* OpenAI v1 models
* Refactor Writers
* Add Test
Co-Authored-By: Attila Kerekes
* Credit Co-Author
Co-Authored-By: Attila Kerekes <439392+keriati@users.noreply.github.com>
* Empty List Testing
* Use Namespace for Ownedby
* Update Test
* Add back envconfig
* v1/models docs
* Use ModelName Parser
* Test Names
* Remove Docs
* Clean Up
* Test name
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
* Add Middleware for Chat and List
* Testing Cleanup
* Test with Fatal
* Add functionality to chat test
* OpenAI: /v1/models/{model} compatibility (#5028)
* Retrieve Model
* OpenAI Delete Model
* Retrieve Middleware
* Remove Delete from Branch
* Update Test
* Middleware Test File
* Function name
* Cleanup
* Test Update
* Test Update
---------
Co-authored-by: Attila Kerekes <439392+keriati@users.noreply.github.com>
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
Previously, some costly things were causing the loading of GGUF files
and their metadata and tensor information to be VERY slow:
* Too many allocations when decoding strings
* Hitting disk for each read of each key and value, resulting in a
not-okay amount of syscalls/disk I/O.
The show API is now down to 33ms from 800ms+ for llama3 on a macbook pro
m3.
This commit also prevents collecting large arrays of values when
decoding GGUFs (if desired). When such keys are encountered, their
values are null, and are encoded as such in JSON.
Also, this fixes a broken test that was not encoding valid GGUF.
* API Show Extended
* Initial Draft of Information
Co-Authored-By: Patrick Devine <pdevine@sonic.net>
* Clean Up
* Descriptive arg error messages and other fixes
* Second Draft of Show with Projectors Included
* Remove Chat Template
* Touches
* Prevent wrapping from files
* Verbose functionality
* Docs
* Address Feedback
* Lint
* Resolve Conflicts
* Function Name
* Tests for api/show model info
* Show Test File
* Add Projector Test
* Clean routes
* Projector Check
* Move Show Test
* Touches
* Doc update
---------
Co-authored-by: Patrick Devine <pdevine@sonic.net>
* Fixed the API endpoint /api/tags to return {models: []} instead of {models: null} when the model list is empty.
* Update server/routes.go
---------
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
* rename `--quantization` to `--quantize`
* backwards
* Update api/types.go
Co-authored-by: Michael Yang <mxyng@pm.me>
---------
Co-authored-by: Michael Yang <mxyng@pm.me>
* Add preflight OPTIONS handling and update CORS config
- Implement early return with HTTP 204 (No Content) for OPTIONS requests in allowedHostsMiddleware to optimize preflight handling.
- Extend CORS configuration to explicitly allow 'Authorization' headers and 'OPTIONS' method when OLLAMA_ORIGINS environment variable is set.
* allow auth, content-type, and user-agent headers
* Update routes.go
This moves all the env var reading into one central module
and logs the loaded config once at startup which should
help in troubleshooting user server logs
This change adds support for multiple concurrent requests, as well as
loading multiple models by spawning multiple runners. The default
settings are currently set at 1 concurrent request per model and only 1
loaded model at a time, but these can be adjusted by setting
OLLAMA_NUM_PARALLEL and OLLAMA_MAX_LOADED_MODELS.
This should resolve a number of memory leak and stability defects by allowing
us to isolate llama.cpp in a separate process and shutdown when idle, and
gracefully restart if it has problems. This also serves as a first step to be
able to run multiple copies to support multiple models concurrently.
The recent ROCm change partially removed idempotent
payloads, but the ggml-metal.metal file for mac was still
idempotent. This finishes switching to always extract
the payloads, and now that idempotentcy is gone, the
version directory is no longer useful.
This refines where we extract the LLM libraries to by adding a new
OLLAMA_HOME env var, that defaults to `~/.ollama` The logic was already
idempotenent, so this should speed up startups after the first time a
new release is deployed. It also cleans up after itself.
We now build only a single ROCm version (latest major) on both windows
and linux. Given the large size of ROCms tensor files, we split the
dependency out. It's bundled into the installer on windows, and a
separate download on windows. The linux install script is now smart and
detects the presence of AMD GPUs and looks to see if rocm v6 is already
present, and if not, then downloads our dependency tar file.
For Linux discovery, we now use sysfs and check each GPU against what
ROCm supports so we can degrade to CPU gracefully instead of having
llama.cpp+rocm assert/crash on us. For Windows, we now use go's windows
dynamic library loading logic to access the amdhip64.dll APIs to query
the GPU information.