165 lines
3.7 KiB
Markdown
165 lines
3.7 KiB
Markdown
# Import a model
|
||
|
||
This guide walks through importing a GGUF, PyTorch or Safetensors model.
|
||
|
||
## Importing (GGUF)
|
||
|
||
### Step 1: Write a `Modelfile`
|
||
|
||
Start by creating a `Modelfile`. This file is the blueprint for your model, specifying weights, parameters, prompt templates and more.
|
||
|
||
```
|
||
FROM ./mistral-7b-v0.1.Q4_0.gguf
|
||
```
|
||
|
||
(Optional) many chat models require a prompt template in order to answer correctly. A default prompt template can be specified with the `TEMPLATE` instruction in the `Modelfile`:
|
||
|
||
```
|
||
FROM ./mistral-7b-v0.1.Q4_0.gguf
|
||
TEMPLATE "[INST] {{ .Prompt }} [/INST]"
|
||
```
|
||
|
||
### Step 2: Create the Ollama model
|
||
|
||
Finally, create a model from your `Modelfile`:
|
||
|
||
```
|
||
ollama create example -f Modelfile
|
||
```
|
||
|
||
### Step 3: Run your model
|
||
|
||
Next, test the model with `ollama run`:
|
||
|
||
```
|
||
ollama run example "What is your favourite condiment?"
|
||
```
|
||
|
||
## Importing (PyTorch & Safetensors)
|
||
|
||
> Importing from PyTorch and Safetensors is a longer process than importing from GGUF. Improvements that make it easier are a work in progress.
|
||
|
||
### Setup
|
||
|
||
First, clone the `ollama/ollama` repo:
|
||
|
||
```
|
||
git clone git@github.com:ollama/ollama.git ollama
|
||
cd ollama
|
||
```
|
||
|
||
and then fetch its `llama.cpp` submodule:
|
||
|
||
```shell
|
||
git submodule init
|
||
git submodule update llm/llama.cpp
|
||
```
|
||
|
||
Next, install the Python dependencies:
|
||
|
||
```
|
||
python3 -m venv llm/llama.cpp/.venv
|
||
source llm/llama.cpp/.venv/bin/activate
|
||
pip install -r llm/llama.cpp/requirements.txt
|
||
```
|
||
|
||
Then build the `quantize` tool:
|
||
|
||
```
|
||
make -C llm/llama.cpp quantize
|
||
```
|
||
|
||
### Clone the HuggingFace repository (optional)
|
||
|
||
If the model is currently hosted in a HuggingFace repository, first clone that repository to download the raw model.
|
||
|
||
Install [Git LFS](https://docs.github.com/en/repositories/working-with-files/managing-large-files/installing-git-large-file-storage), verify it's installed, and then clone the model's repository:
|
||
|
||
```
|
||
git lfs install
|
||
git clone https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1 model
|
||
```
|
||
|
||
### Convert the model
|
||
|
||
> Note: some model architectures require using specific convert scripts. For example, Qwen models require running `convert-hf-to-gguf.py` instead of `convert.py`
|
||
|
||
```
|
||
python llm/llama.cpp/convert.py ./model --outtype f16 --outfile converted.bin
|
||
```
|
||
|
||
### Quantize the model
|
||
|
||
```
|
||
llm/llama.cpp/quantize converted.bin quantized.bin q4_0
|
||
```
|
||
|
||
### Step 3: Write a `Modelfile`
|
||
|
||
Next, create a `Modelfile` for your model:
|
||
|
||
```
|
||
FROM quantized.bin
|
||
TEMPLATE "[INST] {{ .Prompt }} [/INST]"
|
||
```
|
||
|
||
### Step 4: Create the Ollama model
|
||
|
||
Finally, create a model from your `Modelfile`:
|
||
|
||
```
|
||
ollama create example -f Modelfile
|
||
```
|
||
|
||
### Step 5: Run your model
|
||
|
||
Next, test the model with `ollama run`:
|
||
|
||
```
|
||
ollama run example "What is your favourite condiment?"
|
||
```
|
||
|
||
## Publishing your model (optional – early alpha)
|
||
|
||
Publishing models is in early alpha. If you'd like to publish your model to share with others, follow these steps:
|
||
|
||
1. Create [an account](https://ollama.ai/signup)
|
||
2. Run `cat ~/.ollama/id_ed25519.pub` to view your Ollama public key. Copy this to the clipboard.
|
||
3. Add your public key to your [Ollama account](https://ollama.ai/settings/keys)
|
||
|
||
Next, copy your model to your username's namespace:
|
||
|
||
```
|
||
ollama cp example <your username>/example
|
||
```
|
||
|
||
Then push the model:
|
||
|
||
```
|
||
ollama push <your username>/example
|
||
```
|
||
|
||
After publishing, your model will be available at `https://ollama.ai/<your username>/example`.
|
||
|
||
## Quantization reference
|
||
|
||
The quantization options are as follow (from highest highest to lowest levels of quantization). Note: some architectures such as Falcon do not support K quants.
|
||
|
||
- `q2_K`
|
||
- `q3_K`
|
||
- `q3_K_S`
|
||
- `q3_K_M`
|
||
- `q3_K_L`
|
||
- `q4_0` (recommended)
|
||
- `q4_1`
|
||
- `q4_K`
|
||
- `q4_K_S`
|
||
- `q4_K_M`
|
||
- `q5_0`
|
||
- `q5_1`
|
||
- `q5_K`
|
||
- `q5_K_S`
|
||
- `q5_K_M`
|
||
- `q6_K`
|
||
- `q8_0`
|
||
- `f16`
|