llama.cpp/llama_cpp/llama.py

642 lines
22 KiB
Python
Raw Normal View History

2023-03-24 19:47:17 +00:00
import os
2023-03-23 09:33:06 +00:00
import uuid
import time
import multiprocessing
from typing import List, Optional, Union, Generator, Sequence, Iterator
from collections import deque
2023-03-23 09:33:06 +00:00
from . import llama_cpp
2023-04-01 17:01:27 +00:00
from .llama_types import *
2023-03-23 09:33:06 +00:00
2023-03-24 18:35:41 +00:00
2023-03-23 09:33:06 +00:00
class Llama:
2023-03-24 22:57:59 +00:00
"""High-level Python wrapper for a llama.cpp model."""
2023-03-23 09:33:06 +00:00
def __init__(
self,
model_path: str,
2023-04-01 17:01:27 +00:00
# NOTE: These parameters are likely to change in the future.
2023-03-23 09:33:06 +00:00
n_ctx: int = 512,
n_parts: int = -1,
seed: int = 1337,
f16_kv: bool = False,
logits_all: bool = False,
vocab_only: bool = False,
2023-03-25 20:26:23 +00:00
use_mlock: bool = False,
embedding: bool = False,
2023-03-23 09:33:06 +00:00
n_threads: Optional[int] = None,
2023-04-01 17:01:27 +00:00
n_batch: int = 8,
last_n_tokens_size: int = 64,
):
2023-03-24 22:57:59 +00:00
"""Load a llama.cpp model from `model_path`.
Args:
2023-03-25 16:33:18 +00:00
model_path: Path to the model.
n_ctx: Maximum context size.
2023-03-24 22:57:59 +00:00
n_parts: Number of parts to split the model into. If -1, the number of parts is automatically determined.
2023-03-25 16:33:18 +00:00
seed: Random seed. 0 for random.
f16_kv: Use half-precision for key/value cache.
logits_all: Return logits for all tokens, not just the last token.
vocab_only: Only load the vocabulary no weights.
2023-03-25 20:26:23 +00:00
use_mlock: Force the system to keep the model in RAM.
embedding: Embedding mode only.
2023-03-24 22:57:59 +00:00
n_threads: Number of threads to use. If None, the number of threads is automatically determined.
2023-04-01 17:01:27 +00:00
n_batch: Maximum number of prompt tokens to batch together when calling llama_eval.
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
2023-03-24 22:57:59 +00:00
Raises:
ValueError: If the model path does not exist.
Returns:
A Llama instance.
"""
2023-03-23 09:33:06 +00:00
self.model_path = model_path
self.params = llama_cpp.llama_context_default_params()
self.params.n_ctx = n_ctx
self.params.n_parts = n_parts
self.params.seed = seed
self.params.f16_kv = f16_kv
self.params.logits_all = logits_all
self.params.vocab_only = vocab_only
2023-03-25 20:26:23 +00:00
self.params.use_mlock = use_mlock
self.params.embedding = embedding
2023-03-23 09:33:06 +00:00
2023-04-01 17:01:27 +00:00
self.last_n_tokens_size = last_n_tokens_size
self.last_n_tokens_data = deque(
[llama_cpp.llama_token(0)] * self.last_n_tokens_size,
maxlen=self.last_n_tokens_size,
)
self.tokens_consumed = 0
2023-04-01 17:01:27 +00:00
self.n_batch = n_batch
2023-03-23 09:33:06 +00:00
self.n_threads = n_threads or multiprocessing.cpu_count()
2023-03-23 09:33:06 +00:00
2023-03-24 19:47:17 +00:00
if not os.path.exists(model_path):
raise ValueError(f"Model path does not exist: {model_path}")
2023-03-23 09:33:06 +00:00
self.ctx = llama_cpp.llama_init_from_file(
self.model_path.encode("utf-8"), self.params
)
2023-04-01 17:01:27 +00:00
def tokenize(self, text: bytes) -> List[llama_cpp.llama_token]:
"""Tokenize a string.
Args:
text: The utf-8 encoded string to tokenize.
2023-04-01 17:01:27 +00:00
Raises:
RuntimeError: If the tokenization failed.
Returns:
A list of tokens.
"""
2023-04-01 17:01:27 +00:00
assert self.ctx is not None
n_ctx = llama_cpp.llama_n_ctx(self.ctx)
2023-04-01 17:01:27 +00:00
tokens = (llama_cpp.llama_token * int(n_ctx))()
n_tokens = llama_cpp.llama_tokenize(
self.ctx,
text,
tokens,
n_ctx,
2023-04-01 17:01:27 +00:00
llama_cpp.c_bool(True),
)
2023-04-01 17:01:27 +00:00
if int(n_tokens) < 0:
raise RuntimeError(f'Failed to tokenize: text="{text}" n_tokens={n_tokens}')
return list(tokens[:n_tokens])
2023-04-01 17:01:27 +00:00
def detokenize(self, tokens: List[llama_cpp.llama_token]) -> bytes:
"""Detokenize a list of tokens.
Args:
tokens: The list of tokens to detokenize.
Returns:
The detokenized string.
"""
2023-04-01 17:01:27 +00:00
assert self.ctx is not None
output = b""
for token in tokens:
output += llama_cpp.llama_token_to_str(self.ctx, token)
return output
def reset(self):
"""Reset the model state."""
self.last_n_tokens_data.extend(
[llama_cpp.llama_token(0)] * self.last_n_tokens_size
)
self.tokens_consumed = 0
def eval(self, tokens: Sequence[llama_cpp.llama_token]):
"""Evaluate a list of tokens.
Args:
tokens: The list of tokens to evaluate.
"""
assert self.ctx is not None
n_ctx = int(llama_cpp.llama_n_ctx(self.ctx))
for i in range(0, len(tokens), self.n_batch):
batch = tokens[i : min(len(tokens), i + self.n_batch)]
n_past = min(n_ctx - len(batch), self.tokens_consumed)
return_code = llama_cpp.llama_eval(
ctx=self.ctx,
tokens=(llama_cpp.llama_token * len(batch))(*batch),
n_tokens=llama_cpp.c_int(len(batch)),
n_past=llama_cpp.c_int(n_past),
n_threads=llama_cpp.c_int(self.n_threads),
)
if int(return_code) != 0:
raise RuntimeError(f"llama_eval returned {return_code}")
self.last_n_tokens_data.extend(batch)
self.tokens_consumed += len(batch)
def sample(
self,
top_k: int,
top_p: float,
temp: float,
repeat_penalty: float,
):
"""Sample a token from the model.
Args:
top_k: The top-k sampling parameter.
top_p: The top-p sampling parameter.
temp: The temperature parameter.
repeat_penalty: The repeat penalty parameter.
Returns:
The sampled token.
"""
assert self.ctx is not None
2023-04-02 04:06:34 +00:00
# Temporary workaround for https://github.com/ggerganov/llama.cpp/issues/684
if temp == 0.0:
temp = 1.0
top_p = 0.0
top_k = 1
return llama_cpp.llama_sample_top_p_top_k(
ctx=self.ctx,
last_n_tokens_data=(llama_cpp.llama_token * self.last_n_tokens_size)(
*self.last_n_tokens_data
),
last_n_tokens_size=llama_cpp.c_int(self.last_n_tokens_size),
top_k=llama_cpp.c_int(top_k),
top_p=llama_cpp.c_float(top_p),
temp=llama_cpp.c_float(temp),
repeat_penalty=llama_cpp.c_float(repeat_penalty),
)
2023-04-01 17:01:27 +00:00
def generate(
self,
tokens: Sequence[llama_cpp.llama_token],
top_k: int,
top_p: float,
temp: float,
repeat_penalty: float,
) -> Generator[
llama_cpp.llama_token, Optional[Sequence[llama_cpp.llama_token]], None
]:
"""Create a generator of tokens from a prompt.
2023-04-01 21:36:30 +00:00
2023-04-01 21:39:35 +00:00
Examples:
>>> llama = Llama("models/ggml-7b.bin")
>>> tokens = llama.tokenize(b"Hello, world!")
>>> for token in llama.generate(tokens, top_k=40, top_p=0.95, temp=1.0, repeat_penalty=1.1):
... print(llama.detokenize([token]))
2023-04-01 21:36:30 +00:00
Args:
tokens: The prompt tokens.
top_k: The top-k sampling parameter.
top_p: The top-p sampling parameter.
temp: The temperature parameter.
repeat_penalty: The repeat penalty parameter.
Yields:
The generated tokens.
"""
2023-04-01 17:01:27 +00:00
assert self.ctx is not None
self.reset()
2023-04-01 17:01:27 +00:00
while True:
self.eval(tokens)
token = self.sample(
top_k=top_k,
top_p=top_p,
temp=temp,
repeat_penalty=repeat_penalty,
2023-04-01 17:01:27 +00:00
)
tokens_or_none = yield token
tokens = [token]
if tokens_or_none is not None:
tokens.extend(tokens_or_none)
def create_embedding(self, input: str) -> Embedding:
"""Embed a string.
Args:
2023-04-01 17:01:27 +00:00
input: The utf-8 encoded string to embed.
Returns:
2023-04-01 17:01:27 +00:00
An embedding object.
"""
2023-04-01 17:01:27 +00:00
assert self.ctx is not None
tokens = self.tokenize(input.encode("utf-8"))
self.reset()
self.eval(tokens)
2023-04-01 17:01:27 +00:00
n_tokens = len(tokens)
embedding = llama_cpp.llama_get_embeddings(self.ctx)[
: llama_cpp.llama_n_embd(self.ctx)
]
return {
"object": "list",
"data": [
{
"object": "embedding",
"embedding": embedding,
"index": 0,
}
],
"model": self.model_path,
"usage": {
"prompt_tokens": n_tokens,
"total_tokens": n_tokens,
},
}
2023-03-28 06:42:22 +00:00
2023-04-03 22:46:19 +00:00
def embed(self, input: str) -> List[float]:
"""Embed a string.
Args:
input: The utf-8 encoded string to embed.
Returns:
A list of embeddings
"""
return list(map(float, self.create_embedding(input)["data"][0]["embedding"]))
2023-04-01 17:01:27 +00:00
def _create_completion(
2023-03-23 09:33:06 +00:00
self,
prompt: str,
suffix: Optional[str] = None,
max_tokens: int = 16,
temperature: float = 0.8,
top_p: float = 0.95,
2023-03-23 19:51:05 +00:00
logprobs: Optional[int] = None,
2023-03-23 09:33:06 +00:00
echo: bool = False,
stop: List[str] = [],
repeat_penalty: float = 1.1,
top_k: int = 40,
stream: bool = False,
) -> Union[Iterator[Completion], Iterator[CompletionChunk],]:
2023-04-01 17:01:27 +00:00
assert self.ctx is not None
2023-03-28 06:42:22 +00:00
completion_id = f"cmpl-{str(uuid.uuid4())}"
created = int(time.time())
2023-04-01 17:01:27 +00:00
completion_tokens: List[llama_cpp.llama_token] = []
# Add blank space to start of prompt to match OG llama tokenizer
prompt_tokens = self.tokenize(b" " + prompt.encode("utf-8"))
text = b""
returned_characters = 0
2023-03-23 09:33:06 +00:00
2023-04-01 17:01:27 +00:00
if len(prompt_tokens) + max_tokens > int(llama_cpp.llama_n_ctx(self.ctx)):
2023-03-23 09:33:06 +00:00
raise ValueError(
f"Requested tokens exceed context window of {llama_cpp.llama_n_ctx(self.ctx)}"
2023-03-23 09:33:06 +00:00
)
2023-04-01 17:01:27 +00:00
if stop != []:
stop_sequences = [s.encode("utf-8") for s in stop]
2023-04-01 17:01:27 +00:00
else:
stop_sequences = []
2023-03-28 06:42:22 +00:00
finish_reason = None
2023-04-01 17:01:27 +00:00
for token in self.generate(
prompt_tokens,
top_k=top_k,
top_p=top_p,
temp=temperature,
repeat_penalty=repeat_penalty,
):
2023-03-23 09:33:06 +00:00
if token == llama_cpp.llama_token_eos():
text = self.detokenize(completion_tokens)
2023-03-23 09:33:06 +00:00
finish_reason = "stop"
break
completion_tokens.append(token)
2023-03-23 09:33:06 +00:00
all_text = self.detokenize(completion_tokens)
any_stop = [s for s in stop_sequences if s in all_text]
2023-03-23 09:33:06 +00:00
if len(any_stop) > 0:
first_stop = any_stop[0]
text = all_text[: all_text.index(first_stop)]
2023-03-23 09:33:06 +00:00
finish_reason = "stop"
break
if stream:
start = returned_characters
longest = 0
# We want to avoid yielding any characters from
# the generated text if they are part of a stop
# sequence.
for s in stop_sequences:
for i in range(len(s), 0, -1):
if all_text.endswith(s[:i]):
if i > longest:
longest = i
break
text = all_text[: len(all_text) - longest]
returned_characters += len(text[start:])
yield {
"id": completion_id,
"object": "text_completion",
"created": created,
"model": self.model_path,
"choices": [
{
2023-04-03 22:46:19 +00:00
"text": text[start:].decode("utf-8"),
"index": 0,
"logprobs": None,
"finish_reason": None,
}
],
}
if len(completion_tokens) >= max_tokens:
text = self.detokenize(completion_tokens)
finish_reason = "length"
break
2023-03-28 06:42:22 +00:00
if finish_reason is None:
finish_reason = "length"
2023-03-23 09:33:06 +00:00
if stream:
yield {
"id": completion_id,
"object": "text_completion",
"created": created,
"model": self.model_path,
"choices": [
{
"text": text[returned_characters:].decode("utf-8"),
"index": 0,
"logprobs": None,
"finish_reason": finish_reason,
}
],
}
return
text = text.decode("utf-8")
2023-03-23 09:33:06 +00:00
if echo:
text = prompt + text
if suffix is not None:
text = text + suffix
2023-03-23 19:51:05 +00:00
if logprobs is not None:
2023-04-01 17:01:27 +00:00
raise NotImplementedError("logprobs not implemented")
2023-03-23 19:51:05 +00:00
yield {
2023-03-28 06:42:22 +00:00
"id": completion_id,
2023-03-23 09:33:06 +00:00
"object": "text_completion",
2023-03-28 06:42:22 +00:00
"created": created,
2023-03-24 08:04:29 +00:00
"model": self.model_path,
2023-03-23 09:33:06 +00:00
"choices": [
{
"text": text,
"index": 0,
2023-04-01 17:01:27 +00:00
"logprobs": None,
2023-03-23 09:33:06 +00:00
"finish_reason": finish_reason,
}
],
"usage": {
"prompt_tokens": len(prompt_tokens),
"completion_tokens": len(completion_tokens),
"total_tokens": len(prompt_tokens) + len(completion_tokens),
2023-03-23 09:33:06 +00:00
},
}
2023-04-01 17:01:27 +00:00
def create_completion(
self,
prompt: str,
suffix: Optional[str] = None,
max_tokens: int = 128,
temperature: float = 0.8,
top_p: float = 0.95,
logprobs: Optional[int] = None,
echo: bool = False,
stop: List[str] = [],
repeat_penalty: float = 1.1,
top_k: int = 40,
stream: bool = False,
) -> Union[Completion, Iterator[CompletionChunk]]:
2023-04-01 17:01:27 +00:00
"""Generate text from a prompt.
Args:
prompt: The prompt to generate text from.
suffix: A suffix to append to the generated text. If None, no suffix is appended.
max_tokens: The maximum number of tokens to generate.
temperature: The temperature to use for sampling.
top_p: The top-p value to use for sampling.
logprobs: The number of logprobs to return. If None, no logprobs are returned.
echo: Whether to echo the prompt.
stop: A list of strings to stop generation when encountered.
repeat_penalty: The penalty to apply to repeated tokens.
top_k: The top-k value to use for sampling.
stream: Whether to stream the results.
Raises:
ValueError: If the requested tokens exceed the context window.
RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.
Returns:
Response object containing the generated text.
"""
completion_or_chunks = self._create_completion(
prompt=prompt,
suffix=suffix,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
logprobs=logprobs,
echo=echo,
stop=stop,
repeat_penalty=repeat_penalty,
top_k=top_k,
stream=stream,
)
if stream:
chunks: Iterator[CompletionChunk] = completion_or_chunks
2023-04-01 17:01:27 +00:00
return chunks
completion: Completion = next(completion_or_chunks) # type: ignore
return completion
def __call__(
self,
prompt: str,
suffix: Optional[str] = None,
2023-04-01 17:01:27 +00:00
max_tokens: int = 128,
temperature: float = 0.8,
top_p: float = 0.95,
logprobs: Optional[int] = None,
echo: bool = False,
stop: List[str] = [],
repeat_penalty: float = 1.1,
top_k: int = 40,
stream: bool = False,
) -> Union[Completion, Iterator[CompletionChunk]]:
"""Generate text from a prompt.
Args:
prompt: The prompt to generate text from.
suffix: A suffix to append to the generated text. If None, no suffix is appended.
max_tokens: The maximum number of tokens to generate.
temperature: The temperature to use for sampling.
top_p: The top-p value to use for sampling.
logprobs: The number of logprobs to return. If None, no logprobs are returned.
echo: Whether to echo the prompt.
stop: A list of strings to stop generation when encountered.
repeat_penalty: The penalty to apply to repeated tokens.
top_k: The top-k value to use for sampling.
stream: Whether to stream the results.
Raises:
ValueError: If the requested tokens exceed the context window.
RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.
Returns:
Response object containing the generated text.
"""
2023-04-01 17:01:27 +00:00
return self.create_completion(
prompt=prompt,
suffix=suffix,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
logprobs=logprobs,
echo=echo,
stop=stop,
repeat_penalty=repeat_penalty,
top_k=top_k,
stream=stream,
)
2023-04-04 00:12:44 +00:00
def _convert_text_completion_to_chat(
self, completion: Completion
) -> ChatCompletion:
return {
"id": "chat" + completion["id"],
"object": "chat.completion",
"created": completion["created"],
"model": completion["model"],
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": completion["choices"][0]["text"],
},
"finish_reason": completion["choices"][0]["finish_reason"],
}
],
"usage": completion["usage"],
}
def _convert_text_completion_chunks_to_chat(
self,
chunks: Iterator[CompletionChunk],
) -> Iterator[ChatCompletionChunk]:
for i, chunk in enumerate(chunks):
if i == 0:
yield {
"id": "chat" + chunk["id"],
"model": chunk["model"],
"created": chunk["created"],
"object": "chat.completion.chunk",
"choices": [
{
"index": 0,
"delta": {
"role": "assistant",
},
"finish_reason": None,
}
],
}
yield {
"id": "chat" + chunk["id"],
"model": chunk["model"],
"created": chunk["created"],
"object": "chat.completion.chunk",
"choices": [
{
"index": 0,
"delta": {
"content": chunk["choices"][0]["text"],
},
"finish_reason": chunk["choices"][0]["finish_reason"],
}
],
}
def create_chat_completion(
self,
messages: List[ChatCompletionMessage],
temperature: float = 0.8,
top_p: float = 0.95,
top_k: int = 40,
stream: bool = False,
stop: List[str] = [],
max_tokens: int = 128,
repeat_penalty: float = 1.1,
) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]:
"""Generate a chat completion from a list of messages.
Args:
messages: A list of messages to generate a response for.
temperature: The temperature to use for sampling.
top_p: The top-p value to use for sampling.
top_k: The top-k value to use for sampling.
stream: Whether to stream the results.
stop: A list of strings to stop generation when encountered.
max_tokens: The maximum number of tokens to generate.
repeat_penalty: The penalty to apply to repeated tokens.
Returns:
Generated chat completion or a stream of chat completion chunks.
"""
2023-04-04 00:12:44 +00:00
instructions = """Complete the following chat conversation between the user and the assistant. System messages should be strictly followed as additional instructions."""
chat_history = "\n".join(
f'{message["role"]} {message.get("user", "")}: {message["content"]}'
for message in messages
)
PROMPT = f" \n\n### Instructions:{instructions}\n\n### Inputs:{chat_history}\n\n### Response:\nassistant: "
PROMPT_STOP = ["###", "\nuser: ", "\nassistant: ", "\nsystem: "]
completion_or_chunks = self(
prompt=PROMPT,
stop=PROMPT_STOP + stop,
temperature=temperature,
top_p=top_p,
top_k=top_k,
stream=stream,
max_tokens=max_tokens,
repeat_penalty=repeat_penalty,
)
if stream:
chunks: Iterator[CompletionChunk] = completion_or_chunks # type: ignore
return self._convert_text_completion_chunks_to_chat(chunks)
else:
completion: Completion = completion_or_chunks # type: ignore
return self._convert_text_completion_to_chat(completion)
2023-03-23 09:33:06 +00:00
def __del__(self):
2023-04-01 17:01:27 +00:00
if self.ctx is not None:
llama_cpp.llama_free(self.ctx)
self.ctx = None
@staticmethod
def token_eos() -> llama_cpp.llama_token:
"""Return the end-of-sequence token."""
return llama_cpp.llama_token_eos()
@staticmethod
def token_bos() -> llama_cpp.llama_token:
"""Return the beginning-of-sequence token."""
return llama_cpp.llama_token_bos()