The build tags rocm or cuda must be specified to both go generate and go build.
ROCm builds should have both ROCM_PATH set (and the ROCM SDK present) as well
as CLBlast installed (for GGML) and CLBlast_DIR set in the environment to the
CLBlast cmake directory (likely /usr/lib/cmake/CLBlast). Build tags are also
used to switch VRAM detection between cuda and rocm implementations, using
added "accelerator_foo.go" files which contain architecture specific functions
and variables. accelerator_none is used when no tags are set, and a helper
function addRunner will ignore it if it is the chosen accelerator. Fix go
generate commands, thanks @deadmeu for testing.
- remove ggml runner
- automatically pull gguf models when ggml detected
- tell users to update to gguf in the case automatic pull fails
Co-Authored-By: Jeffrey Morgan <jmorganca@gmail.com>
When CUDA peer access is enabled, multi-gpu inference will produce
garbage output. This is a known bug of llama.cpp (or nvidia). Until the
upstream bug is fixed, we can disable CUDA peer access temporarily
to ensure correct output.
See #961.
* subprocess improvements
- increase start-up timeout
- when runner fails to start fail rather than timing out
- try runners in order rather than choosing 1 runner
- embed metal runner in metal dir rather than gpu
- refactor logging and error messages
* Update llama.go
* Update llama.go
* simplify by using glob
* remove c code
* pack llama.cpp
* use request context for llama_cpp
* let llama_cpp decide the number of threads to use
* stop llama runner when app stops
* remove sample count and duration metrics
* use go generate to get libraries
* tmp dir for running llm