Update import instructions to use convert and quantize tooling from llama.cpp submodule (#2247)
This commit is contained in:
parent
b538dc3858
commit
b9f91a0b36
1 changed files with 41 additions and 71 deletions
112
docs/import.md
112
docs/import.md
|
@ -15,7 +15,7 @@ FROM ./mistral-7b-v0.1.Q4_0.gguf
|
|||
(Optional) many chat models require a prompt template in order to answer correctly. A default prompt template can be specified with the `TEMPLATE` instruction in the `Modelfile`:
|
||||
|
||||
```
|
||||
FROM ./q4_0.bin
|
||||
FROM ./mistral-7b-v0.1.Q4_0.gguf
|
||||
TEMPLATE "[INST] {{ .Prompt }} [/INST]"
|
||||
```
|
||||
|
||||
|
@ -37,55 +37,69 @@ ollama run example "What is your favourite condiment?"
|
|||
|
||||
## Importing (PyTorch & Safetensors)
|
||||
|
||||
### Supported models
|
||||
> Importing from PyTorch and Safetensors is a longer process than importing from GGUF. Improvements that make it easier are a work in progress.
|
||||
|
||||
Ollama supports a set of model architectures, with support for more coming soon:
|
||||
### Setup
|
||||
|
||||
- Llama & Mistral
|
||||
- Falcon & RW
|
||||
- BigCode
|
||||
First, clone the `ollama/ollama` repo:
|
||||
|
||||
To view a model's architecture, check the `config.json` file in its HuggingFace repo. You should see an entry under `architectures` (e.g. `LlamaForCausalLM`).
|
||||
```
|
||||
git clone git@github.com:ollama/ollama.git ollama
|
||||
cd ollama
|
||||
```
|
||||
|
||||
### Step 1: Clone the HuggingFace repository (optional)
|
||||
and then fetch its `llama.cpp` submodule:
|
||||
|
||||
```shell
|
||||
git submodule init
|
||||
git submodule update llm/llama.cpp
|
||||
```
|
||||
|
||||
Next, install the Python dependencies:
|
||||
|
||||
```
|
||||
python3 -m venv llm/llama.cpp/.venv
|
||||
source llm/llama.cpp/.venv/bin/activate
|
||||
pip install -r llm/llama.cpp/requirements.txt
|
||||
```
|
||||
|
||||
Then build the `quantize` tool:
|
||||
|
||||
```
|
||||
make -C llm/llama.cpp quantize
|
||||
```
|
||||
|
||||
### Clone the HuggingFace repository (optional)
|
||||
|
||||
If the model is currently hosted in a HuggingFace repository, first clone that repository to download the raw model.
|
||||
|
||||
Install [Git LFS](https://docs.github.com/en/repositories/working-with-files/managing-large-files/installing-git-large-file-storage), verify it's installed, and then clone the model's repository:
|
||||
|
||||
```
|
||||
git lfs install
|
||||
git clone https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
|
||||
cd Mistral-7B-Instruct-v0.1
|
||||
git clone https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1 model
|
||||
```
|
||||
|
||||
### Step 2: Convert and quantize to a `.bin` file (optional, for PyTorch and Safetensors)
|
||||
### Convert the model
|
||||
|
||||
If the model is in PyTorch or Safetensors format, a [Docker image](https://hub.docker.com/r/ollama/quantize) with the tooling required to convert and quantize models is available.
|
||||
|
||||
First, Install [Docker](https://www.docker.com/get-started/).
|
||||
|
||||
Next, to convert and quantize your model, run:
|
||||
> Note: some model architectures require using specific convert scripts. For example, Qwen models require running `convert-hf-to-gguf.py` instead of `convert.py`
|
||||
|
||||
```
|
||||
docker run --rm -v .:/model ollama/quantize -q q4_0 /model
|
||||
python llm/llama.cpp/convert.py ./model --outtype f16 --outfile converted.bin
|
||||
```
|
||||
|
||||
This will output two files into the directory:
|
||||
### Quantize the model
|
||||
|
||||
- `f16.bin`: the model converted to GGUF
|
||||
- `q4_0.bin` the model quantized to a 4-bit quantization (Ollama will use this file to create the Ollama model)
|
||||
```
|
||||
llm/llama.cpp/quantize converted.bin quantized.bin q4_0
|
||||
```
|
||||
|
||||
### Step 3: Write a `Modelfile`
|
||||
|
||||
Next, create a `Modelfile` for your model:
|
||||
|
||||
```
|
||||
FROM ./q4_0.bin
|
||||
```
|
||||
|
||||
(Optional) many chat models require a prompt template in order to answer correctly. A default prompt template can be specified with the `TEMPLATE` instruction in the `Modelfile`:
|
||||
|
||||
```
|
||||
FROM ./q4_0.bin
|
||||
FROM quantized.bin
|
||||
TEMPLATE "[INST] {{ .Prompt }} [/INST]"
|
||||
```
|
||||
|
||||
|
@ -149,47 +163,3 @@ The quantization options are as follow (from highest highest to lowest levels of
|
|||
- `q6_K`
|
||||
- `q8_0`
|
||||
- `f16`
|
||||
|
||||
## Manually converting & quantizing models
|
||||
|
||||
### Prerequisites
|
||||
|
||||
Start by cloning the `llama.cpp` repo to your machine in another directory:
|
||||
|
||||
```
|
||||
git clone https://github.com/ggerganov/llama.cpp.git
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
Next, install the Python dependencies:
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
Finally, build the `quantize` tool:
|
||||
|
||||
```
|
||||
make quantize
|
||||
```
|
||||
|
||||
### Convert the model
|
||||
|
||||
Run the correct conversion script for your model architecture:
|
||||
|
||||
```shell
|
||||
# LlamaForCausalLM or MistralForCausalLM
|
||||
python convert.py <path to model directory>
|
||||
|
||||
# FalconForCausalLM
|
||||
python convert-falcon-hf-to-gguf.py <path to model directory>
|
||||
|
||||
# GPTBigCodeForCausalLM
|
||||
python convert-starcoder-hf-to-gguf.py <path to model directory>
|
||||
```
|
||||
|
||||
### Quantize the model
|
||||
|
||||
```
|
||||
quantize <path to model dir>/ggml-model-f32.bin <path to model dir>/q4_0.bin q4_0
|
||||
```
|
||||
|
|
Loading…
Add table
Reference in a new issue