDAToolkit_LIBRARY_DIR}/libcublas.so ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/libcublas.so.${CUDAToolkit_VERSION_MAJOR} COPYONLY)
|
||||
+ configure_file(${CUDAToolkit_LIBRARY_DIR}/libcublasLt.so ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/libcublasLt.so.${CUDAToolkit_VERSION_MAJOR} COPYONLY)
|
||||
+
|
||||
if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
|
||||
# 52 == lowest CUDA 12 standard
|
||||
# 60 == f16 CUDA intrinsics
|
||||
--
|
||||
2.42.0
|
||||
|
|
@ -1,25 +0,0 @@
|
|||
From 6465fec6290f0a7f5d4d0fbe6bcf634e4810dde6 Mon Sep 17 00:00:00 2001
|
||||
From: Michael Yang <mxyng@pm.me>
|
||||
Date: Mon, 23 Oct 2023 10:39:34 -0700
|
||||
Subject: [PATCH] default log stderr
|
||||
|
||||
---
|
||||
common/log.h | 2 +-
|
||||
1 file changed, 1 insertion(+), 1 deletion(-)
|
||||
|
||||
diff --git a/common/log.h b/common/log.h
|
||||
index b8953fd..25522cd 100644
|
||||
--- a/common/log.h
|
||||
+++ b/common/log.h
|
||||
@@ -90,7 +90,7 @@
|
||||
// }
|
||||
//
|
||||
#ifndef LOG_TARGET
|
||||
- #define LOG_TARGET log_handler()
|
||||
+ #define LOG_TARGET nullptr
|
||||
#endif
|
||||
|
||||
#ifndef LOG_TEE_TARGET
|
||||
--
|
||||
2.42.0
|
||||
|
656
llm/llama.go
656
llm/llama.go
|
@ -1,25 +1,12 @@
|
|||
package llm
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"bytes"
|
||||
"context"
|
||||
"embed"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"io/fs"
|
||||
"log"
|
||||
"math/rand"
|
||||
"net/http"
|
||||
"os"
|
||||
"os/exec"
|
||||
"path"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"strconv"
|
||||
"strings"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
|
@ -55,107 +42,6 @@ number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
|
|||
ws ::= ([ \t\n] ws)?
|
||||
`
|
||||
|
||||
//go:embed llama.cpp/*/build/*/bin/*
|
||||
var llamaCppEmbed embed.FS
|
||||
|
||||
type ModelRunner struct {
|
||||
Path string // path to the model runner executable
|
||||
Accelerated bool
|
||||
}
|
||||
|
||||
func chooseRunners(workDir string) []ModelRunner {
|
||||
buildPath := path.Join("llama.cpp", "gguf", "build")
|
||||
var runners []ModelRunner
|
||||
|
||||
// set the runners based on the OS
|
||||
// IMPORTANT: the order of the runners in the array is the priority order
|
||||
switch runtime.GOOS {
|
||||
case "darwin":
|
||||
if runtime.GOARCH == "arm64" {
|
||||
runners = []ModelRunner{{Path: path.Join(buildPath, "metal", "bin", "ollama-runner")}}
|
||||
} else {
|
||||
runners = []ModelRunner{{Path: path.Join(buildPath, "cpu", "bin", "ollama-runner")}}
|
||||
}
|
||||
case "linux":
|
||||
runners = []ModelRunner{
|
||||
{Path: path.Join(buildPath, "cuda", "bin", "ollama-runner"), Accelerated: true},
|
||||
{Path: path.Join(buildPath, "cpu", "bin", "ollama-runner")},
|
||||
}
|
||||
case "windows":
|
||||
// TODO: select windows GPU runner here when available
|
||||
runners = []ModelRunner{
|
||||
{Path: path.Join(buildPath, "cuda", "bin", "Release", "ollama-runner.exe"), Accelerated: true},
|
||||
{Path: path.Join(buildPath, "cpu", "bin", "Release", "ollama-runner.exe")},
|
||||
}
|
||||
default:
|
||||
log.Printf("unknown OS, running on CPU: %s", runtime.GOOS)
|
||||
runners = []ModelRunner{
|
||||
{Path: path.Join(buildPath, "cpu", "bin", "ollama-runner")},
|
||||
}
|
||||
}
|
||||
|
||||
runnerAvailable := false // if no runner files are found in the embed, this flag will cause a fast fail
|
||||
for _, r := range runners {
|
||||
// find all the files in the runner's bin directory
|
||||
files, err := fs.Glob(llamaCppEmbed, path.Join(path.Dir(r.Path), "*"))
|
||||
if err != nil {
|
||||
// this is expected, ollama may be compiled without all runners packed in
|
||||
log.Printf("%s runner not found: %v", r.Path, err)
|
||||
continue
|
||||
}
|
||||
|
||||
for _, f := range files {
|
||||
runnerAvailable = true
|
||||
|
||||
srcFile, err := llamaCppEmbed.Open(f)
|
||||
if err != nil {
|
||||
log.Fatalf("read llama runner %s: %v", f, err)
|
||||
}
|
||||
defer srcFile.Close()
|
||||
|
||||
// create the directory in case it does not exist, filepath.Dir() converts the file path to the OS's format
|
||||
destPath := filepath.Join(workDir, filepath.Dir(f))
|
||||
if err := os.MkdirAll(destPath, 0o755); err != nil {
|
||||
log.Fatalf("create runner temp dir %s: %v", filepath.Dir(f), err)
|
||||
}
|
||||
|
||||
// create the path to the destination file, filepath.Base() converts the file path to the OS's format
|
||||
destFile := filepath.Join(destPath, filepath.Base(f))
|
||||
|
||||
_, err = os.Stat(destFile)
|
||||
switch {
|
||||
case errors.Is(err, os.ErrNotExist):
|
||||
destFile, err := os.OpenFile(destFile, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0o755)
|
||||
if err != nil {
|
||||
log.Fatalf("write llama runner %s: %v", f, err)
|
||||
}
|
||||
defer destFile.Close()
|
||||
|
||||
if _, err := io.Copy(destFile, srcFile); err != nil {
|
||||
log.Fatalf("copy llama runner %s: %v", f, err)
|
||||
}
|
||||
case err != nil:
|
||||
log.Fatalf("stat llama runner %s: %v", f, err)
|
||||
}
|
||||
}
|
||||
}
|
||||
if !runnerAvailable {
|
||||
log.Fatalf("gguf runner not found")
|
||||
}
|
||||
|
||||
// return the runners to try in priority order
|
||||
localRunnersByPriority := []ModelRunner{}
|
||||
for _, r := range runners {
|
||||
// clean the ModelRunner paths so that they match the OS we are running on
|
||||
localRunnersByPriority = append(localRunnersByPriority, ModelRunner{
|
||||
Path: filepath.Clean(path.Join(workDir, r.Path)),
|
||||
Accelerated: r.Accelerated,
|
||||
})
|
||||
}
|
||||
|
||||
return localRunnersByPriority
|
||||
}
|
||||
|
||||
type llamaModel struct {
|
||||
hyperparameters llamaHyperparameters
|
||||
}
|
||||
|
@ -237,72 +123,6 @@ var (
|
|||
errAvailableVRAM = errors.New("not enough VRAM available, falling back to CPU only")
|
||||
)
|
||||
|
||||
// CheckVRAM returns the free VRAM in bytes on Linux machines with NVIDIA GPUs
|
||||
func CheckVRAM() (int64, error) {
|
||||
cmd := exec.Command("nvidia-smi", "--query-gpu=memory.free", "--format=csv,noheader,nounits")
|
||||
var stdout bytes.Buffer
|
||||
cmd.Stdout = &stdout
|
||||
err := cmd.Run()
|
||||
if err != nil {
|
||||
return 0, errNvidiaSMI
|
||||
}
|
||||
|
||||
var freeMiB int64
|
||||
scanner := bufio.NewScanner(&stdout)
|
||||
for scanner.Scan() {
|
||||
line := scanner.Text()
|
||||
if strings.Contains(line, "[Insufficient Permissions]") {
|
||||
return 0, fmt.Errorf("GPU support may not enabled, check you have installed GPU drivers and have the necessary permissions to run nvidia-smi")
|
||||
}
|
||||
|
||||
vram, err := strconv.ParseInt(strings.TrimSpace(line), 10, 64)
|
||||
if err != nil {
|
||||
return 0, fmt.Errorf("failed to parse available VRAM: %v", err)
|
||||
}
|
||||
|
||||
freeMiB += vram
|
||||
}
|
||||
|
||||
freeBytes := freeMiB * 1024 * 1024
|
||||
if freeBytes < 2*format.GigaByte {
|
||||
log.Printf("less than 2 GB VRAM available")
|
||||
return 0, errAvailableVRAM
|
||||
}
|
||||
|
||||
return freeBytes, nil
|
||||
}
|
||||
|
||||
func NumGPU(numLayer, fileSizeBytes int64, opts api.Options) int {
|
||||
if opts.NumGPU != -1 {
|
||||
return opts.NumGPU
|
||||
}
|
||||
if runtime.GOOS == "linux" || runtime.GOOS == "windows" {
|
||||
freeBytes, err := CheckVRAM()
|
||||
if err != nil {
|
||||
if !errors.Is(err, errNvidiaSMI) {
|
||||
log.Print(err.Error())
|
||||
}
|
||||
// nvidia driver not installed or no nvidia GPU found
|
||||
return 0
|
||||
}
|
||||
|
||||
/*
|
||||
Calculate bytes per layer, this will roughly be the size of the model file divided by the number of layers.
|
||||
We can store the model weights and the kv cache in vram,
|
||||
to enable kv chache vram storage add two additional layers to the number of layers retrieved from the model file.
|
||||
*/
|
||||
bytesPerLayer := fileSizeBytes / numLayer
|
||||
|
||||
// 75% of the absolute max number of layers we can fit in available VRAM, off-loading too many layers to the GPU can cause OOM errors
|
||||
layers := int(freeBytes/bytesPerLayer) * 3 / 4
|
||||
log.Printf("%d MB VRAM available, loading up to %d GPU layers", freeBytes/(1024*1024), layers)
|
||||
|
||||
return layers
|
||||
}
|
||||
// default to enable metal on macOS
|
||||
return 1
|
||||
}
|
||||
|
||||
// StatusWriter is a writer that captures error messages from the llama runner process
|
||||
type StatusWriter struct {
|
||||
ErrCh chan error
|
||||
|
@ -331,204 +151,6 @@ func (w *StatusWriter) Write(b []byte) (int, error) {
|
|||
return os.Stderr.Write(b)
|
||||
}
|
||||
|
||||
func newLlama(model string, adapters, projectors []string, runners []ModelRunner, numLayers int64, opts api.Options) (*llama, error) {
|
||||
fileInfo, err := os.Stat(model)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if len(adapters) > 1 {
|
||||
return nil, errors.New("ollama supports only one lora adapter, but multiple were provided")
|
||||
}
|
||||
|
||||
numGPU := NumGPU(numLayers, fileInfo.Size(), opts)
|
||||
params := []string{
|
||||
"--model", model,
|
||||
"--ctx-size", fmt.Sprintf("%d", opts.NumCtx),
|
||||
"--batch-size", fmt.Sprintf("%d", opts.NumBatch),
|
||||
"--n-gpu-layers", fmt.Sprintf("%d", numGPU),
|
||||
"--embedding",
|
||||
"--parallel", "2",
|
||||
}
|
||||
|
||||
if opts.MainGPU > 0 {
|
||||
params = append(params, "--main-gpu", fmt.Sprintf("%d", opts.MainGPU))
|
||||
}
|
||||
|
||||
if opts.RopeFrequencyBase > 0 {
|
||||
params = append(params, "--rope-freq-base", fmt.Sprintf("%f", opts.RopeFrequencyBase))
|
||||
}
|
||||
|
||||
if opts.RopeFrequencyScale > 0 {
|
||||
params = append(params, "--rope-freq-scale", fmt.Sprintf("%f", opts.RopeFrequencyScale))
|
||||
}
|
||||
|
||||
if opts.NumGQA > 0 {
|
||||
params = append(params, "--gqa", fmt.Sprintf("%d", opts.NumGQA))
|
||||
}
|
||||
|
||||
if len(adapters) > 0 {
|
||||
// TODO: applying multiple adapters is not supported by the llama.cpp server yet
|
||||
params = append(params, "--lora", adapters[0])
|
||||
}
|
||||
|
||||
if len(projectors) > 0 {
|
||||
// TODO: applying multiple projectors is not supported by the llama.cpp server yet
|
||||
params = append(params, "--mmproj", projectors[0])
|
||||
}
|
||||
|
||||
if opts.NumThread > 0 {
|
||||
params = append(params, "--threads", fmt.Sprintf("%d", opts.NumThread))
|
||||
}
|
||||
|
||||
if !opts.F16KV {
|
||||
params = append(params, "--memory-f32")
|
||||
}
|
||||
if opts.UseMLock {
|
||||
params = append(params, "--mlock")
|
||||
}
|
||||
if !opts.UseMMap {
|
||||
params = append(params, "--no-mmap")
|
||||
}
|
||||
if opts.UseNUMA {
|
||||
params = append(params, "--numa")
|
||||
}
|
||||
|
||||
var runnerErr error
|
||||
|
||||
// start the llama.cpp server with a retry in case the port is already in use
|
||||
for _, runner := range runners {
|
||||
if runner.Accelerated && numGPU == 0 {
|
||||
log.Printf("skipping accelerated runner because num_gpu=0")
|
||||
continue
|
||||
}
|
||||
|
||||
if _, err := os.Stat(runner.Path); err != nil {
|
||||
log.Printf("llama runner not found: %v", err)
|
||||
continue
|
||||
}
|
||||
|
||||
port := rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
|
||||
params := append(params, "--port", strconv.Itoa(port))
|
||||
|
||||
ctx, cancel := context.WithCancel(context.Background())
|
||||
cmd := exec.CommandContext(
|
||||
ctx,
|
||||
runner.Path,
|
||||
params...,
|
||||
)
|
||||
|
||||
var libraryPaths []string
|
||||
if libraryPath, ok := os.LookupEnv("LD_LIBRARY_PATH"); ok {
|
||||
libraryPaths = append(libraryPaths, libraryPath)
|
||||
}
|
||||
|
||||
libraryPaths = append(libraryPaths, filepath.Dir(runner.Path))
|
||||
|
||||
cmd.Env = append(os.Environ(), fmt.Sprintf("LD_LIBRARY_PATH=%s", strings.Join(libraryPaths, ":")))
|
||||
cmd.Stdout = os.Stderr
|
||||
statusWriter := NewStatusWriter()
|
||||
cmd.Stderr = statusWriter
|
||||
|
||||
llm := &llama{Options: opts, Running: Running{Port: port, Cmd: cmd, Cancel: cancel, exitCh: make(chan error)}}
|
||||
|
||||
log.Print("starting llama runner")
|
||||
if err := llm.Cmd.Start(); err != nil {
|
||||
log.Printf("error starting the external llama runner: %v", err)
|
||||
continue
|
||||
}
|
||||
|
||||
// monitor the llama runner process and signal when it exits
|
||||
go func() {
|
||||
err := llm.Cmd.Wait()
|
||||
// default to printing the exit message of the command process, it will probably just say 'exit staus 1'
|
||||
errMsg := err.Error()
|
||||
// try to set a better error message if llama runner logs captured an error
|
||||
if statusWriter.LastErrMsg != "" {
|
||||
errMsg = statusWriter.LastErrMsg
|
||||
}
|
||||
log.Println(errMsg)
|
||||
// llm.Cmd.Wait() can only be called once, use this exit channel to signal that the process has exited
|
||||
llm.exitOnce.Do(func() {
|
||||
close(llm.exitCh)
|
||||
})
|
||||
}()
|
||||
|
||||
if err := waitForServer(llm); err != nil {
|
||||
log.Printf("error starting llama runner: %v", err)
|
||||
llm.Close()
|
||||
|
||||
// default the runnerErr to the error returned by the most recent llama runner process
|
||||
runnerErr = err
|
||||
|
||||
// capture the error directly from the runner process, if any
|
||||
select {
|
||||
case runnerErr = <-statusWriter.ErrCh:
|
||||
default:
|
||||
// the runner process probably timed out
|
||||
}
|
||||
|
||||
// try again
|
||||
continue
|
||||
}
|
||||
|
||||
// server started successfully
|
||||
return llm, nil
|
||||
}
|
||||
|
||||
if runnerErr != nil {
|
||||
// this is the error returned from the llama runner process that failed most recently
|
||||
return nil, runnerErr
|
||||
}
|
||||
|
||||
return nil, fmt.Errorf("failed to start a llama runner")
|
||||
}
|
||||
|
||||
func waitForServer(llm *llama) error {
|
||||
start := time.Now()
|
||||
expiresAt := time.Now().Add(3 * time.Minute) // be generous with timeout, large models can take a while to load
|
||||
ticker := time.NewTicker(200 * time.Millisecond)
|
||||
defer ticker.Stop()
|
||||
|
||||
log.Print("waiting for llama runner to start responding")
|
||||
for {
|
||||
select {
|
||||
case <-llm.exitCh:
|
||||
// failed to start subprocess
|
||||
return fmt.Errorf("llama runner process has terminated")
|
||||
case <-ticker.C:
|
||||
if time.Now().After(expiresAt) {
|
||||
// timeout
|
||||
return fmt.Errorf("timed out waiting for llama runner to start")
|
||||
}
|
||||
|
||||
if err := llm.Ping(context.Background()); err == nil {
|
||||
// success
|
||||
log.Printf("llama runner started in %f seconds", time.Since(start).Seconds())
|
||||
return nil
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (llm *llama) Close() {
|
||||
// signal the sub-process to terminate
|
||||
llm.Cancel()
|
||||
|
||||
// wait for the command to exit to prevent race conditions with the next run
|
||||
<-llm.exitCh
|
||||
|
||||
if llm.StatusWriter != nil && llm.StatusWriter.LastErrMsg != "" {
|
||||
log.Printf("llama runner stopped with error: %v", llm.StatusWriter.LastErrMsg)
|
||||
} else {
|
||||
log.Print("llama runner stopped successfully")
|
||||
}
|
||||
}
|
||||
|
||||
func (llm *llama) SetOptions(opts api.Options) {
|
||||
llm.Options = opts
|
||||
}
|
||||
|
||||
type prediction struct {
|
||||
Content string `json:"content"`
|
||||
Model string `json:"model"`
|
||||
|
@ -561,158 +183,6 @@ type PredictResult struct {
|
|||
EvalDuration time.Duration
|
||||
}
|
||||
|
||||
// IsRetryable checks if the line matches a condition that can be retried
|
||||
func isRetryable(line []byte) bool {
|
||||
return bytes.Contains(line, []byte("slot unavailable"))
|
||||
}
|
||||
|
||||
func (llm *llama) Predict(ctx context.Context, predict PredictOpts, fn func(PredictResult)) error {
|
||||
imageData := llm.ImageData
|
||||
if len(predict.Images) > 0 {
|
||||
for cnt, i := range predict.Images {
|
||||
imageData = append(imageData, ImageData{Data: i, ID: cnt})
|
||||
}
|
||||
}
|
||||
log.Printf("loaded %d images", len(imageData))
|
||||
|
||||
request := map[string]any{
|
||||
"prompt": predict.Prompt,
|
||||
"stream": true,
|
||||
"n_predict": llm.NumPredict,
|
||||
"n_keep": llm.NumKeep,
|
||||
"main_gpu": llm.MainGPU,
|
||||
"temperature": llm.Temperature,
|
||||
"top_k": llm.TopK,
|
||||
"top_p": llm.TopP,
|
||||
"tfs_z": llm.TFSZ,
|
||||
"typical_p": llm.TypicalP,
|
||||
"repeat_last_n": llm.RepeatLastN,
|
||||
"repeat_penalty": llm.RepeatPenalty,
|
||||
"presence_penalty": llm.PresencePenalty,
|
||||
"frequency_penalty": llm.FrequencyPenalty,
|
||||
"mirostat": llm.Mirostat,
|
||||
"mirostat_tau": llm.MirostatTau,
|
||||
"mirostat_eta": llm.MirostatEta,
|
||||
"penalize_nl": llm.PenalizeNewline,
|
||||
"seed": llm.Seed,
|
||||
"stop": llm.Stop,
|
||||
"image_data": imageData,
|
||||
}
|
||||
|
||||
if predict.Format == "json" {
|
||||
request["grammar"] = jsonGrammar
|
||||
}
|
||||
|
||||
retryDelay := 100 * time.Microsecond
|
||||
for retries := 0; retries < maxRetries; retries++ {
|
||||
if retries > 0 {
|
||||
time.Sleep(retryDelay) // wait before retrying
|
||||
retryDelay *= 2 // exponential backoff
|
||||
}
|
||||
|
||||
// Handling JSON marshaling with special characters unescaped.
|
||||
buffer := &bytes.Buffer{}
|
||||
enc := json.NewEncoder(buffer)
|
||||
enc.SetEscapeHTML(false)
|
||||
|
||||
if err := enc.Encode(request); err != nil {
|
||||
return fmt.Errorf("failed to marshal data: %v", err)
|
||||
}
|
||||
|
||||
endpoint := fmt.Sprintf("http://127.0.0.1:%d/completion", llm.Port)
|
||||
req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, buffer)
|
||||
if err != nil {
|
||||
return fmt.Errorf("error creating POST request: %v", err)
|
||||
}
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
|
||||
resp, err := http.DefaultClient.Do(req)
|
||||
if err != nil {
|
||||
return fmt.Errorf("POST predict: %v", err)
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
if resp.StatusCode >= 400 {
|
||||
bodyBytes, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading llm error response: %w", err)
|
||||
}
|
||||
log.Printf("llm predict error: %s", bodyBytes)
|
||||
return fmt.Errorf("%s", bodyBytes)
|
||||
}
|
||||
|
||||
scanner := bufio.NewScanner(resp.Body)
|
||||
// increase the buffer size to avoid running out of space
|
||||
buf := make([]byte, 0, maxBufferSize)
|
||||
scanner.Buffer(buf, maxBufferSize)
|
||||
|
||||
retryNeeded := false
|
||||
for scanner.Scan() {
|
||||
select {
|
||||
case <-ctx.Done():
|
||||
// This handles the request cancellation
|
||||
return ctx.Err()
|
||||
default:
|
||||
line := scanner.Bytes()
|
||||
if len(line) == 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
if isRetryable(line) {
|
||||
retryNeeded = true
|
||||
break
|
||||
}
|
||||
|
||||
evt, ok := bytes.CutPrefix(line, []byte("data: "))
|
||||
if !ok {
|
||||
return fmt.Errorf("error parsing llm response stream: %s", line)
|
||||
}
|
||||
|
||||
var p prediction
|
||||
if err := json.Unmarshal(evt, &p); err != nil {
|
||||
return fmt.Errorf("error unmarshaling llm prediction response: %v", err)
|
||||
}
|
||||
|
||||
if p.Content != "" {
|
||||
fn(PredictResult{
|
||||
Content: p.Content,
|
||||
})
|
||||
}
|
||||
|
||||
if p.Stop {
|
||||
fn(PredictResult{
|
||||
Done: true,
|
||||
PromptEvalCount: p.Timings.PromptN,
|
||||
PromptEvalDuration: parseDurationMs(p.Timings.PromptMS),
|
||||
EvalCount: p.Timings.PredictedN,
|
||||
EvalDuration: parseDurationMs(p.Timings.PredictedMS),
|
||||
})
|
||||
return nil
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if err := scanner.Err(); err != nil {
|
||||
if strings.Contains(err.Error(), "unexpected EOF") {
|
||||
// this means the llama runner subprocess crashed
|
||||
llm.Close()
|
||||
if llm.StatusWriter != nil && llm.StatusWriter.LastErrMsg != "" {
|
||||
return fmt.Errorf("llama runner exited: %v", llm.StatusWriter.LastErrMsg)
|
||||
}
|
||||
return fmt.Errorf("llama runner exited, you may not have enough available memory to run this model")
|
||||
}
|
||||
return fmt.Errorf("error reading llm response: %v", err)
|
||||
}
|
||||
|
||||
if !retryNeeded {
|
||||
return nil // success
|
||||
}
|
||||
}
|
||||
|
||||
// should never reach here ideally
|
||||
return fmt.Errorf("max retries exceeded")
|
||||
}
|
||||
|
||||
type TokenizeRequest struct {
|
||||
Content string `json:"content"`
|
||||
}
|
||||
|
@ -721,43 +191,6 @@ type TokenizeResponse struct {
|
|||
Tokens []int `json:"tokens"`
|
||||
}
|
||||
|
||||
func (llm *llama) Encode(ctx context.Context, prompt string) ([]int, error) {
|
||||
endpoint := fmt.Sprintf("http://127.0.0.1:%d/tokenize", llm.Port)
|
||||
data, err := json.Marshal(TokenizeRequest{Content: prompt})
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("marshaling encode data: %w", err)
|
||||
}
|
||||
|
||||
req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, bytes.NewBuffer(data))
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("encode request: %w", err)
|
||||
}
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
|
||||
resp, err := http.DefaultClient.Do(req)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("do encode request: %w", err)
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
body, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("read encode request: %w", err)
|
||||
}
|
||||
|
||||
if resp.StatusCode >= 400 {
|
||||
log.Printf("llm encode error: %s", body)
|
||||
return nil, fmt.Errorf("%s", body)
|
||||
}
|
||||
|
||||
var encoded TokenizeResponse
|
||||
if err := json.Unmarshal(body, &encoded); err != nil {
|
||||
return nil, fmt.Errorf("unmarshal encode response: %w", err)
|
||||
}
|
||||
|
||||
return encoded.Tokens, nil
|
||||
}
|
||||
|
||||
type DetokenizeRequest struct {
|
||||
Tokens []int `json:"tokens"`
|
||||
}
|
||||
|
@ -766,46 +199,6 @@ type DetokenizeResponse struct {
|
|||
Content string `json:"content"`
|
||||
}
|
||||
|
||||
func (llm *llama) Decode(ctx context.Context, tokens []int) (string, error) {
|
||||
if len(tokens) == 0 {
|
||||
return "", nil
|
||||
}
|
||||
endpoint := fmt.Sprintf("http://127.0.0.1:%d/detokenize", llm.Port)
|
||||
data, err := json.Marshal(DetokenizeRequest{Tokens: tokens})
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("marshaling decode data: %w", err)
|
||||
}
|
||||
|
||||
req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, bytes.NewBuffer(data))
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("decode request: %w", err)
|
||||
}
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
|
||||
resp, err := http.DefaultClient.Do(req)
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("do decode request: %w", err)
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
body, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("read decode request: %w", err)
|
||||
}
|
||||
|
||||
if resp.StatusCode >= 400 {
|
||||
log.Printf("llm decode error: %s", body)
|
||||
return "", fmt.Errorf("%s", body)
|
||||
}
|
||||
|
||||
var decoded DetokenizeResponse
|
||||
if err := json.Unmarshal(body, &decoded); err != nil {
|
||||
return "", fmt.Errorf("unmarshal encode response: %w", err)
|
||||
}
|
||||
|
||||
return decoded.Content, nil
|
||||
}
|
||||
|
||||
type EmbeddingRequest struct {
|
||||
Content string `json:"content"`
|
||||
}
|
||||
|
@ -813,52 +206,3 @@ type EmbeddingRequest struct {
|
|||
type EmbeddingResponse struct {
|
||||
Embedding []float64 `json:"embedding"`
|
||||
}
|
||||
|
||||
func (llm *llama) Embedding(ctx context.Context, input string) ([]float64, error) {
|
||||
endpoint := fmt.Sprintf("http://127.0.0.1:%d/embedding", llm.Port)
|
||||
data, err := json.Marshal(TokenizeRequest{Content: input})
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("error marshaling embed data: %w", err)
|
||||
}
|
||||
|
||||
req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, bytes.NewBuffer(data))
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("error creating embed request: %w", err)
|
||||
}
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
|
||||
resp, err := http.DefaultClient.Do(req)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("POST embedding: %w", err)
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
body, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("error reading embed response: %w", err)
|
||||
}
|
||||
|
||||
if resp.StatusCode >= 400 {
|
||||
log.Printf("llm encode error: %s", body)
|
||||
return nil, fmt.Errorf("%s", body)
|
||||
}
|
||||
|
||||
var embedding EmbeddingResponse
|
||||
if err := json.Unmarshal(body, &embedding); err != nil {
|
||||
return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
|
||||
}
|
||||
|
||||
return embedding.Embedding, nil
|
||||
}
|
||||
|
||||
// Ping checks that the server subprocess is still running and responding to requests
|
||||
func (llm *llama) Ping(ctx context.Context) error {
|
||||
resp, err := http.Head(fmt.Sprintf("http://127.0.0.1:%d", llm.Port))
|
||||
if err != nil {
|
||||
return fmt.Errorf("ping resp: %w", err)
|
||||
}
|
||||
if resp.StatusCode != http.StatusOK {
|
||||
return fmt.Errorf("unexpected ping status: %s", resp.Status)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
|
|
@ -18,7 +18,6 @@ type LLM interface {
|
|||
Embedding(context.Context, string) ([]float64, error)
|
||||
Encode(context.Context, string) ([]int, error)
|
||||
Decode(context.Context, []int) (string, error)
|
||||
SetOptions(api.Options)
|
||||
Close()
|
||||
Ping(context.Context) error
|
||||
}
|
||||
|
@ -79,5 +78,5 @@ func New(workDir, model string, adapters, projectors []string, opts api.Options)
|
|||
opts.NumGQA = 0
|
||||
opts.RopeFrequencyBase = 0.0
|
||||
opts.RopeFrequencyScale = 0.0
|
||||
return newLlama(model, adapters, projectors, chooseRunners(workDir), ggml.NumLayers(), opts)
|
||||
return newLlamaExtServer(model, adapters, projectors, ggml.NumLayers(), opts)
|
||||
}
|
||||
|
|
|
@ -9,7 +9,7 @@ mkdir -p dist
|
|||
|
||||
for TARGETARCH in arm64 amd64; do
|
||||
GOOS=darwin GOARCH=$TARGETARCH go generate ./...
|
||||
GOOS=darwin GOARCH=$TARGETARCH go build -o dist/ollama-darwin-$TARGETARCH
|
||||
CGO_ENABLED=1 GOOS=darwin GOARCH=$TARGETARCH go build -o dist/ollama-darwin-$TARGETARCH
|
||||
rm -rf llm/llama.cpp/*/build
|
||||
done
|
||||
|
||||
|
|
|
@ -7,7 +7,7 @@ export GOFLAGS="'-ldflags=-w -s \"-X=github.com/jmorganca/ollama/version.Version
|
|||
|
||||
mkdir -p dist
|
||||
|
||||
for TARGETARCH in arm64 amd64; do
|
||||
for TARGETARCH in amd64 arm64; do
|
||||
docker buildx build --load --platform=linux/$TARGETARCH --build-arg=VERSION --build-arg=GOFLAGS -f Dockerfile.build -t builder:$TARGETARCH .
|
||||
docker create --platform linux/$TARGETARCH --name builder-$TARGETARCH builder:$TARGETARCH
|
||||
docker cp builder-$TARGETARCH:/go/src/github.com/jmorganca/ollama/ollama ./dist/ollama-linux-$TARGETARCH
|
||||
|
|
35
scripts/setup_integration_tests.sh
Executable file
35
scripts/setup_integration_tests.sh
Executable file
|
@ -0,0 +1,35 @@
|
|||
#!/bin/bash
|
||||
|
||||
# This script sets up integration tests which run the full stack to verify
|
||||
# inference locally
|
||||
set -e
|
||||
set -o pipefail
|
||||
|
||||
REPO=$(dirname $0)/../
|
||||
export OLLAMA_MODELS=${REPO}/test_data/models
|
||||
REGISTRY_SCHEME=https
|
||||
REGISTRY=registry.ollama.ai
|
||||
TEST_MODEL=library/orca-mini
|
||||
TEST_MODEL_TAG=latest
|
||||
ACCEPT_HEADER="Accept: application/vnd.docker.distribution.manifest.v2+json"
|
||||
|
||||
mkdir -p ${OLLAMA_MODELS}/manifests/${REGISTRY}/${TEST_MODEL}/
|
||||
mkdir -p ${OLLAMA_MODELS}/blobs/
|
||||
|
||||
echo "Pulling manifest for ${TEST_MODEL}:${TEST_MODEL_TAG}"
|
||||
curl -s --header "${ACCEPT_HEADER}" \
|
||||
-o ${OLLAMA_MODELS}/manifests/${REGISTRY}/${TEST_MODEL}/${TEST_MODEL_TAG} \
|
||||
${REGISTRY_SCHEME}://${REGISTRY}/v2/${TEST_MODEL}/manifests/${TEST_MODEL_TAG}
|
||||
|
||||
CFG_HASH=$(cat ${OLLAMA_MODELS}/manifests/${REGISTRY}/${TEST_MODEL}/${TEST_MODEL_TAG} | jq -r ".config.digest")
|
||||
echo "Pulling config blob ${CFG_HASH}"
|
||||
curl -L -C - --header "${ACCEPT_HEADER}" \
|
||||
-o ${OLLAMA_MODELS}/blobs/${CFG_HASH} \
|
||||
${REGISTRY_SCHEME}://${REGISTRY}/v2/${TEST_MODEL}/blobs/${CFG_HASH}
|
||||
|
||||
for LAYER in $(cat ${OLLAMA_MODELS}/manifests/${REGISTRY}/${TEST_MODEL}/${TEST_MODEL_TAG} | jq -r ".layers[].digest" ) ; do
|
||||
echo "Pulling blob ${LAYER}"
|
||||
curl -L -C - --header "${ACCEPT_HEADER}" \
|
||||
-o ${OLLAMA_MODELS}/blobs/${LAYER} \
|
||||
${REGISTRY_SCHEME}://${REGISTRY}/v2/${TEST_MODEL}/blobs/${LAYER}
|
||||
done
|
103
server/llm_test.go
Normal file
103
server/llm_test.go
Normal file
|
@ -0,0 +1,103 @@
|
|||
package server
|
||||
|
||||
import (
|
||||
"context"
|
||||
"strings"
|
||||
"sync"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
|
||||
"github.com/jmorganca/ollama/api"
|
||||
)
|
||||
|
||||
// TODO - this would ideally be in the llm package, but that would require some refactoring of interfaces in the server
|
||||
// package to avoid circular dependencies
|
||||
|
||||
// WARNING - these tests will fail on mac if you don't manually copy ggml-metal.metal to this dir (./server)
|
||||
//
|
||||
// TODO - Fix this ^^
|
||||
|
||||
var (
|
||||
req = [2]api.GenerateRequest{
|
||||
{
|
||||
Model: "orca-mini",
|
||||
Prompt: "tell me a short story about agi?",
|
||||
Options: map[string]interface{}{},
|
||||
}, {
|
||||
Model: "orca-mini",
|
||||
Prompt: "what is the origin of the us thanksgiving holiday?",
|
||||
Options: map[string]interface{}{},
|
||||
},
|
||||
}
|
||||
resp = [2]string{
|
||||
"once upon a time",
|
||||
"fourth thursday",
|
||||
}
|
||||
)
|
||||
|
||||
func TestIntegrationSimpleOrcaMini(t *testing.T) {
|
||||
SkipIFNoTestData(t)
|
||||
ctx, cancel := context.WithTimeout(context.Background(), time.Second*60)
|
||||
defer cancel()
|
||||
opts := api.DefaultOptions()
|
||||
opts.Seed = 42
|
||||
opts.Temperature = 0.0
|
||||
model, llmRunner := PrepareModelForPrompts(t, req[0].Model, opts)
|
||||
defer llmRunner.Close()
|
||||
response := OneShotPromptResponse(t, ctx, req[0], model, llmRunner)
|
||||
assert.Contains(t, strings.ToLower(response), resp[0])
|
||||
}
|
||||
|
||||
// TODO
|
||||
// The server always loads a new runner and closes the old one, which forces serial execution
|
||||
// At present this test case fails with concurrency problems. Eventually we should try to
|
||||
// get true concurrency working with n_parallel support in the backend
|
||||
func TestIntegrationConcurrentPredictOrcaMini(t *testing.T) {
|
||||
SkipIFNoTestData(t)
|
||||
t.Skip("concurrent prediction on single runner not currently supported")
|
||||
ctx, cancel := context.WithTimeout(context.Background(), time.Second*60)
|
||||
defer cancel()
|
||||
opts := api.DefaultOptions()
|
||||
opts.Seed = 42
|
||||
opts.Temperature = 0.0
|
||||
var wg sync.WaitGroup
|
||||
wg.Add(len(req))
|
||||
model, llmRunner := PrepareModelForPrompts(t, req[0].Model, opts)
|
||||
defer llmRunner.Close()
|
||||
for i := 0; i < len(req); i++ {
|
||||
go func(i int) {
|
||||
defer wg.Done()
|
||||
response := OneShotPromptResponse(t, ctx, req[i], model, llmRunner)
|
||||
t.Logf("Prompt: %s\nResponse: %s", req[0].Prompt, response)
|
||||
assert.Contains(t, strings.ToLower(response), resp[i], "error in thread %d (%s)", i, req[i].Prompt)
|
||||
}(i)
|
||||
}
|
||||
wg.Wait()
|
||||
}
|
||||
|
||||
func TestIntegrationConcurrentRunnersOrcaMini(t *testing.T) {
|
||||
SkipIFNoTestData(t)
|
||||
ctx, cancel := context.WithTimeout(context.Background(), time.Second*60)
|
||||
defer cancel()
|
||||
opts := api.DefaultOptions()
|
||||
opts.Seed = 42
|
||||
opts.Temperature = 0.0
|
||||
var wg sync.WaitGroup
|
||||
wg.Add(len(req))
|
||||
|
||||
for i := 0; i < len(req); i++ {
|
||||
go func(i int) {
|
||||
defer wg.Done()
|
||||
model, llmRunner := PrepareModelForPrompts(t, req[0].Model, opts)
|
||||
defer llmRunner.Close()
|
||||
response := OneShotPromptResponse(t, ctx, req[i], model, llmRunner)
|
||||
t.Logf("Prompt: %s\nResponse: %s", req[0].Prompt, response)
|
||||
assert.Contains(t, strings.ToLower(response), resp[i], "error in thread %d (%s)", i, req[i].Prompt)
|
||||
}(i)
|
||||
}
|
||||
wg.Wait()
|
||||
}
|
||||
|
||||
// TODO - create a parallel test with 2 different models once we support concurrency
|
76
server/llm_utils_test.go
Normal file
76
server/llm_utils_test.go
Normal file
|
@ -0,0 +1,76 @@
|
|||
package server
|
||||
|
||||
import (
|
||||
"context"
|
||||
"errors"
|
||||
"os"
|
||||
"path"
|
||||
"runtime"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/jmorganca/ollama/api"
|
||||
"github.com/jmorganca/ollama/llm"
|
||||
"github.com/stretchr/testify/require"
|
||||
)
|
||||
|
||||
func SkipIFNoTestData(t *testing.T) {
|
||||
modelDir := getModelDir()
|
||||
if _, err := os.Stat(modelDir); errors.Is(err, os.ErrNotExist) {
|
||||
t.Skipf("%s does not exist - skipping integration tests", modelDir)
|
||||
}
|
||||
}
|
||||
|
||||
func getModelDir() string {
|
||||
_, filename, _, _ := runtime.Caller(0)
|
||||
return path.Dir(path.Dir(filename) + "/../test_data/models/.")
|
||||
}
|
||||
|
||||
func PrepareModelForPrompts(t *testing.T, modelName string, opts api.Options) (*Model, llm.LLM) {
|
||||
modelDir := getModelDir()
|
||||
os.Setenv("OLLAMA_MODELS", modelDir)
|
||||
model, err := GetModel(modelName)
|
||||
require.NoError(t, err, "GetModel ")
|
||||
err = opts.FromMap(model.Options)
|
||||
require.NoError(t, err, "opts from model ")
|
||||
runner, err := llm.New("unused", model.ModelPath, model.AdapterPaths, model.ProjectorPaths, opts)
|
||||
require.NoError(t, err, "llm.New failed")
|
||||
return model, runner
|
||||
}
|
||||
|
||||
func OneShotPromptResponse(t *testing.T, ctx context.Context, req api.GenerateRequest, model *Model, runner llm.LLM) string {
|
||||
checkpointStart := time.Now()
|
||||
prompt, err := model.Prompt(PromptVars{
|
||||
System: req.System,
|
||||
Prompt: req.Prompt,
|
||||
First: len(req.Context) == 0,
|
||||
})
|
||||
require.NoError(t, err, "prompt generation failed")
|
||||
success := make(chan bool, 1)
|
||||
response := ""
|
||||
cb := func(r llm.PredictResult) {
|
||||
|
||||
if !r.Done {
|
||||
response += r.Content
|
||||
} else {
|
||||
success <- true
|
||||
}
|
||||
}
|
||||
checkpointLoaded := time.Now()
|
||||
predictReq := llm.PredictOpts{
|
||||
Prompt: prompt,
|
||||
Format: req.Format,
|
||||
CheckpointStart: checkpointStart,
|
||||
CheckpointLoaded: checkpointLoaded,
|
||||
}
|
||||
err = runner.Predict(ctx, predictReq, cb)
|
||||
require.NoError(t, err, "predict call failed")
|
||||
|
||||
select {
|
||||
case <-ctx.Done():
|
||||
t.Errorf("failed to complete before timeout: \n%s", response)
|
||||
return ""
|
||||
case <-success:
|
||||
return response
|
||||
}
|
||||
}
|
|
@ -126,10 +126,6 @@ func load(c *gin.Context, modelName string, reqOpts map[string]interface{}, sess
|
|||
loaded.Options = &opts
|
||||
}
|
||||
|
||||
// update options for the loaded llm
|
||||
// TODO(mxyng): this isn't thread safe, but it should be fine for now
|
||||
loaded.runner.SetOptions(opts)
|
||||
|
||||
loaded.expireAt = time.Now().Add(sessionDuration)
|
||||
|
||||
if loaded.expireTimer == nil {
|
||||
|
|
Loading…
Add table
Reference in a new issue