import os import uuid import time import multiprocessing from typing import List, Optional, Union, Generator, Sequence, Iterator from collections import deque from . import llama_cpp from .llama_types import * class Llama: """High-level Python wrapper for a llama.cpp model.""" def __init__( self, model_path: str, # NOTE: These parameters are likely to change in the future. n_ctx: int = 512, n_parts: int = -1, seed: int = 1337, f16_kv: bool = False, logits_all: bool = False, vocab_only: bool = False, use_mlock: bool = False, embedding: bool = False, n_threads: Optional[int] = None, n_batch: int = 8, last_n_tokens_size: int = 64, ): """Load a llama.cpp model from `model_path`. Args: model_path: Path to the model. n_ctx: Maximum context size. n_parts: Number of parts to split the model into. If -1, the number of parts is automatically determined. seed: Random seed. 0 for random. f16_kv: Use half-precision for key/value cache. logits_all: Return logits for all tokens, not just the last token. vocab_only: Only load the vocabulary no weights. use_mlock: Force the system to keep the model in RAM. embedding: Embedding mode only. n_threads: Number of threads to use. If None, the number of threads is automatically determined. n_batch: Maximum number of prompt tokens to batch together when calling llama_eval. last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque. Raises: ValueError: If the model path does not exist. Returns: A Llama instance. """ self.model_path = model_path self.params = llama_cpp.llama_context_default_params() self.params.n_ctx = n_ctx self.params.n_parts = n_parts self.params.seed = seed self.params.f16_kv = f16_kv self.params.logits_all = logits_all self.params.vocab_only = vocab_only self.params.use_mlock = use_mlock self.params.embedding = embedding self.last_n_tokens_size = last_n_tokens_size self.last_n_tokens_data = deque( [llama_cpp.llama_token(0)] * self.last_n_tokens_size, maxlen=self.last_n_tokens_size, ) self.tokens_consumed = 0 self.n_batch = n_batch self.n_threads = n_threads or multiprocessing.cpu_count() if not os.path.exists(model_path): raise ValueError(f"Model path does not exist: {model_path}") self.ctx = llama_cpp.llama_init_from_file( self.model_path.encode("utf-8"), self.params ) def tokenize(self, text: bytes) -> List[llama_cpp.llama_token]: """Tokenize a string. Args: text: The utf-8 encoded string to tokenize. Raises: RuntimeError: If the tokenization failed. Returns: A list of tokens. """ assert self.ctx is not None n_ctx = llama_cpp.llama_n_ctx(self.ctx) tokens = (llama_cpp.llama_token * int(n_ctx))() n_tokens = llama_cpp.llama_tokenize( self.ctx, text, tokens, n_ctx, llama_cpp.c_bool(True), ) if int(n_tokens) < 0: raise RuntimeError(f'Failed to tokenize: text="{text}" n_tokens={n_tokens}') return list(tokens[:n_tokens]) def detokenize(self, tokens: List[llama_cpp.llama_token]) -> bytes: """Detokenize a list of tokens. Args: tokens: The list of tokens to detokenize. Returns: The detokenized string. """ assert self.ctx is not None output = b"" for token in tokens: output += llama_cpp.llama_token_to_str(self.ctx, token) return output def reset(self): """Reset the model state.""" self.last_n_tokens_data.extend( [llama_cpp.llama_token(0)] * self.last_n_tokens_size ) self.tokens_consumed = 0 def eval(self, tokens: Sequence[llama_cpp.llama_token]): """Evaluate a list of tokens. Args: tokens: The list of tokens to evaluate. """ assert self.ctx is not None n_ctx = int(llama_cpp.llama_n_ctx(self.ctx)) for i in range(0, len(tokens), self.n_batch): batch = tokens[i : min(len(tokens), i + self.n_batch)] n_past = min(n_ctx - len(batch), self.tokens_consumed) return_code = llama_cpp.llama_eval( ctx=self.ctx, tokens=(llama_cpp.llama_token * len(batch))(*batch), n_tokens=llama_cpp.c_int(len(batch)), n_past=llama_cpp.c_int(n_past), n_threads=llama_cpp.c_int(self.n_threads), ) if int(return_code) != 0: raise RuntimeError(f"llama_eval returned {return_code}") self.last_n_tokens_data.extend(batch) self.tokens_consumed += len(batch) def sample( self, top_k: int, top_p: float, temp: float, repeat_penalty: float, ): """Sample a token from the model. Args: top_k: The top-k sampling parameter. top_p: The top-p sampling parameter. temp: The temperature parameter. repeat_penalty: The repeat penalty parameter. Returns: The sampled token. """ assert self.ctx is not None # Temporary workaround for https://github.com/ggerganov/llama.cpp/issues/684 if temp == 0.0: temp = 1.0 top_p = 0.0 top_k = 1 return llama_cpp.llama_sample_top_p_top_k( ctx=self.ctx, last_n_tokens_data=(llama_cpp.llama_token * self.last_n_tokens_size)( *self.last_n_tokens_data ), last_n_tokens_size=llama_cpp.c_int(self.last_n_tokens_size), top_k=llama_cpp.c_int(top_k), top_p=llama_cpp.c_float(top_p), temp=llama_cpp.c_float(temp), repeat_penalty=llama_cpp.c_float(repeat_penalty), ) def generate( self, tokens: Sequence[llama_cpp.llama_token], top_k: int, top_p: float, temp: float, repeat_penalty: float, ) -> Generator[ llama_cpp.llama_token, Optional[Sequence[llama_cpp.llama_token]], None ]: """Create a generator of tokens from a prompt. Examples: >>> llama = Llama("models/ggml-7b.bin") >>> tokens = llama.tokenize(b"Hello, world!") >>> for token in llama.generate(tokens, top_k=40, top_p=0.95, temp=1.0, repeat_penalty=1.1): ... print(llama.detokenize([token])) Args: tokens: The prompt tokens. top_k: The top-k sampling parameter. top_p: The top-p sampling parameter. temp: The temperature parameter. repeat_penalty: The repeat penalty parameter. Yields: The generated tokens. """ assert self.ctx is not None self.reset() while True: self.eval(tokens) token = self.sample( top_k=top_k, top_p=top_p, temp=temp, repeat_penalty=repeat_penalty, ) tokens_or_none = yield token tokens = [token] if tokens_or_none is not None: tokens.extend(tokens_or_none) def create_embedding(self, input: str) -> Embedding: """Embed a string. Args: input: The utf-8 encoded string to embed. Returns: An embedding object. """ assert self.ctx is not None tokens = self.tokenize(input.encode("utf-8")) self.reset() self.eval(tokens) n_tokens = len(tokens) embedding = llama_cpp.llama_get_embeddings(self.ctx)[ : llama_cpp.llama_n_embd(self.ctx) ] return { "object": "list", "data": [ { "object": "embedding", "embedding": embedding, "index": 0, } ], "model": self.model_path, "usage": { "prompt_tokens": n_tokens, "total_tokens": n_tokens, }, } def embed(self, input: str) -> List[float]: """Embed a string. Args: input: The utf-8 encoded string to embed. Returns: A list of embeddings """ return list(map(float, self.create_embedding(input)["data"][0]["embedding"])) def _create_completion( self, prompt: str, suffix: Optional[str] = None, max_tokens: int = 16, temperature: float = 0.8, top_p: float = 0.95, logprobs: Optional[int] = None, echo: bool = False, stop: List[str] = [], repeat_penalty: float = 1.1, top_k: int = 40, stream: bool = False, ) -> Union[Iterator[Completion], Iterator[CompletionChunk],]: assert self.ctx is not None completion_id = f"cmpl-{str(uuid.uuid4())}" created = int(time.time()) completion_tokens: List[llama_cpp.llama_token] = [] # Add blank space to start of prompt to match OG llama tokenizer prompt_tokens = self.tokenize(b" " + prompt.encode("utf-8")) text = b"" returned_characters = 0 if len(prompt_tokens) + max_tokens > int(llama_cpp.llama_n_ctx(self.ctx)): raise ValueError( f"Requested tokens exceed context window of {llama_cpp.llama_n_ctx(self.ctx)}" ) if stop != []: stop_sequences = [s.encode("utf-8") for s in stop] else: stop_sequences = [] finish_reason = None for token in self.generate( prompt_tokens, top_k=top_k, top_p=top_p, temp=temperature, repeat_penalty=repeat_penalty, ): if token == llama_cpp.llama_token_eos(): text = self.detokenize(completion_tokens) finish_reason = "stop" break completion_tokens.append(token) all_text = self.detokenize(completion_tokens) any_stop = [s for s in stop_sequences if s in all_text] if len(any_stop) > 0: first_stop = any_stop[0] text = all_text[: all_text.index(first_stop)] finish_reason = "stop" break if stream: start = returned_characters longest = 0 # We want to avoid yielding any characters from # the generated text if they are part of a stop # sequence. for s in stop_sequences: for i in range(len(s), 0, -1): if all_text.endswith(s[:i]): if i > longest: longest = i break text = all_text[: len(all_text) - longest] returned_characters += len(text[start:]) yield { "id": completion_id, "object": "text_completion", "created": created, "model": self.model_path, "choices": [ { "text": text[start:].decode("utf-8"), "index": 0, "logprobs": None, "finish_reason": None, } ], } if len(completion_tokens) >= max_tokens: text = self.detokenize(completion_tokens) finish_reason = "length" break if finish_reason is None: finish_reason = "length" if stream: yield { "id": completion_id, "object": "text_completion", "created": created, "model": self.model_path, "choices": [ { "text": text[returned_characters:].decode("utf-8"), "index": 0, "logprobs": None, "finish_reason": finish_reason, } ], } return text = text.decode("utf-8") if echo: text = prompt + text if suffix is not None: text = text + suffix if logprobs is not None: raise NotImplementedError("logprobs not implemented") yield { "id": completion_id, "object": "text_completion", "created": created, "model": self.model_path, "choices": [ { "text": text, "index": 0, "logprobs": None, "finish_reason": finish_reason, } ], "usage": { "prompt_tokens": len(prompt_tokens), "completion_tokens": len(completion_tokens), "total_tokens": len(prompt_tokens) + len(completion_tokens), }, } def create_completion( self, prompt: str, suffix: Optional[str] = None, max_tokens: int = 128, temperature: float = 0.8, top_p: float = 0.95, logprobs: Optional[int] = None, echo: bool = False, stop: List[str] = [], repeat_penalty: float = 1.1, top_k: int = 40, stream: bool = False, ) -> Union[Completion, Iterator[CompletionChunk]]: """Generate text from a prompt. Args: prompt: The prompt to generate text from. suffix: A suffix to append to the generated text. If None, no suffix is appended. max_tokens: The maximum number of tokens to generate. temperature: The temperature to use for sampling. top_p: The top-p value to use for sampling. logprobs: The number of logprobs to return. If None, no logprobs are returned. echo: Whether to echo the prompt. stop: A list of strings to stop generation when encountered. repeat_penalty: The penalty to apply to repeated tokens. top_k: The top-k value to use for sampling. stream: Whether to stream the results. Raises: ValueError: If the requested tokens exceed the context window. RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt. Returns: Response object containing the generated text. """ completion_or_chunks = self._create_completion( prompt=prompt, suffix=suffix, max_tokens=max_tokens, temperature=temperature, top_p=top_p, logprobs=logprobs, echo=echo, stop=stop, repeat_penalty=repeat_penalty, top_k=top_k, stream=stream, ) if stream: chunks: Iterator[CompletionChunk] = completion_or_chunks return chunks completion: Completion = next(completion_or_chunks) # type: ignore return completion def __call__( self, prompt: str, suffix: Optional[str] = None, max_tokens: int = 128, temperature: float = 0.8, top_p: float = 0.95, logprobs: Optional[int] = None, echo: bool = False, stop: List[str] = [], repeat_penalty: float = 1.1, top_k: int = 40, stream: bool = False, ) -> Union[Completion, Iterator[CompletionChunk]]: """Generate text from a prompt. Args: prompt: The prompt to generate text from. suffix: A suffix to append to the generated text. If None, no suffix is appended. max_tokens: The maximum number of tokens to generate. temperature: The temperature to use for sampling. top_p: The top-p value to use for sampling. logprobs: The number of logprobs to return. If None, no logprobs are returned. echo: Whether to echo the prompt. stop: A list of strings to stop generation when encountered. repeat_penalty: The penalty to apply to repeated tokens. top_k: The top-k value to use for sampling. stream: Whether to stream the results. Raises: ValueError: If the requested tokens exceed the context window. RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt. Returns: Response object containing the generated text. """ return self.create_completion( prompt=prompt, suffix=suffix, max_tokens=max_tokens, temperature=temperature, top_p=top_p, logprobs=logprobs, echo=echo, stop=stop, repeat_penalty=repeat_penalty, top_k=top_k, stream=stream, ) def _convert_text_completion_to_chat( self, completion: Completion ) -> ChatCompletion: return { "id": "chat" + completion["id"], "object": "chat.completion", "created": completion["created"], "model": completion["model"], "choices": [ { "index": 0, "message": { "role": "assistant", "content": completion["choices"][0]["text"], }, "finish_reason": completion["choices"][0]["finish_reason"], } ], "usage": completion["usage"], } def _convert_text_completion_chunks_to_chat( self, chunks: Iterator[CompletionChunk], ) -> Iterator[ChatCompletionChunk]: for i, chunk in enumerate(chunks): if i == 0: yield { "id": "chat" + chunk["id"], "model": chunk["model"], "created": chunk["created"], "object": "chat.completion.chunk", "choices": [ { "index": 0, "delta": { "role": "assistant", }, "finish_reason": None, } ], } yield { "id": "chat" + chunk["id"], "model": chunk["model"], "created": chunk["created"], "object": "chat.completion.chunk", "choices": [ { "index": 0, "delta": { "content": chunk["choices"][0]["text"], }, "finish_reason": chunk["choices"][0]["finish_reason"], } ], } def create_chat_completion( self, messages: List[ChatCompletionMessage], temperature: float = 0.8, top_p: float = 0.95, top_k: int = 40, stream: bool = False, stop: List[str] = [], max_tokens: int = 128, repeat_penalty: float = 1.1, ) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]: """Generate a chat completion from a list of messages. Args: messages: A list of messages to generate a response for. temperature: The temperature to use for sampling. top_p: The top-p value to use for sampling. top_k: The top-k value to use for sampling. stream: Whether to stream the results. stop: A list of strings to stop generation when encountered. max_tokens: The maximum number of tokens to generate. repeat_penalty: The penalty to apply to repeated tokens. Returns: Generated chat completion or a stream of chat completion chunks. """ instructions = """Complete the following chat conversation between the user and the assistant. System messages should be strictly followed as additional instructions.""" chat_history = "\n".join( f'{message["role"]} {message.get("user", "")}: {message["content"]}' for message in messages ) PROMPT = f" \n\n### Instructions:{instructions}\n\n### Inputs:{chat_history}\n\n### Response:\nassistant: " PROMPT_STOP = ["###", "\nuser: ", "\nassistant: ", "\nsystem: "] completion_or_chunks = self( prompt=PROMPT, stop=PROMPT_STOP + stop, temperature=temperature, top_p=top_p, top_k=top_k, stream=stream, max_tokens=max_tokens, repeat_penalty=repeat_penalty, ) if stream: chunks: Iterator[CompletionChunk] = completion_or_chunks # type: ignore return self._convert_text_completion_chunks_to_chat(chunks) else: completion: Completion = completion_or_chunks # type: ignore return self._convert_text_completion_to_chat(completion) def __del__(self): if self.ctx is not None: llama_cpp.llama_free(self.ctx) self.ctx = None @staticmethod def token_eos() -> llama_cpp.llama_token: """Return the end-of-sequence token.""" return llama_cpp.llama_token_eos() @staticmethod def token_bos() -> llama_cpp.llama_token: """Return the beginning-of-sequence token.""" return llama_cpp.llama_token_bos()