Until ROCm v6.2 ships, we wont be able to get accurate free memory
reporting on windows, which makes automatic concurrency too risky.
Users can still opt-in but will need to pay attention to model sizes otherwise they may thrash/page VRAM or cause OOM crashes.
All other platforms and GPUs have accurate VRAM reporting wired
up now, so we can turn on concurrency by default.
This adjusts our default settings to enable multiple models and parallel
requests to a single model. Users can still override these by the same
env var settings as before. Parallel has a direct impact on
num_ctx, which in turn can have a significant impact on small VRAM GPUs
so this change also refines the algorithm so that when parallel is not
explicitly set by the user, we try to find a reasonable default that fits
the model on their GPU(s). As before, multiple models will only load
concurrently if they fully fit in VRAM.
* API Show Extended
* Initial Draft of Information
Co-Authored-By: Patrick Devine <pdevine@sonic.net>
* Clean Up
* Descriptive arg error messages and other fixes
* Second Draft of Show with Projectors Included
* Remove Chat Template
* Touches
* Prevent wrapping from files
* Verbose functionality
* Docs
* Address Feedback
* Lint
* Resolve Conflicts
* Function Name
* Tests for api/show model info
* Show Test File
* Add Projector Test
* Clean routes
* Projector Check
* Move Show Test
* Touches
* Doc update
---------
Co-authored-by: Patrick Devine <pdevine@sonic.net>
While models are loading, the VRAM metrics are dynamic, so try
to load on a GPU that doesn't have a model actively loading, or wait
to avoid races that lead to OOMs
Our default behavior today is to try to fit into a single GPU if possible.
Some users would prefer the old behavior of always spreading across
multiple GPUs even if the model can fit into one. This exposes that
tunable behavior.
Still not complete, needs some refinement to our prediction to understand the
discrete GPUs available space so we can see how many layers fit in each one
since we can't split one layer across multiple GPUs we can't treat free space
as one logical block
multiple templates may appear in a model if a model is created from
another model that 1) has an autodetected template and 2) defines a
custom template
* Fixed the API endpoint /api/tags to return {models: []} instead of {models: null} when the model list is empty.
* Update server/routes.go
---------
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
* rename `--quantization` to `--quantize`
* backwards
* Update api/types.go
Co-authored-by: Michael Yang <mxyng@pm.me>
---------
Co-authored-by: Michael Yang <mxyng@pm.me>
The GPU drivers take a while to update their free memory reporting, so we need
to wait until the values converge with what we're expecting before proceeding
to start another runner in order to get an accurate picture.
* Add preflight OPTIONS handling and update CORS config
- Implement early return with HTTP 204 (No Content) for OPTIONS requests in allowedHostsMiddleware to optimize preflight handling.
- Extend CORS configuration to explicitly allow 'Authorization' headers and 'OPTIONS' method when OLLAMA_ORIGINS environment variable is set.
* allow auth, content-type, and user-agent headers
* Update routes.go
This moves all the env var reading into one central module
and logs the loaded config once at startup which should
help in troubleshooting user server logs
- return descriptive error messages when unauthorized to create blob or push a model
- display the local public key associated with the request that was denied
Prior refactoring passes accidentally removed the logic to bypass VRAM
checks for CPU loads. This adds that back, along with test coverage.
This also fixes loaded map access in the unit test to be behind the mutex which was
likely the cause of various flakes in the tests.
This change adds support for multiple concurrent requests, as well as
loading multiple models by spawning multiple runners. The default
settings are currently set at 1 concurrent request per model and only 1
loaded model at a time, but these can be adjusted by setting
OLLAMA_NUM_PARALLEL and OLLAMA_MAX_LOADED_MODELS.
This is a quick fix to help users who are stuck on the "pull" step at
99%.
In the near future we're introducing a new registry client that
should/will hopefully be smarter. In the meantime, this should unblock
the users hitting issue #1736.
This should resolve a number of memory leak and stability defects by allowing
us to isolate llama.cpp in a separate process and shutdown when idle, and
gracefully restart if it has problems. This also serves as a first step to be
able to run multiple copies to support multiple models concurrently.
The recent ROCm change partially removed idempotent
payloads, but the ggml-metal.metal file for mac was still
idempotent. This finishes switching to always extract
the payloads, and now that idempotentcy is gone, the
version directory is no longer useful.
This refines where we extract the LLM libraries to by adding a new
OLLAMA_HOME env var, that defaults to `~/.ollama` The logic was already
idempotenent, so this should speed up startups after the first time a
new release is deployed. It also cleans up after itself.
We now build only a single ROCm version (latest major) on both windows
and linux. Given the large size of ROCms tensor files, we split the
dependency out. It's bundled into the installer on windows, and a
separate download on windows. The linux install script is now smart and
detects the presence of AMD GPUs and looks to see if rocm v6 is already
present, and if not, then downloads our dependency tar file.
For Linux discovery, we now use sysfs and check each GPU against what
ROCm supports so we can degrade to CPU gracefully instead of having
llama.cpp+rocm assert/crash on us. For Windows, we now use go's windows
dynamic library loading logic to access the amdhip64.dll APIs to query
the GPU information.