revisit memory allocation to account for full kv cache on main gpu
This commit is contained in:
parent
b24e8d17b2
commit
ab6be852c7
1 changed files with 58 additions and 77 deletions
135
llm/llm.go
135
llm/llm.go
|
@ -2,7 +2,6 @@ package llm
|
|||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"log"
|
||||
"os"
|
||||
"runtime"
|
||||
|
@ -41,94 +40,76 @@ func New(workDir, model string, adapters, projectors []string, opts api.Options)
|
|||
opts.NumCtx = 4
|
||||
}
|
||||
|
||||
fmt.Println("size", ggml.Size)
|
||||
fmt.Println("filetype", ggml.FileType())
|
||||
fmt.Println("architecture", ggml.ModelFamily())
|
||||
fmt.Println("type", ggml.ModelType())
|
||||
fmt.Println("name", ggml.Name())
|
||||
fmt.Println("embd", ggml.NumEmbed())
|
||||
fmt.Println("head", ggml.NumHead())
|
||||
fmt.Println("head_kv", ggml.NumHeadKv())
|
||||
fmt.Println("gqa", ggml.NumGQA())
|
||||
|
||||
available, _ := gpu.CheckVRAM()
|
||||
|
||||
// For now assume filesize = model size
|
||||
// TODO: use actual model size
|
||||
requiredModel := ggml.Size
|
||||
vram, _ := gpu.CheckVRAM()
|
||||
size := ggml.Size
|
||||
|
||||
// fp16 k,v matrices require = n_ctx * n_layer * n_embd / n_head * n_head_kv * 2 bytes each * 2 key and value
|
||||
requiredKv := 2 * 2 * int64(opts.NumCtx) * int64(ggml.NumLayers()) * int64(ggml.NumEmbed()) * int64(ggml.NumHeadKv()) / int64(ggml.NumHead())
|
||||
kv := 2 * 2 * int64(opts.NumCtx) * int64(ggml.NumLayers()) * int64(ggml.NumEmbed()) * int64(ggml.NumHeadKv()) / int64(ggml.NumHead())
|
||||
|
||||
// this amount is the overhead + tensors in memory
|
||||
// TODO: get this from the llama.cpp's graph calcluations instead of
|
||||
// estimating it's 1/6 * kv_cache_size * num_gqa
|
||||
requiredAlloc := int64(ggml.NumGQA()) * requiredKv / 6
|
||||
|
||||
requiredTotal := requiredModel + requiredKv + requiredAlloc
|
||||
|
||||
log.Println("system memory bytes:", available)
|
||||
log.Println("required model bytes:", requiredModel)
|
||||
log.Println("required kv bytes:", requiredKv)
|
||||
log.Println("required alloc bytes:", requiredAlloc)
|
||||
log.Println("required total bytes:", requiredTotal)
|
||||
graph := int64(ggml.NumGQA()) * kv / 6
|
||||
|
||||
info := gpu.GetGPUInfo()
|
||||
library := info.Library
|
||||
|
||||
if opts.NumGPU == -1 {
|
||||
// default to offloading all layers
|
||||
opts.NumGPU = int(ggml.NumLayers()) + 1
|
||||
}
|
||||
|
||||
// decide how many layers to put on the GPU
|
||||
if opts.NumGPU > 0 {
|
||||
switch runtime.GOOS {
|
||||
case "darwin":
|
||||
if requiredTotal > available {
|
||||
log.Println("not enough vram available, falling back to CPU only")
|
||||
opts.NumGPU = 0
|
||||
}
|
||||
default:
|
||||
if library == "cpu" || library == "default" {
|
||||
opts.NumGPU = 0
|
||||
break
|
||||
}
|
||||
|
||||
// alloc buffer and kv cache is allocated as a fixed amount on the main gpu
|
||||
// TODO: find the largest GPU and only reserve memory there
|
||||
avgAvailable := available / int64(info.DeviceCount)
|
||||
if requiredAlloc > avgAvailable {
|
||||
log.Printf("not enough vram available, falling back to CPU only")
|
||||
library = "cpu"
|
||||
opts.NumGPU = 0
|
||||
break
|
||||
}
|
||||
|
||||
// we don't know which GPU will be used, so estimate
|
||||
// the scratch buffer space on all of them
|
||||
// TODO: allocate less layers to the GPU with the scratch buffer
|
||||
// and more to the others (based on their available memory)
|
||||
available -= requiredAlloc * int64(info.DeviceCount)
|
||||
|
||||
// no offloading required
|
||||
if requiredModel+requiredKv <= available {
|
||||
break
|
||||
}
|
||||
|
||||
// fill remaining vram with layers
|
||||
log.Println("splitting", available, "of available memory bytes into layers")
|
||||
bytesPerLayer := int64((requiredModel + requiredKv) / int64(ggml.NumLayers()))
|
||||
log.Println("bytes per layer:", bytesPerLayer)
|
||||
layers := available / bytesPerLayer
|
||||
log.Println("total required with split:", requiredAlloc+(layers*bytesPerLayer))
|
||||
if layers < int64(opts.NumGPU) {
|
||||
opts.NumGPU = int(layers)
|
||||
}
|
||||
switch runtime.GOOS {
|
||||
case "darwin":
|
||||
if opts.NumGPU == 0 {
|
||||
break
|
||||
}
|
||||
|
||||
if size+kv+graph > vram {
|
||||
log.Println("not enough vram available, falling back to CPU only")
|
||||
opts.NumGPU = 0
|
||||
break
|
||||
}
|
||||
|
||||
opts.NumGPU = 1
|
||||
default:
|
||||
if library == "cpu" || library == "default" {
|
||||
log.Println("GPU not available, falling back to CPU")
|
||||
opts.NumGPU = 0
|
||||
break
|
||||
}
|
||||
|
||||
// don't use GPU at all if no layers are loaded
|
||||
if opts.NumGPU == 0 {
|
||||
library = "cpu"
|
||||
break
|
||||
}
|
||||
|
||||
// user-defined GPU count
|
||||
if opts.NumGPU != -1 {
|
||||
break
|
||||
}
|
||||
|
||||
// the "main" GPU needs the most memory and determines the limit
|
||||
// of how many layers can be loaded. It needs to fit:
|
||||
// 1. the full compute graph allocation for all devices (graph)
|
||||
// 2. the proportional kv cache for all devices (kv * % layers)
|
||||
// 3. the proportional model (size * % layers / # devices)
|
||||
// This estimates the number of layers
|
||||
maxlayers := int64(ggml.NumLayers()) + 1
|
||||
devices := int64(info.DeviceCount)
|
||||
avg := vram / devices
|
||||
layers := maxlayers * (avg - graph) / (kv + size/devices)
|
||||
if layers > maxlayers {
|
||||
layers = maxlayers
|
||||
}
|
||||
|
||||
// 1 + 2 must fit on the main gpu
|
||||
min := graph + kv*layers/maxlayers
|
||||
if layers <= 0 || min > avg {
|
||||
log.Printf("not enough vram available, falling back to CPU only")
|
||||
library = "cpu"
|
||||
opts.NumGPU = 0
|
||||
break
|
||||
}
|
||||
|
||||
opts.NumGPU = int(layers)
|
||||
}
|
||||
|
||||
opts.NumGQA = 0
|
||||
opts.RopeFrequencyBase = 0.0
|
||||
opts.RopeFrequencyScale = 0.0
|
||||
return newLlmServer(library, model, adapters, projectors, opts)
|
||||
|
|
Loading…
Add table
Reference in a new issue