subprocess llama.cpp server (#401)
* remove c code * pack llama.cpp * use request context for llama_cpp * let llama_cpp decide the number of threads to use * stop llama runner when app stops * remove sample count and duration metrics * use go generate to get libraries * tmp dir for running llm
This commit is contained in:
parent
f4432e1dba
commit
42998d797d
37 changed files with 958 additions and 43928 deletions
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -5,4 +5,3 @@
|
|||
.swp
|
||||
dist
|
||||
ollama
|
||||
/ggml-metal.metal
|
||||
|
|
3
.gitmodules
vendored
Normal file
3
.gitmodules
vendored
Normal file
|
@ -0,0 +1,3 @@
|
|||
[submodule "llm/llama.cpp/ggml"]
|
||||
path = llm/llama.cpp/ggml
|
||||
url = https://github.com/ggerganov/llama.cpp.git
|
25
api/types.go
25
api/types.go
|
@ -7,7 +7,6 @@ import (
|
|||
"math"
|
||||
"os"
|
||||
"reflect"
|
||||
"runtime"
|
||||
"strings"
|
||||
"time"
|
||||
)
|
||||
|
@ -113,8 +112,6 @@ type GenerateResponse struct {
|
|||
|
||||
TotalDuration time.Duration `json:"total_duration,omitempty"`
|
||||
LoadDuration time.Duration `json:"load_duration,omitempty"`
|
||||
SampleCount int `json:"sample_count,omitempty"`
|
||||
SampleDuration time.Duration `json:"sample_duration,omitempty"`
|
||||
PromptEvalCount int `json:"prompt_eval_count,omitempty"`
|
||||
PromptEvalDuration time.Duration `json:"prompt_eval_duration,omitempty"`
|
||||
EvalCount int `json:"eval_count,omitempty"`
|
||||
|
@ -130,15 +127,6 @@ func (r *GenerateResponse) Summary() {
|
|||
fmt.Fprintf(os.Stderr, "load duration: %v\n", r.LoadDuration)
|
||||
}
|
||||
|
||||
if r.SampleCount > 0 {
|
||||
fmt.Fprintf(os.Stderr, "sample count: %d token(s)\n", r.SampleCount)
|
||||
}
|
||||
|
||||
if r.SampleDuration > 0 {
|
||||
fmt.Fprintf(os.Stderr, "sample duration: %s\n", r.SampleDuration)
|
||||
fmt.Fprintf(os.Stderr, "sample rate: %.2f tokens/s\n", float64(r.SampleCount)/r.SampleDuration.Seconds())
|
||||
}
|
||||
|
||||
if r.PromptEvalCount > 0 {
|
||||
fmt.Fprintf(os.Stderr, "prompt eval count: %d token(s)\n", r.PromptEvalCount)
|
||||
}
|
||||
|
@ -182,15 +170,16 @@ type Options struct {
|
|||
RopeFrequencyScale float32 `json:"rope_frequency_scale,omitempty"`
|
||||
|
||||
// Predict options
|
||||
RepeatLastN int `json:"repeat_last_n,omitempty"`
|
||||
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
|
||||
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
|
||||
PresencePenalty float32 `json:"presence_penalty,omitempty"`
|
||||
Temperature float32 `json:"temperature,omitempty"`
|
||||
NumPredict int `json:"num_predict,omitempty"`
|
||||
TopK int `json:"top_k,omitempty"`
|
||||
TopP float32 `json:"top_p,omitempty"`
|
||||
TFSZ float32 `json:"tfs_z,omitempty"`
|
||||
TypicalP float32 `json:"typical_p,omitempty"`
|
||||
RepeatLastN int `json:"repeat_last_n,omitempty"`
|
||||
Temperature float32 `json:"temperature,omitempty"`
|
||||
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
|
||||
PresencePenalty float32 `json:"presence_penalty,omitempty"`
|
||||
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
|
||||
Mirostat int `json:"mirostat,omitempty"`
|
||||
MirostatTau float32 `json:"mirostat_tau,omitempty"`
|
||||
MirostatEta float32 `json:"mirostat_eta,omitempty"`
|
||||
|
@ -314,7 +303,7 @@ func DefaultOptions() Options {
|
|||
MirostatEta: 0.1,
|
||||
PenalizeNewline: true,
|
||||
|
||||
NumThread: runtime.NumCPU(),
|
||||
NumThread: 0, // let the runtime decide
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -158,7 +158,7 @@ function restart() {
|
|||
app.on('before-quit', () => {
|
||||
if (proc) {
|
||||
proc.off('exit', restart)
|
||||
proc.kill()
|
||||
proc.kill('SIGINT') // send SIGINT signal to the server, which also stops any loaded llms
|
||||
}
|
||||
})
|
||||
|
||||
|
|
|
@ -1,19 +1,21 @@
|
|||
# Development
|
||||
|
||||
- Install cmake or (optionally, required tools for GPUs)
|
||||
- run `go generate ./...`
|
||||
- run `go build .`
|
||||
|
||||
Install required tools:
|
||||
|
||||
```
|
||||
brew install go
|
||||
brew install go cmake gcc
|
||||
```
|
||||
|
||||
Enable CGO:
|
||||
Get the required libraries:
|
||||
|
||||
```
|
||||
export CGO_ENABLED=1
|
||||
go generate ./...
|
||||
```
|
||||
|
||||
You will also need a C/C++ compiler such as GCC for MacOS and Linux or Mingw-w64 GCC for Windows.
|
||||
|
||||
Then build ollama:
|
||||
|
||||
```
|
||||
|
|
4
go.mod
4
go.mod
|
@ -38,9 +38,9 @@ require (
|
|||
github.com/twitchyliquid64/golang-asm v0.15.1 // indirect
|
||||
github.com/ugorji/go/codec v1.2.11 // indirect
|
||||
golang.org/x/arch v0.3.0 // indirect
|
||||
golang.org/x/crypto v0.10.0 // indirect
|
||||
golang.org/x/crypto v0.10.0
|
||||
golang.org/x/net v0.10.0 // indirect
|
||||
golang.org/x/sys v0.10.0 // indirect
|
||||
golang.org/x/sys v0.11.0 // indirect
|
||||
golang.org/x/term v0.10.0
|
||||
golang.org/x/text v0.10.0 // indirect
|
||||
gonum.org/v1/gonum v0.13.0
|
||||
|
|
5
go.sum
5
go.sum
|
@ -120,6 +120,7 @@ golang.org/x/arch v0.3.0/go.mod h1:5om86z9Hs0C8fWVUuoMHwpExlXzs5Tkyp9hOrfG7pp8=
|
|||
golang.org/x/crypto v0.0.0-20210711020723-a769d52b0f97/go.mod h1:GvvjBRRGRdwPK5ydBHafDWAxML/pGHZbMvKqRZ5+Abc=
|
||||
golang.org/x/crypto v0.10.0 h1:LKqV2xt9+kDzSTfOhx4FrkEBcMrAgHSYgzywV9zcGmM=
|
||||
golang.org/x/crypto v0.10.0/go.mod h1:o4eNf7Ede1fv+hwOwZsTHl9EsPFO6q6ZvYR8vYfY45I=
|
||||
golang.org/x/exp v0.0.0-20230321023759-10a507213a29 h1:ooxPy7fPvB4kwsA2h+iBNHkAbp/4JxTSwCmvdjEYmug=
|
||||
golang.org/x/net v0.0.0-20210226172049-e18ecbb05110/go.mod h1:m0MpNAwzfU5UDzcl9v0D8zg8gWTRqZa9RBIspLL5mdg=
|
||||
golang.org/x/net v0.10.0 h1:X2//UzNDwYmtCLn7To6G58Wr6f5ahEAQgKNzv9Y951M=
|
||||
golang.org/x/net v0.10.0/go.mod h1:0qNGK6F8kojg2nk9dLZ2mShWaEBan6FAoqfSigmmuDg=
|
||||
|
@ -130,8 +131,8 @@ golang.org/x/sys v0.0.0-20210806184541-e5e7981a1069/go.mod h1:oPkhp1MJrh7nUepCBc
|
|||
golang.org/x/sys v0.0.0-20220310020820-b874c991c1a5/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.0.0-20220704084225-05e143d24a9e/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.10.0 h1:SqMFp9UcQJZa+pmYuAKjd9xq1f0j5rLcDIk0mj4qAsA=
|
||||
golang.org/x/sys v0.10.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.11.0 h1:eG7RXZHdqOJ1i+0lgLgCpSXAp6M3LYlAo6osgSi0xOM=
|
||||
golang.org/x/sys v0.11.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
|
||||
golang.org/x/term v0.10.0 h1:3R7pNqamzBraeqj/Tj8qt1aQ2HpmlC+Cx/qL/7hn4/c=
|
||||
golang.org/x/term v0.10.0/go.mod h1:lpqdcUyK/oCiQxvxVrppt5ggO2KCZ5QblwqPnfZ6d5o=
|
||||
|
|
575
llm/ggml-alloc.c
575
llm/ggml-alloc.c
|
@ -1,575 +0,0 @@
|
|||
/**
|
||||
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
|
||||
*
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2023 Georgi Gerganov
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml.h"
|
||||
#include <assert.h>
|
||||
#include <stdarg.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#define UNUSED(x) (void)(x)
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
|
||||
//#define GGML_ALLOCATOR_DEBUG
|
||||
|
||||
//#define AT_PRINTF printf
|
||||
#define AT_PRINTF(...) ((void)0)
|
||||
|
||||
struct hash_node {
|
||||
struct ggml_tensor * t;
|
||||
int n_children;
|
||||
int n_views;
|
||||
};
|
||||
|
||||
static size_t hash(void * p) {
|
||||
return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
|
||||
}
|
||||
|
||||
static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) {
|
||||
size_t h = hash(t);
|
||||
|
||||
// linear probing
|
||||
size_t i = h;
|
||||
while (hash_table[i].t != NULL) {
|
||||
if (hash_table[i].t == t) {
|
||||
return &hash_table[i];
|
||||
}
|
||||
i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
|
||||
if (i == h) {
|
||||
// hash table is full
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
hash_table[i].t = t;
|
||||
return &hash_table[i];
|
||||
}
|
||||
|
||||
// TODO: GGML_PAD ?
|
||||
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
|
||||
assert(alignment && !(alignment & (alignment - 1))); // power of 2
|
||||
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
|
||||
return offset + align;
|
||||
}
|
||||
|
||||
struct free_block {
|
||||
void * addr;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
#define MAX_FREE_BLOCKS 128
|
||||
|
||||
struct ggml_allocr {
|
||||
void * data;
|
||||
size_t size;
|
||||
size_t alignment;
|
||||
int n_free_blocks;
|
||||
struct free_block free_blocks[MAX_FREE_BLOCKS];
|
||||
struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
|
||||
size_t max_size;
|
||||
bool measure;
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
struct ggml_tensor * allocated_tensors[1024];
|
||||
#endif
|
||||
};
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
static void add_allocated_tensor(struct ggml_allocator * alloc, struct ggml_tensor * tensor) {
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
if (alloc->allocated_tensors[i] == NULL) {
|
||||
alloc->allocated_tensors[i] = tensor;
|
||||
return;
|
||||
}
|
||||
}
|
||||
GGML_ASSERT(!"out of allocated_tensors");
|
||||
}
|
||||
static void remove_allocated_tensor(struct ggml_allocator * alloc, struct ggml_tensor * tensor) {
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
if (alloc->allocated_tensors[i] == tensor ||
|
||||
(alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
|
||||
alloc->allocated_tensors[i] = NULL;
|
||||
return;
|
||||
}
|
||||
}
|
||||
printf("tried to free tensor %s not found\n", tensor->name);
|
||||
GGML_ASSERT(!"tensor not found");
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
static size_t ggml_allocator_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
return ggml_nbytes(tensor);
|
||||
|
||||
UNUSED(alloc);
|
||||
}
|
||||
|
||||
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
|
||||
size = aligned_offset(NULL, size, alloc->alignment);
|
||||
|
||||
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
|
||||
|
||||
size_t max_avail = 0;
|
||||
|
||||
// find the best fitting free block
|
||||
int best_fit_block = -1;
|
||||
size_t best_fit_size = SIZE_MAX;
|
||||
for (int i = 0; i < alloc->n_free_blocks; i++) {
|
||||
struct free_block * block = &alloc->free_blocks[i];
|
||||
max_avail = MAX(max_avail, block->size);
|
||||
if (block->size >= size && block->size <= best_fit_size) {
|
||||
best_fit_block = i;
|
||||
best_fit_size = block->size;
|
||||
}
|
||||
}
|
||||
|
||||
AT_PRINTF("block %d\n", best_fit_block);
|
||||
|
||||
if (best_fit_block == -1) {
|
||||
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
|
||||
__func__, size, max_avail);
|
||||
GGML_ASSERT(!"not enough space in the buffer");
|
||||
return;
|
||||
}
|
||||
struct free_block * block = &alloc->free_blocks[best_fit_block];
|
||||
void * addr = block->addr;
|
||||
block->addr = (char*)block->addr + size;
|
||||
block->size -= size;
|
||||
if (block->size == 0) {
|
||||
// remove block if empty
|
||||
alloc->n_free_blocks--;
|
||||
for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
|
||||
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
||||
}
|
||||
}
|
||||
|
||||
tensor->data = addr;
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
add_allocated_tensor(alloc, tensor);
|
||||
size_t cur_max = (char*)addr - (char*)alloc->data + size;
|
||||
if (cur_max > alloc->max_size) {
|
||||
printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
if (alloc->allocated_tensors[i]) {
|
||||
printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0);
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
#endif
|
||||
|
||||
alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size);
|
||||
}
|
||||
|
||||
// this is a very naive implementation, but for our case the number of free blocks should be very small
|
||||
static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
void * ptr = tensor->data;
|
||||
|
||||
if (ptr < alloc->data || (char*)ptr >= (char*)alloc->data + alloc->max_size) {
|
||||
// the tensor was not allocated in this buffer
|
||||
// this can happen because the graph allocator will try to free weights and other tensors from different buffers
|
||||
// the easiest way to deal with this is just to ignore it
|
||||
return;
|
||||
}
|
||||
|
||||
size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
|
||||
size = aligned_offset(NULL, size, alloc->alignment);
|
||||
AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks);
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
remove_allocated_tensor(alloc, tensor);
|
||||
#endif
|
||||
|
||||
// see if we can merge with an existing block
|
||||
for (int i = 0; i < alloc->n_free_blocks; i++) {
|
||||
struct free_block * block = &alloc->free_blocks[i];
|
||||
// check if ptr is at the end of the block
|
||||
if ((char*)block->addr + block->size == ptr) {
|
||||
block->size += size;
|
||||
// check if we can merge with the next block
|
||||
if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) {
|
||||
block->size += alloc->free_blocks[i+1].size;
|
||||
alloc->n_free_blocks--;
|
||||
for (int j = i+1; j < alloc->n_free_blocks; j++) {
|
||||
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
// check if ptr is at the beginning of the block
|
||||
if ((char*)ptr + size == block->addr) {
|
||||
block->addr = ptr;
|
||||
block->size += size;
|
||||
// check if we can merge with the previous block
|
||||
if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) {
|
||||
alloc->free_blocks[i-1].size += block->size;
|
||||
alloc->n_free_blocks--;
|
||||
for (int j = i; j < alloc->n_free_blocks; j++) {
|
||||
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
// otherwise, add a new block
|
||||
GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
|
||||
// insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
|
||||
int insert_pos = 0;
|
||||
while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) {
|
||||
insert_pos++;
|
||||
}
|
||||
// shift all blocks from insert_pos onward to make room for the new block
|
||||
for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
|
||||
alloc->free_blocks[i] = alloc->free_blocks[i-1];
|
||||
}
|
||||
// insert the new block
|
||||
alloc->free_blocks[insert_pos].addr = ptr;
|
||||
alloc->free_blocks[insert_pos].size = size;
|
||||
alloc->n_free_blocks++;
|
||||
}
|
||||
|
||||
void ggml_allocr_reset(struct ggml_allocr * alloc) {
|
||||
alloc->n_free_blocks = 1;
|
||||
size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
|
||||
alloc->free_blocks[0].addr = (char *)alloc->data + align_offset;
|
||||
alloc->free_blocks[0].size = alloc->size - align_offset;
|
||||
}
|
||||
|
||||
struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) {
|
||||
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
|
||||
|
||||
*alloc = (struct ggml_allocr){
|
||||
/*.data = */ data,
|
||||
/*.size = */ size,
|
||||
/*.alignment = */ alignment,
|
||||
/*.n_free_blocks = */ 0,
|
||||
/*.free_blocks = */ {{0}},
|
||||
/*.hash_table = */ {{0}},
|
||||
/*.max_size = */ 0,
|
||||
/*.measure = */ false,
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
/*.allocated_tensors = */ = {0},
|
||||
#endif
|
||||
};
|
||||
|
||||
ggml_allocr_reset(alloc);
|
||||
|
||||
return alloc;
|
||||
}
|
||||
|
||||
// address and size of the buffer when measuring
|
||||
// it needs to be large enough to fit all the tensors, but it cannot overlap with other existing buffers
|
||||
static void * const MEASURE_BASE_ADDR = (void *) 0x1000;
|
||||
static const size_t MEASURE_MAX_SIZE = 1ULL<<40; // 1 TB
|
||||
|
||||
struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
|
||||
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
|
||||
|
||||
*alloc = (struct ggml_allocr){
|
||||
/*.data = */ MEASURE_BASE_ADDR,
|
||||
/*.size = */ MEASURE_MAX_SIZE,
|
||||
/*.alignment = */ alignment,
|
||||
/*.n_free_blocks = */ 0,
|
||||
/*.free_blocks = */ {{0}},
|
||||
/*.hash_table = */ {{0}},
|
||||
/*.max_size = */ 0,
|
||||
/*.measure = */ true,
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
/*.allocated_tensors = */ = {0},
|
||||
#endif
|
||||
};
|
||||
|
||||
ggml_allocr_reset(alloc);
|
||||
|
||||
return alloc;
|
||||
}
|
||||
|
||||
void ggml_allocr_free(struct ggml_allocr * alloc) {
|
||||
free(alloc);
|
||||
}
|
||||
|
||||
bool ggml_allocr_is_measure(struct ggml_allocr * alloc) {
|
||||
return alloc->measure;
|
||||
}
|
||||
|
||||
//////////// compute graph allocator
|
||||
|
||||
static bool ggml_is_view(struct ggml_tensor * t) {
|
||||
return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
|
||||
t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY;
|
||||
}
|
||||
|
||||
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
||||
if (a->type != b->type) {
|
||||
return false;
|
||||
}
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
if (a->ne[i] != b->ne[i]) {
|
||||
return false;
|
||||
}
|
||||
if (a->nb[i] != b->nb[i]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) {
|
||||
switch (t->op) {
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_VIEW:
|
||||
return t->src[0];
|
||||
case GGML_OP_CPY:
|
||||
return t->src[1];
|
||||
default:
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
static struct ggml_tensor * get_view_source(struct ggml_tensor * t) {
|
||||
struct ggml_tensor * parent = t;
|
||||
do {
|
||||
parent = get_view_parent(parent);
|
||||
} while (ggml_is_view(parent));
|
||||
return parent;
|
||||
}
|
||||
|
||||
static bool ggml_op_can_inplace(enum ggml_op op) {
|
||||
switch (op) {
|
||||
case GGML_OP_SCALE:
|
||||
case GGML_OP_DIAG_MASK_ZERO:
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_ADD1:
|
||||
case GGML_OP_ACC:
|
||||
case GGML_OP_SUB:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
case GGML_OP_SQR:
|
||||
case GGML_OP_SQRT:
|
||||
case GGML_OP_LOG:
|
||||
case GGML_OP_UNARY:
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_SET:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
case GGML_OP_CONT:
|
||||
return true;
|
||||
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) {
|
||||
struct hash_node * ht = alloc->hash_table;
|
||||
if (node->data == NULL) {
|
||||
if (ggml_is_view(node)) {
|
||||
size_t offset;
|
||||
switch(node->op) {
|
||||
case GGML_OP_VIEW:
|
||||
memcpy(&offset, node->op_params, sizeof(size_t));
|
||||
node->data = (char *) node->src[0]->data + offset;
|
||||
break;
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
node->data = node->src[0]->data;
|
||||
break;
|
||||
case GGML_OP_CPY:
|
||||
node->data = node->src[1]->data;
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(!"unknown view op");
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
// see if we can reuse a parent's buffer (inplace)
|
||||
if (ggml_op_can_inplace(node->op)) {
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
struct ggml_tensor * parent = node->src[i];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
|
||||
// if the node's data is external, then we cannot re-use it
|
||||
if ((char *) parent->data < (char *) alloc->data ||
|
||||
(char *) parent->data >= ((char *) alloc->data + alloc->size)) {
|
||||
AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
|
||||
continue;
|
||||
}
|
||||
|
||||
struct hash_node * p_hn = hash_get(ht, parent);
|
||||
if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
|
||||
if (ggml_is_view(parent)) {
|
||||
struct ggml_tensor * view_src = get_view_source(parent);
|
||||
struct hash_node * view_src_hn = hash_get(ht, view_src);
|
||||
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
|
||||
// TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
|
||||
// the parent's data that it will need later (same layout requirement). the problem is that then
|
||||
// we cannot free the tensor because the original address of the allocation is lost.
|
||||
// adding a view_src pointer to the tensor would solve this and simplify the code dealing with views
|
||||
// for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data)
|
||||
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
|
||||
node->data = parent->data;
|
||||
return;
|
||||
}
|
||||
}
|
||||
else {
|
||||
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
|
||||
node->data = parent->data;
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
ggml_allocr_alloc(alloc, node);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static size_t ggml_allocator_alloc_graph_tensors_n(
|
||||
struct ggml_allocr * alloc,
|
||||
struct ggml_cgraph ** graphs, int n_graphs,
|
||||
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
|
||||
|
||||
// reset hash table
|
||||
struct hash_node * ht = alloc->hash_table;
|
||||
memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE);
|
||||
|
||||
// count number of children and views
|
||||
for (int g = 0; g < n_graphs; g++) {
|
||||
struct ggml_cgraph * gf = graphs[g];
|
||||
for (int i = 0; i < gf->n_nodes; i++) {
|
||||
struct ggml_tensor * node = gf->nodes[i];
|
||||
|
||||
if (ggml_is_view(node)) {
|
||||
struct ggml_tensor * view_src = get_view_source(node);
|
||||
hash_get(ht, view_src)->n_views += 1;
|
||||
}
|
||||
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
hash_get(ht, parent)->n_children += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// allocate tensors
|
||||
for (int g = 0; g < n_graphs; g++) {
|
||||
struct ggml_cgraph * gf = graphs[g];
|
||||
AT_PRINTF("####### graph %d/%d\n", g, n_graphs);
|
||||
// graph inputs are allocated first to ensure that they are not overwritten by each other
|
||||
if (inputs != NULL && inputs[g] != NULL) {
|
||||
for (int i = 0; inputs[g][i] != NULL; i++) {
|
||||
struct ggml_tensor * input = inputs[g][i];
|
||||
AT_PRINTF("input: %s\n", input->name);
|
||||
allocate_node(alloc, input);
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < gf->n_nodes; i++) {
|
||||
struct ggml_tensor * node = gf->nodes[i];
|
||||
|
||||
// allocate parents (leafs)
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
allocate_node(alloc, parent);
|
||||
}
|
||||
|
||||
// allocate node
|
||||
allocate_node(alloc, node);
|
||||
|
||||
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
AT_PRINTF("%s", parent->name);
|
||||
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
|
||||
AT_PRINTF(", ");
|
||||
}
|
||||
}
|
||||
AT_PRINTF("\n");
|
||||
|
||||
// update parents
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
struct hash_node * p_hn = hash_get(ht, parent);
|
||||
p_hn->n_children -= 1;
|
||||
|
||||
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
|
||||
|
||||
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
|
||||
if (ggml_is_view(parent)) {
|
||||
struct ggml_tensor * view_src = get_view_source(parent);
|
||||
struct hash_node * view_src_hn = hash_get(ht, view_src);
|
||||
view_src_hn->n_views -= 1;
|
||||
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src->n_children, view_src->n_views);
|
||||
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
|
||||
ggml_allocator_free_tensor(alloc, view_src);
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (parent->data != node->data) {
|
||||
ggml_allocator_free_tensor(alloc, parent);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
AT_PRINTF("\n");
|
||||
}
|
||||
// free graph outputs here that wouldn't be freed otherwise because they have no children
|
||||
if (outputs != NULL && outputs[g] != NULL) {
|
||||
for (int i = 0; outputs[g][i] != NULL; i++) {
|
||||
struct ggml_tensor * output = outputs[g][i];
|
||||
AT_PRINTF("output: %s\n", output->name);
|
||||
ggml_allocator_free_tensor(alloc, output);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return alloc->max_size;
|
||||
}
|
||||
|
||||
size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
|
||||
return ggml_allocator_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
|
||||
}
|
|
@ -1,48 +0,0 @@
|
|||
/**
|
||||
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
|
||||
*
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2023 Georgi Gerganov
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment);
|
||||
GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment);
|
||||
|
||||
GGML_API void ggml_allocr_free(struct ggml_allocr * alloc);
|
||||
GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc);
|
||||
GGML_API void ggml_allocr_reset(struct ggml_allocr * alloc);
|
||||
GGML_API void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
6497
llm/ggml-cuda.cu
6497
llm/ggml-cuda.cu
File diff suppressed because it is too large
Load diff
|
@ -1,63 +0,0 @@
|
|||
/**
|
||||
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
|
||||
*
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2023 Georgi Gerganov
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_CUDA_MAX_DEVICES 16
|
||||
|
||||
void ggml_init_cublas(void);
|
||||
void ggml_cuda_set_tensor_split(const float * tensor_split);
|
||||
|
||||
void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
|
||||
|
||||
// TODO: export these with GGML_API
|
||||
void * ggml_cuda_host_malloc(size_t size);
|
||||
void ggml_cuda_host_free(void * ptr);
|
||||
|
||||
void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
|
||||
|
||||
void ggml_cuda_free_data(struct ggml_tensor * tensor);
|
||||
void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
|
||||
void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
|
||||
void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
|
||||
void ggml_cuda_set_main_device(int main_device);
|
||||
void ggml_cuda_set_mul_mat_q(bool mul_mat_q);
|
||||
void ggml_cuda_set_scratch_size(size_t scratch_size);
|
||||
void ggml_cuda_free_scratch(void);
|
||||
bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
106
llm/ggml-metal.h
106
llm/ggml-metal.h
|
@ -1,106 +0,0 @@
|
|||
//go:build darwin
|
||||
|
||||
/**
|
||||
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
|
||||
*
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2023 Georgi Gerganov
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
// An interface allowing to compute ggml_cgraph with Metal
|
||||
//
|
||||
// This is a fully functional interface that extends ggml with GPU support for Apple devices.
|
||||
// A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, OpenCL, etc.)
|
||||
//
|
||||
// How it works?
|
||||
//
|
||||
// As long as your program can create and evaluate a ggml_cgraph on the CPU, you can use this
|
||||
// interface to evaluate the same graph on the GPU. Instead of using ggml_graph_compute(), you
|
||||
// use ggml_metal_graph_compute() (or ggml_vulkan_graph_compute(), etc.)
|
||||
//
|
||||
// You only need to make sure that all memory buffers that you used during the graph creation
|
||||
// are mapped to the device memory with the ggml_metal_add_buffer() function. This mapping is
|
||||
// used during the graph evaluation to determine the arguments of the compute kernels.
|
||||
//
|
||||
// Synchronization between device and host memory (for example for input and output tensors)
|
||||
// is done with the ggml_metal_set_tensor() and ggml_metal_get_tensor() functions.
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
// max memory buffers that can be mapped to the device
|
||||
#define GGML_METAL_MAX_BUFFERS 16
|
||||
|
||||
struct ggml_tensor;
|
||||
struct ggml_cgraph;
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct ggml_metal_context;
|
||||
|
||||
// number of command buffers to use
|
||||
struct ggml_metal_context * ggml_metal_init(int n_cb);
|
||||
void ggml_metal_free(struct ggml_metal_context * ctx);
|
||||
|
||||
// set the number of command buffers to use
|
||||
void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb);
|
||||
|
||||
// creates a mapping between a host memory buffer and a device memory buffer
|
||||
// - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute
|
||||
// - the mapping is used during computation to determine the arguments of the compute kernels
|
||||
// - you don't need to keep the host memory buffer allocated as it is never accessed by Metal
|
||||
// - max_size specifies the maximum size of a tensor and is used to create shared views such
|
||||
// that it is guaranteed that the tensor will fit in at least one of the views
|
||||
//
|
||||
bool ggml_metal_add_buffer(
|
||||
struct ggml_metal_context * ctx,
|
||||
const char * name,
|
||||
void * data,
|
||||
size_t size,
|
||||
size_t max_size);
|
||||
|
||||
// set data from host memory into the device
|
||||
void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
|
||||
|
||||
// get data from the device into host memory
|
||||
void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
|
||||
|
||||
// try to find operations that can be run concurrently in the graph
|
||||
// you should run it again if the topology of your graph changes
|
||||
void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
|
||||
|
||||
// if the graph has been optimized for concurrently dispatch
|
||||
bool ggml_metal_if_optimized(struct ggml_metal_context * ctx);
|
||||
|
||||
// same as ggml_graph_compute but uses Metal
|
||||
// creates gf->n_threads command buffers in parallel
|
||||
void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
1180
llm/ggml-metal.m
1180
llm/ggml-metal.m
File diff suppressed because it is too large
Load diff
2000
llm/ggml-metal.metal
2000
llm/ggml-metal.metal
File diff suppressed because it is too large
Load diff
244
llm/ggml-mpi.c
244
llm/ggml-mpi.c
|
@ -1,244 +0,0 @@
|
|||
//go:build mpi
|
||||
|
||||
/**
|
||||
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
|
||||
*
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2023 Georgi Gerganov
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
#include "ggml-mpi.h"
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#include <mpi.h>
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
|
||||
#define UNUSED GGML_UNUSED
|
||||
|
||||
struct ggml_mpi_context {
|
||||
int rank;
|
||||
int size;
|
||||
};
|
||||
|
||||
void ggml_mpi_backend_init(void) {
|
||||
MPI_Init(NULL, NULL);
|
||||
}
|
||||
|
||||
void ggml_mpi_backend_free(void) {
|
||||
MPI_Finalize();
|
||||
}
|
||||
|
||||
struct ggml_mpi_context * ggml_mpi_init(void) {
|
||||
struct ggml_mpi_context * ctx = calloc(1, sizeof(struct ggml_mpi_context));
|
||||
|
||||
MPI_Comm_rank(MPI_COMM_WORLD, &ctx->rank);
|
||||
MPI_Comm_size(MPI_COMM_WORLD, &ctx->size);
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
void ggml_mpi_free(struct ggml_mpi_context * ctx) {
|
||||
free(ctx);
|
||||
}
|
||||
|
||||
int ggml_mpi_rank(struct ggml_mpi_context * ctx) {
|
||||
return ctx->rank;
|
||||
}
|
||||
|
||||
void ggml_mpi_eval_init(
|
||||
struct ggml_mpi_context * ctx_mpi,
|
||||
int * n_tokens,
|
||||
int * n_past,
|
||||
int * n_threads) {
|
||||
UNUSED(ctx_mpi);
|
||||
|
||||
// synchronize the worker node parameters with the root node
|
||||
MPI_Barrier(MPI_COMM_WORLD);
|
||||
|
||||
MPI_Bcast(n_tokens, 1, MPI_INT, 0, MPI_COMM_WORLD);
|
||||
MPI_Bcast(n_past, 1, MPI_INT, 0, MPI_COMM_WORLD);
|
||||
MPI_Bcast(n_threads, 1, MPI_INT, 0, MPI_COMM_WORLD);
|
||||
}
|
||||
|
||||
static int ggml_graph_get_node_idx(struct ggml_cgraph * gf, const char * name) {
|
||||
struct ggml_tensor * t = ggml_graph_get_tensor(gf, name);
|
||||
if (t == NULL) {
|
||||
fprintf(stderr, "%s: tensor %s not found\n", __func__, name);
|
||||
return -1;
|
||||
}
|
||||
|
||||
for (int i = 0; i < gf->n_nodes; i++) {
|
||||
if (gf->nodes[i] == t) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: tensor %s not found in graph (should not happen)\n", __func__, name);
|
||||
return -1;
|
||||
}
|
||||
|
||||
static void ggml_mpi_tensor_send(struct ggml_tensor * t, int mpi_rank_dst) {
|
||||
MPI_Datatype mpi_type;
|
||||
|
||||
switch (t->type) {
|
||||
case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break;
|
||||
case GGML_TYPE_F32: mpi_type = MPI_FLOAT; break;
|
||||
default: GGML_ASSERT(false && "not implemented");
|
||||
}
|
||||
|
||||
const int retval = MPI_Send(t->data, ggml_nelements(t), mpi_type, mpi_rank_dst, 0, MPI_COMM_WORLD);
|
||||
GGML_ASSERT(retval == MPI_SUCCESS);
|
||||
}
|
||||
|
||||
static void ggml_mpi_tensor_recv(struct ggml_tensor * t, int mpi_rank_src) {
|
||||
MPI_Datatype mpi_type;
|
||||
|
||||
switch (t->type) {
|
||||
case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break;
|
||||
case GGML_TYPE_F32: mpi_type = MPI_FLOAT; break;
|
||||
default: GGML_ASSERT(false && "not implemented");
|
||||
}
|
||||
|
||||
MPI_Status status; UNUSED(status);
|
||||
|
||||
const int retval = MPI_Recv(t->data, ggml_nelements(t), mpi_type, mpi_rank_src, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
GGML_ASSERT(retval == MPI_SUCCESS);
|
||||
}
|
||||
|
||||
// TODO: there are many improvements that can be done to this implementation
|
||||
void ggml_mpi_graph_compute_pre(
|
||||
struct ggml_mpi_context * ctx_mpi,
|
||||
struct ggml_cgraph * gf,
|
||||
int n_layers) {
|
||||
const int mpi_rank = ctx_mpi->rank;
|
||||
const int mpi_size = ctx_mpi->size;
|
||||
|
||||
struct ggml_tensor * inp_tokens = ggml_graph_get_tensor(gf, "inp_tokens");
|
||||
if (inp_tokens == NULL) {
|
||||
fprintf(stderr, "%s: tensor 'inp_tokens' not found\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
struct ggml_tensor * inp0 = ggml_graph_get_tensor(gf, "layer_inp_0");
|
||||
if (inp0 == NULL) {
|
||||
fprintf(stderr, "%s: tensor 'inp0' not found\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
GGML_ASSERT(inp0 == gf->nodes[0]);
|
||||
|
||||
// distribute the compute graph into slices across the MPI nodes
|
||||
//
|
||||
// the main node (0) processes the last layers + the remainder of the compute graph
|
||||
// and is responsible to pass the input tokens to the first node (1)
|
||||
//
|
||||
// node 1: [( 0) * n_per_node, ( 1) * n_per_node)
|
||||
// node 2: [( 1) * n_per_node, ( 2) * n_per_node)
|
||||
// ...
|
||||
// node n-1: [(n-2) * n_per_node, (n-1) * n_per_node)
|
||||
// node 0: [(n-1) * n_per_node, n_nodes)
|
||||
//
|
||||
if (mpi_rank > 0) {
|
||||
if (mpi_rank == 1) {
|
||||
// the first node (1) receives the input tokens from the main node (0)
|
||||
ggml_mpi_tensor_recv(inp_tokens, 0);
|
||||
} else {
|
||||
// recv input data for each node into the "inp0" tensor (i.e. the first node in the compute graph)
|
||||
ggml_mpi_tensor_recv(inp0, mpi_rank - 1);
|
||||
}
|
||||
} else if (mpi_size > 1) {
|
||||
// node 0 sends the input tokens to node 1
|
||||
ggml_mpi_tensor_send(inp_tokens, 1);
|
||||
|
||||
// recv the output data from the last node
|
||||
ggml_mpi_tensor_recv(inp0, mpi_size - 1);
|
||||
}
|
||||
|
||||
{
|
||||
const int n_per_node = (n_layers + (mpi_size - 1)) / mpi_size;
|
||||
|
||||
const int mpi_idx = mpi_rank > 0 ? mpi_rank - 1 : mpi_size - 1;
|
||||
|
||||
const int il0 = (mpi_idx + 0) * n_per_node;
|
||||
const int il1 = MIN(n_layers, (mpi_idx + 1) * n_per_node);
|
||||
|
||||
char name_l0[GGML_MAX_NAME];
|
||||
char name_l1[GGML_MAX_NAME];
|
||||
|
||||
snprintf(name_l0, sizeof(name_l0), "layer_inp_%d", il0);
|
||||
snprintf(name_l1, sizeof(name_l1), "layer_inp_%d", il1);
|
||||
|
||||
const int idx_l0 = ggml_graph_get_node_idx(gf, name_l0);
|
||||
const int idx_l1 = mpi_rank > 0 ? ggml_graph_get_node_idx(gf, name_l1) + 1 : gf->n_nodes;
|
||||
|
||||
if (idx_l0 < 0 || idx_l1 < 0) {
|
||||
fprintf(stderr, "%s: layer input nodes not found\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
// attach the input data to all nodes that need it
|
||||
// TODO: not great - should be able to do this without modifying the compute graph (see next TODO below)
|
||||
for (int i = idx_l0; i < idx_l1; i++) {
|
||||
if (gf->nodes[i]->src[0] == gf->nodes[idx_l0]) {
|
||||
gf->nodes[i]->src[0] = inp0;
|
||||
}
|
||||
if (gf->nodes[i]->src[1] == gf->nodes[idx_l0]) {
|
||||
gf->nodes[i]->src[1] = inp0;
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: instead of rearranging the nodes, we should be able to execute a subset of the compute graph
|
||||
for (int i = 1; i < idx_l1 - idx_l0; i++) {
|
||||
gf->nodes[i] = gf->nodes[idx_l0 + i];
|
||||
gf->grads[i] = gf->grads[idx_l0 + i];
|
||||
}
|
||||
|
||||
// the first node performs the "get_rows" operation, the rest of the nodes get the data from the previous node
|
||||
if (mpi_idx != 0) {
|
||||
gf->nodes[0]->op = GGML_OP_NONE;
|
||||
}
|
||||
|
||||
gf->n_nodes = idx_l1 - idx_l0;
|
||||
|
||||
//fprintf(stderr, "%s: node %d: processing %d nodes [%d, %d)\n", __func__, mpi_rank, gf->n_nodes, il0, il1);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_mpi_graph_compute_post(
|
||||
struct ggml_mpi_context * ctx_mpi,
|
||||
struct ggml_cgraph * gf,
|
||||
int n_layers) {
|
||||
UNUSED(n_layers);
|
||||
|
||||
const int mpi_rank = ctx_mpi->rank;
|
||||
const int mpi_size = ctx_mpi->size;
|
||||
|
||||
// send the output data to the next node
|
||||
if (mpi_rank > 0) {
|
||||
ggml_mpi_tensor_send(gf->nodes[gf->n_nodes - 1], (mpi_rank + 1) % mpi_size);
|
||||
}
|
||||
}
|
|
@ -1,67 +0,0 @@
|
|||
//go:build mpi
|
||||
|
||||
/**
|
||||
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
|
||||
*
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2023 Georgi Gerganov
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
struct ggml_context;
|
||||
struct ggml_tensor;
|
||||
struct ggml_cgraph;
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct ggml_mpi_context;
|
||||
|
||||
void ggml_mpi_backend_init(void);
|
||||
void ggml_mpi_backend_free(void);
|
||||
|
||||
struct ggml_mpi_context * ggml_mpi_init(void);
|
||||
void ggml_mpi_free(struct ggml_mpi_context * ctx);
|
||||
|
||||
int ggml_mpi_rank(struct ggml_mpi_context * ctx);
|
||||
|
||||
void ggml_mpi_eval_init(
|
||||
struct ggml_mpi_context * ctx_mpi,
|
||||
int * n_tokens,
|
||||
int * n_past,
|
||||
int * n_threads);
|
||||
|
||||
void ggml_mpi_graph_compute_pre(
|
||||
struct ggml_mpi_context * ctx_mpi,
|
||||
struct ggml_cgraph * gf,
|
||||
int n_layers);
|
||||
|
||||
void ggml_mpi_graph_compute_post(
|
||||
struct ggml_mpi_context * ctx_mpi,
|
||||
struct ggml_cgraph * gf,
|
||||
int n_layers);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
1893
llm/ggml-opencl.cpp
1893
llm/ggml-opencl.cpp
File diff suppressed because it is too large
Load diff
|
@ -1,53 +0,0 @@
|
|||
//go:build opencl
|
||||
|
||||
/**
|
||||
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
|
||||
*
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2023 Georgi Gerganov
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void ggml_cl_init(void);
|
||||
|
||||
void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
|
||||
|
||||
void * ggml_cl_host_malloc(size_t size);
|
||||
void ggml_cl_host_free(void * ptr);
|
||||
|
||||
void ggml_cl_free_data(const struct ggml_tensor* tensor);
|
||||
|
||||
void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
18722
llm/ggml.c
18722
llm/ggml.c
File diff suppressed because it is too large
Load diff
1780
llm/ggml.h
1780
llm/ggml.h
File diff suppressed because it is too large
Load diff
727
llm/ggml_llama.go
Normal file
727
llm/ggml_llama.go
Normal file
|
@ -0,0 +1,727 @@
|
|||
package llm
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"bytes"
|
||||
"context"
|
||||
"embed"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"io/fs"
|
||||
"log"
|
||||
"math/rand"
|
||||
"net/http"
|
||||
"os"
|
||||
"os/exec"
|
||||
"path"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"strconv"
|
||||
"strings"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/jmorganca/ollama/api"
|
||||
)
|
||||
|
||||
const ModelFamilyLlama ModelFamily = "llama"
|
||||
|
||||
//go:embed llama.cpp/ggml/build/*/bin/*
|
||||
var llamaCppEmbed embed.FS
|
||||
|
||||
var (
|
||||
ggmlGPU = path.Join("llama.cpp", "ggml", "build", "gpu", "bin")
|
||||
ggmlCPU = path.Join("llama.cpp", "ggml", "build", "cpu", "bin")
|
||||
)
|
||||
|
||||
var (
|
||||
ggmlInit sync.Once
|
||||
ggmlRunnerPath string
|
||||
)
|
||||
|
||||
func osPath(llamaPath string) string {
|
||||
if runtime.GOOS == "windows" {
|
||||
return path.Join(llamaPath, "Release")
|
||||
}
|
||||
return llamaPath
|
||||
}
|
||||
|
||||
func initGGML() {
|
||||
ggmlInit.Do(func() {
|
||||
tmpDir, err := os.MkdirTemp("", "llama-*")
|
||||
if err != nil {
|
||||
log.Fatalf("llama.cpp: failed to create temp dir: %v", err)
|
||||
}
|
||||
|
||||
llamaPath := osPath(ggmlGPU)
|
||||
if _, err := fs.Stat(llamaCppEmbed, llamaPath); err != nil {
|
||||
llamaPath = osPath(ggmlCPU)
|
||||
if _, err := fs.Stat(llamaCppEmbed, llamaPath); err != nil {
|
||||
log.Fatalf("llama.cpp executable not found")
|
||||
}
|
||||
}
|
||||
|
||||
files := []string{"server"}
|
||||
switch runtime.GOOS {
|
||||
case "windows":
|
||||
files = []string{"server.exe"}
|
||||
case "darwin":
|
||||
files = append(files, "ggml-metal.metal")
|
||||
}
|
||||
|
||||
for _, f := range files {
|
||||
srcPath := path.Join(llamaPath, f)
|
||||
destPath := filepath.Join(tmpDir, f)
|
||||
|
||||
srcFile, err := llamaCppEmbed.Open(srcPath)
|
||||
if err != nil {
|
||||
log.Fatalf("read llama.cpp %s: %v", f, err)
|
||||
}
|
||||
defer srcFile.Close()
|
||||
|
||||
destFile, err := os.OpenFile(destPath, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0o755)
|
||||
if err != nil {
|
||||
log.Fatalf("write llama.cpp %s: %v", f, err)
|
||||
}
|
||||
defer destFile.Close()
|
||||
|
||||
if _, err := io.Copy(destFile, srcFile); err != nil {
|
||||
log.Fatalf("copy llama.cpp %s: %v", f, err)
|
||||
}
|
||||
}
|
||||
|
||||
ggmlRunnerPath = filepath.Join(tmpDir, "server")
|
||||
if runtime.GOOS == "windows" {
|
||||
ggmlRunnerPath = filepath.Join(tmpDir, "server.exe")
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
type ModelRunner struct {
|
||||
Path string // path to the model runner executable
|
||||
}
|
||||
|
||||
func ggmlRunner() ModelRunner {
|
||||
initGGML()
|
||||
return ModelRunner{Path: ggmlRunnerPath}
|
||||
}
|
||||
|
||||
type llamaModel struct {
|
||||
hyperparameters llamaHyperparameters
|
||||
}
|
||||
|
||||
func (llm *llamaModel) ModelFamily() ModelFamily {
|
||||
return ModelFamilyLlama
|
||||
}
|
||||
|
||||
func (llm *llamaModel) ModelType() ModelType {
|
||||
switch llm.hyperparameters.NumLayer {
|
||||
case 26:
|
||||
return ModelType3B
|
||||
case 32:
|
||||
return ModelType7B
|
||||
case 40:
|
||||
return ModelType13B
|
||||
case 48:
|
||||
return ModelType34B
|
||||
case 60:
|
||||
return ModelType30B
|
||||
case 80:
|
||||
return ModelType65B
|
||||
}
|
||||
|
||||
// TODO: find a better default
|
||||
return ModelType7B
|
||||
}
|
||||
|
||||
func (llm *llamaModel) FileType() FileType {
|
||||
return llm.hyperparameters.FileType
|
||||
}
|
||||
|
||||
type llamaHyperparameters struct {
|
||||
// NumVocab is the size of the model's vocabulary.
|
||||
NumVocab uint32
|
||||
|
||||
// NumEmbd is the size of the model's embedding layer.
|
||||
NumEmbd uint32
|
||||
NumMult uint32
|
||||
NumHead uint32
|
||||
|
||||
// NumLayer is the number of layers in the model.
|
||||
NumLayer uint32
|
||||
NumRot uint32
|
||||
|
||||
// FileType describes the quantization level of the model, e.g. Q4_0, Q5_K, etc.
|
||||
FileType llamaFileType
|
||||
}
|
||||
|
||||
type llamaFileType uint32
|
||||
|
||||
const (
|
||||
llamaFileTypeF32 llamaFileType = iota
|
||||
llamaFileTypeF16
|
||||
llamaFileTypeQ4_0
|
||||
llamaFileTypeQ4_1
|
||||
llamaFileTypeQ4_1_F16
|
||||
llamaFileTypeQ8_0 llamaFileType = iota + 2
|
||||
llamaFileTypeQ5_0
|
||||
llamaFileTypeQ5_1
|
||||
llamaFileTypeQ2_K
|
||||
llamaFileTypeQ3_K_S
|
||||
llamaFileTypeQ3_K_M
|
||||
llamaFileTypeQ3_K_L
|
||||
llamaFileTypeQ4_K_S
|
||||
llamaFileTypeQ4_K_M
|
||||
llamaFileTypeQ5_K_S
|
||||
llamaFileTypeQ5_K_M
|
||||
llamaFileTypeQ6_K
|
||||
)
|
||||
|
||||
func (ft llamaFileType) String() string {
|
||||
switch ft {
|
||||
case llamaFileTypeF32:
|
||||
return "F32"
|
||||
case llamaFileTypeF16:
|
||||
return "F16"
|
||||
case llamaFileTypeQ4_0:
|
||||
return "Q4_0"
|
||||
case llamaFileTypeQ4_1:
|
||||
return "Q4_1"
|
||||
case llamaFileTypeQ4_1_F16:
|
||||
return "Q4_1_F16"
|
||||
case llamaFileTypeQ8_0:
|
||||
return "Q8_0"
|
||||
case llamaFileTypeQ5_0:
|
||||
return "Q5_0"
|
||||
case llamaFileTypeQ5_1:
|
||||
return "Q5_1"
|
||||
case llamaFileTypeQ2_K:
|
||||
return "Q2_K"
|
||||
case llamaFileTypeQ3_K_S:
|
||||
return "Q3_K_S"
|
||||
case llamaFileTypeQ3_K_M:
|
||||
return "Q3_K_M"
|
||||
case llamaFileTypeQ3_K_L:
|
||||
return "Q3_K_L"
|
||||
case llamaFileTypeQ4_K_S:
|
||||
return "Q4_K_S"
|
||||
case llamaFileTypeQ4_K_M:
|
||||
return "Q4_K_M"
|
||||
case llamaFileTypeQ5_K_S:
|
||||
return "Q5_K_S"
|
||||
case llamaFileTypeQ5_K_M:
|
||||
return "Q5_K_M"
|
||||
case llamaFileTypeQ6_K:
|
||||
return "Q6_K"
|
||||
default:
|
||||
return "Unknown"
|
||||
}
|
||||
}
|
||||
|
||||
type Running struct {
|
||||
Port int
|
||||
Cmd *exec.Cmd
|
||||
Cancel context.CancelFunc
|
||||
}
|
||||
|
||||
type llama struct {
|
||||
api.Options
|
||||
Running
|
||||
}
|
||||
|
||||
func newLlama(model string, adapters []string, runner ModelRunner, opts api.Options) (*llama, error) {
|
||||
if _, err := os.Stat(model); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if _, err := os.Stat(runner.Path); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if len(adapters) > 1 {
|
||||
return nil, errors.New("ollama supports only one lora adapter, but multiple were provided")
|
||||
}
|
||||
|
||||
params := []string{
|
||||
"--model", model,
|
||||
"--ctx-size", fmt.Sprintf("%d", opts.NumCtx),
|
||||
"--gqa", fmt.Sprintf("%d", opts.NumGQA),
|
||||
"--rope-freq-base", fmt.Sprintf("%f", opts.RopeFrequencyBase),
|
||||
"--rope-freq-scale", fmt.Sprintf("%f", opts.RopeFrequencyScale),
|
||||
"--batch-size", fmt.Sprintf("%d", opts.NumBatch),
|
||||
"--n-gpu-layers", fmt.Sprintf("%d", opts.NumGPU),
|
||||
"--embedding",
|
||||
}
|
||||
|
||||
if len(adapters) > 0 {
|
||||
// TODO: applying multiple adapters is not supported by the llama.cpp server yet
|
||||
params = append(params, "--lora", adapters[0])
|
||||
}
|
||||
|
||||
if opts.NumThread > 0 {
|
||||
params = append(params, "--threads", fmt.Sprintf("%d", opts.NumThread))
|
||||
}
|
||||
|
||||
if !opts.F16KV {
|
||||
params = append(params, "--memory-f32")
|
||||
}
|
||||
if opts.UseMLock {
|
||||
params = append(params, "--mlock")
|
||||
}
|
||||
if !opts.UseMMap {
|
||||
params = append(params, "--no-mmap")
|
||||
}
|
||||
if opts.UseNUMA {
|
||||
params = append(params, "--numa")
|
||||
}
|
||||
|
||||
// start the llama.cpp server with a retry in case the port is already in use
|
||||
for try := 0; try < 3; try++ {
|
||||
port := rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
|
||||
ctx, cancel := context.WithCancel(context.Background())
|
||||
cmd := exec.CommandContext(
|
||||
ctx,
|
||||
runner.Path,
|
||||
append(params, "--port", strconv.Itoa(port))...,
|
||||
)
|
||||
var stderr bytes.Buffer
|
||||
cmd.Stderr = &stderr
|
||||
|
||||
llm := &llama{Options: opts, Running: Running{Port: port, Cmd: cmd, Cancel: cancel}}
|
||||
|
||||
if err := waitForServer(llm); err != nil {
|
||||
log.Printf("error starting llama.cpp server: %v", err)
|
||||
llm.Close()
|
||||
// try again
|
||||
continue
|
||||
}
|
||||
// server started successfully
|
||||
return llm, nil
|
||||
}
|
||||
|
||||
return nil, fmt.Errorf("max retry exceeded starting llama.cpp")
|
||||
}
|
||||
|
||||
func waitForServer(llm *llama) error {
|
||||
log.Print("starting llama.cpp server")
|
||||
var stderr bytes.Buffer
|
||||
llm.Cmd.Stderr = &stderr
|
||||
err := llm.Cmd.Start()
|
||||
if err != nil {
|
||||
return fmt.Errorf("error starting the external llama.cpp server: %w", err)
|
||||
}
|
||||
|
||||
exitChan := make(chan error, 1)
|
||||
|
||||
// the server is a long running process, watch for it exiting to keep track of something going wrong
|
||||
go func() {
|
||||
err := llm.Cmd.Wait()
|
||||
log.Print(stderr.String())
|
||||
exitChan <- err
|
||||
}()
|
||||
|
||||
// wait for the server to start responding
|
||||
start := time.Now()
|
||||
expiresAt := time.Now().Add(30 * time.Second)
|
||||
ticker := time.NewTicker(100 * time.Millisecond)
|
||||
|
||||
log.Print("waiting for llama.cpp server to start responding")
|
||||
|
||||
for {
|
||||
select {
|
||||
case <-ticker.C:
|
||||
if time.Now().After(expiresAt) {
|
||||
return fmt.Errorf("llama.cpp server did not start responding within 30 seconds, retrying")
|
||||
}
|
||||
if err := llm.Ping(context.Background()); err == nil {
|
||||
log.Printf("llama.cpp server started in %f seconds", time.Since(start).Seconds())
|
||||
return nil
|
||||
}
|
||||
case err := <-exitChan:
|
||||
return fmt.Errorf("llama.cpp server exited unexpectedly: %w", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (llm *llama) Close() {
|
||||
llm.Running.Cmd.Cancel()
|
||||
}
|
||||
|
||||
func (llm *llama) SetOptions(opts api.Options) {
|
||||
llm.Options = opts
|
||||
}
|
||||
|
||||
type Prediction struct {
|
||||
Content string `json:"content"`
|
||||
Stop bool `json:"stop"`
|
||||
}
|
||||
|
||||
type GenerationSettings struct {
|
||||
FrequencyPenalty float64 `json:"frequency_penalty"`
|
||||
IgnoreEOS bool `json:"ignore_eos"`
|
||||
LogitBias []interface{} `json:"logit_bias"`
|
||||
Mirostat int `json:"mirostat"`
|
||||
MirostatEta float64 `json:"mirostat_eta"`
|
||||
MirostatTau float64 `json:"mirostat_tau"`
|
||||
Model string `json:"model"`
|
||||
NCtx int `json:"n_ctx"`
|
||||
NKeep int `json:"n_keep"`
|
||||
NPredict int `json:"n_predict"`
|
||||
NProbs int `json:"n_probs"`
|
||||
PenalizeNl bool `json:"penalize_nl"`
|
||||
PresencePenalty float64 `json:"presence_penalty"`
|
||||
RepeatLastN int `json:"repeat_last_n"`
|
||||
RepeatPenalty float64 `json:"repeat_penalty"`
|
||||
Seed uint32 `json:"seed"`
|
||||
Stop []string `json:"stop"`
|
||||
Stream bool `json:"stream"`
|
||||
Temp float64 `json:"temp"`
|
||||
TfsZ float64 `json:"tfs_z"`
|
||||
TopK int `json:"top_k"`
|
||||
TopP float64 `json:"top_p"`
|
||||
TypicalP float64 `json:"typical_p"`
|
||||
}
|
||||
|
||||
type Timings struct {
|
||||
PredictedMS float64 `json:"predicted_ms"`
|
||||
PredictedN int `json:"predicted_n"`
|
||||
PredictedPerSecond float64 `json:"predicted_per_second"`
|
||||
PredictedPerTokenMS float64 `json:"predicted_per_token_ms"`
|
||||
PromptMS float64 `json:"prompt_ms"`
|
||||
PromptN int `json:"prompt_n"`
|
||||
PromptPerSecond float64 `json:"prompt_per_second"`
|
||||
PromptPerTokenMS float64 `json:"prompt_per_token_ms"`
|
||||
}
|
||||
|
||||
type PredictComplete struct {
|
||||
Content string `json:"content"`
|
||||
GenerationSettings GenerationSettings `json:"generation_settings"`
|
||||
Model string `json:"model"`
|
||||
Prompt string `json:"prompt"`
|
||||
Stop bool `json:"stop"`
|
||||
StoppedEOS bool `json:"stopped_eos"`
|
||||
StoppedLimit bool `json:"stopped_limit"`
|
||||
StoppedWord bool `json:"stopped_word"`
|
||||
StoppingWord string `json:"stopping_word"`
|
||||
Timings Timings `json:"timings"`
|
||||
TokensCached int `json:"tokens_cached"`
|
||||
TokensEvaluated int `json:"tokens_evaluated"`
|
||||
TokensPredicted int `json:"tokens_predicted"`
|
||||
Truncated bool `json:"truncated"`
|
||||
}
|
||||
|
||||
type PredictRequest struct {
|
||||
Stream bool `json:"stream"`
|
||||
NPredict int `json:"n_predict,omitempty"`
|
||||
TopK int `json:"top_k,omitempty"`
|
||||
TopP float32 `json:"top_p,omitempty"`
|
||||
TfsZ float32 `json:"tfs_z,omitempty"`
|
||||
TypicalP float32 `json:"typical_p,omitempty"`
|
||||
RepeatLastN int `json:"repeat_last_n,omitempty"`
|
||||
Temperature float32 `json:"temperature,omitempty"`
|
||||
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
|
||||
PresencePenalty float32 `json:"presence_penalty,omitempty"`
|
||||
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
|
||||
Mirostat int `json:"mirostat,omitempty"`
|
||||
MirostatTau float32 `json:"mirostat_tau,omitempty"`
|
||||
MirostatEta float32 `json:"mirostat_eta,omitempty"`
|
||||
PenalizeNl bool `json:"penalize_nl,omitempty"`
|
||||
NKeep int `json:"n_keep,omitempty"`
|
||||
Seed int `json:"seed,omitempty"`
|
||||
Prompt string `json:"prompt,omitempty"`
|
||||
NProbs int `json:"n_probs,omitempty"`
|
||||
LogitBias map[int]float32 `json:"logit_bias,omitempty"`
|
||||
IgnoreEos bool `json:"ignore_eos,omitempty"`
|
||||
Stop []string `json:"stop,omitempty"`
|
||||
}
|
||||
|
||||
func (llm *llama) Predict(ctx context.Context, predictCtx []int, prompt string, fn func(api.GenerateResponse)) error {
|
||||
// we need to find the trimmed prompt context before predicting so that we can return it to the client
|
||||
trimmedPrompt, err := llm.marshalPrompt(ctx, predictCtx, prompt)
|
||||
if err != nil {
|
||||
return fmt.Errorf("marshaling prompt: %v", err)
|
||||
}
|
||||
endpoint := fmt.Sprintf("http://127.0.0.1:%d/completion", llm.Port)
|
||||
predReq := PredictRequest{
|
||||
Prompt: trimmedPrompt,
|
||||
Stream: true,
|
||||
NPredict: llm.NumPredict,
|
||||
NKeep: llm.NumKeep,
|
||||
Temperature: llm.Temperature,
|
||||
TopK: llm.TopK,
|
||||
TopP: llm.TopP,
|
||||
TfsZ: llm.TFSZ,
|
||||
TypicalP: llm.TypicalP,
|
||||
RepeatLastN: llm.RepeatLastN,
|
||||
RepeatPenalty: llm.RepeatPenalty,
|
||||
PresencePenalty: llm.PresencePenalty,
|
||||
FrequencyPenalty: llm.FrequencyPenalty,
|
||||
Mirostat: llm.Mirostat,
|
||||
MirostatTau: llm.MirostatTau,
|
||||
MirostatEta: llm.MirostatEta,
|
||||
PenalizeNl: llm.PenalizeNewline,
|
||||
Stop: llm.Stop,
|
||||
}
|
||||
data, err := json.Marshal(predReq)
|
||||
if err != nil {
|
||||
return fmt.Errorf("error marshaling data: %v", err)
|
||||
}
|
||||
|
||||
req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, bytes.NewBuffer(data))
|
||||
if err != nil {
|
||||
return fmt.Errorf("error creating POST request: %v", err)
|
||||
}
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
|
||||
resp, err := http.DefaultClient.Do(req)
|
||||
if err != nil {
|
||||
return fmt.Errorf("POST predict: %v", err)
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
if resp.StatusCode >= 400 {
|
||||
bodyBytes, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading llm error response: %w", err)
|
||||
}
|
||||
log.Printf("llm predict error: %s", bodyBytes)
|
||||
return fmt.Errorf("%s", bodyBytes)
|
||||
}
|
||||
|
||||
scanner := bufio.NewScanner(resp.Body)
|
||||
genCtx := trimmedPrompt // start with the trimmed prompt
|
||||
for scanner.Scan() {
|
||||
select {
|
||||
case <-ctx.Done():
|
||||
// This handles the request cancellation
|
||||
return ctx.Err()
|
||||
default:
|
||||
line := scanner.Text()
|
||||
if line == "" {
|
||||
continue
|
||||
}
|
||||
|
||||
// Read data from the server-side event stream
|
||||
if strings.HasPrefix(line, "data: ") {
|
||||
evt := line[6:]
|
||||
var complete PredictComplete
|
||||
if err := json.Unmarshal([]byte(evt), &complete); err != nil {
|
||||
return fmt.Errorf("error unmarshaling llm complete response: %v", err)
|
||||
}
|
||||
|
||||
if complete.Timings.PredictedMS > 0 {
|
||||
genCtx += complete.Content
|
||||
embd, err := llm.Encode(ctx, genCtx)
|
||||
if err != nil {
|
||||
return fmt.Errorf("encoding context: %v", err)
|
||||
}
|
||||
fn(api.GenerateResponse{
|
||||
Done: true,
|
||||
Context: embd,
|
||||
PromptEvalCount: int(complete.Timings.PromptN),
|
||||
PromptEvalDuration: parseDurationMs(float64(complete.Timings.PromptMS)),
|
||||
EvalCount: int(complete.Timings.PredictedN),
|
||||
EvalDuration: parseDurationMs(float64(complete.Timings.PredictedMS)),
|
||||
})
|
||||
return nil
|
||||
}
|
||||
|
||||
var pred Prediction
|
||||
if err := json.Unmarshal([]byte(evt), &pred); err != nil {
|
||||
return fmt.Errorf("error unmarshaling llm prediction response: %v", err)
|
||||
}
|
||||
genCtx += pred.Content
|
||||
fn(api.GenerateResponse{Response: pred.Content})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if err := scanner.Err(); err != nil {
|
||||
return fmt.Errorf("error reading llm response: %v", err)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (llm *llama) marshalPrompt(ctx context.Context, pCtx []int, prompt string) (string, error) {
|
||||
pEncode, err := llm.Encode(ctx, prompt)
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("encoding prompt context: %w", err)
|
||||
}
|
||||
tokens := append(pCtx, pEncode...)
|
||||
if llm.NumKeep < 0 {
|
||||
llm.NumKeep = len(tokens)
|
||||
}
|
||||
|
||||
// min(llm.NumCtx - 4, llm.NumKeep)
|
||||
if llm.NumCtx-4 < llm.NumKeep {
|
||||
llm.NumKeep = llm.NumCtx - 4
|
||||
}
|
||||
|
||||
if len(tokens) >= llm.NumCtx {
|
||||
// truncate input
|
||||
numLeft := (llm.NumCtx - llm.NumKeep) / 2
|
||||
truncated := tokens[:llm.NumKeep]
|
||||
erasedBlocks := (len(tokens) - llm.NumKeep - numLeft - 1) / numLeft
|
||||
truncated = append(truncated, tokens[llm.NumKeep+erasedBlocks*numLeft:]...)
|
||||
tokens = truncated
|
||||
log.Printf("input truncated: num_ctx=%d num_keep=%d num_left=%d num_tokens=%d", llm.NumCtx, llm.NumKeep, numLeft, len(truncated))
|
||||
}
|
||||
|
||||
return llm.Decode(ctx, tokens)
|
||||
}
|
||||
|
||||
type TokenizeRequest struct {
|
||||
Content string `json:"content"`
|
||||
}
|
||||
|
||||
type TokenizeResponse struct {
|
||||
Tokens []int `json:"tokens"`
|
||||
}
|
||||
|
||||
func (llm *llama) Encode(ctx context.Context, prompt string) ([]int, error) {
|
||||
endpoint := fmt.Sprintf("http://127.0.0.1:%d/tokenize", llm.Port)
|
||||
data, err := json.Marshal(TokenizeRequest{Content: prompt})
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("marshaling encode data: %w", err)
|
||||
}
|
||||
|
||||
req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, bytes.NewBuffer(data))
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("encode request: %w", err)
|
||||
}
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
|
||||
resp, err := http.DefaultClient.Do(req)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("do encode request: %w", err)
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
body, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("read encode request: %w", err)
|
||||
}
|
||||
|
||||
if resp.StatusCode >= 400 {
|
||||
log.Printf("llm encode error: %s", body)
|
||||
return nil, fmt.Errorf("%s", body)
|
||||
}
|
||||
|
||||
var encoded TokenizeResponse
|
||||
if err := json.Unmarshal(body, &encoded); err != nil {
|
||||
return nil, fmt.Errorf("unmarshal encode response: %w", err)
|
||||
}
|
||||
|
||||
return encoded.Tokens, nil
|
||||
}
|
||||
|
||||
type DetokenizeRequest struct {
|
||||
Tokens []int `json:"tokens"`
|
||||
}
|
||||
|
||||
type DetokenizeResponse struct {
|
||||
Content string `json:"content"`
|
||||
}
|
||||
|
||||
func (llm *llama) Decode(ctx context.Context, tokens []int) (string, error) {
|
||||
if len(tokens) == 0 {
|
||||
return "", nil
|
||||
}
|
||||
endpoint := fmt.Sprintf("http://127.0.0.1:%d/detokenize", llm.Port)
|
||||
data, err := json.Marshal(DetokenizeRequest{Tokens: tokens})
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("marshaling decode data: %w", err)
|
||||
}
|
||||
|
||||
req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, bytes.NewBuffer(data))
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("decode request: %w", err)
|
||||
}
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
|
||||
resp, err := http.DefaultClient.Do(req)
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("do decode request: %w", err)
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
body, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("read decode request: %w", err)
|
||||
}
|
||||
|
||||
if resp.StatusCode >= 400 {
|
||||
log.Printf("llm decode error: %s", body)
|
||||
return "", fmt.Errorf("%s", body)
|
||||
}
|
||||
|
||||
var decoded DetokenizeResponse
|
||||
if err := json.Unmarshal(body, &decoded); err != nil {
|
||||
return "", fmt.Errorf("unmarshal encode response: %w", err)
|
||||
}
|
||||
|
||||
// decoded content contains a leading whitespace
|
||||
decoded.Content, _ = strings.CutPrefix(decoded.Content, "")
|
||||
|
||||
return decoded.Content, nil
|
||||
}
|
||||
|
||||
type EmbeddingRequest struct {
|
||||
Content string `json:"content"`
|
||||
}
|
||||
|
||||
type EmbeddingResponse struct {
|
||||
Embedding []float64 `json:"embedding"`
|
||||
}
|
||||
|
||||
func (llm *llama) Embedding(ctx context.Context, input string) ([]float64, error) {
|
||||
endpoint := fmt.Sprintf("http://127.0.0.1:%d/embedding", llm.Port)
|
||||
data, err := json.Marshal(TokenizeRequest{Content: input})
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("error marshaling embed data: %w", err)
|
||||
}
|
||||
|
||||
req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, bytes.NewBuffer(data))
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("error creating embed request: %w", err)
|
||||
}
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
|
||||
resp, err := http.DefaultClient.Do(req)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("POST embedding: %w", err)
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
body, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("error reading embed response: %w", err)
|
||||
}
|
||||
|
||||
if resp.StatusCode >= 400 {
|
||||
log.Printf("llm encode error: %s", body)
|
||||
return nil, fmt.Errorf("%s", body)
|
||||
}
|
||||
|
||||
var embedding EmbeddingResponse
|
||||
if err := json.Unmarshal(body, &embedding); err != nil {
|
||||
return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
|
||||
}
|
||||
|
||||
return embedding.Embedding, nil
|
||||
}
|
||||
|
||||
// Ping checks that the server subprocess is still running and responding to requests
|
||||
func (llm *llama) Ping(ctx context.Context) error {
|
||||
resp, err := http.Head(fmt.Sprintf("http://127.0.0.1:%d", llm.Running.Port))
|
||||
if err != nil {
|
||||
return fmt.Errorf("ping resp: %w", err)
|
||||
}
|
||||
if resp.StatusCode != http.StatusOK {
|
||||
return fmt.Errorf("unexpected ping status: %s", resp.Status)
|
||||
}
|
||||
return nil
|
||||
}
|
4252
llm/k_quants.c
4252
llm/k_quants.c
File diff suppressed because it is too large
Load diff
191
llm/k_quants.h
191
llm/k_quants.h
|
@ -1,191 +0,0 @@
|
|||
/**
|
||||
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
|
||||
*
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2023 Georgi Gerganov
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#include <stdint.h>
|
||||
#include <assert.h>
|
||||
#include <stddef.h>
|
||||
|
||||
// Super-block size
|
||||
#ifdef GGML_QKK_64
|
||||
#define QK_K 64
|
||||
#define K_SCALE_SIZE 4
|
||||
#else
|
||||
#define QK_K 256
|
||||
#define K_SCALE_SIZE 12
|
||||
#endif
|
||||
|
||||
#ifndef static_assert
|
||||
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
|
||||
#define static_assert(cond, msg) _Static_assert(cond, msg)
|
||||
#else
|
||||
#define static_assert(cond, msg) struct global_scope_noop_trick
|
||||
#endif
|
||||
#endif
|
||||
|
||||
//
|
||||
// Super-block quantization structures
|
||||
//
|
||||
|
||||
// 2-bit quantization
|
||||
// weight is represented as x = a * q + b
|
||||
// 16 blocks of 16 elemenets each
|
||||
// Effectively 2.5625 bits per weight
|
||||
typedef struct {
|
||||
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
|
||||
uint8_t qs[QK_K/4]; // quants
|
||||
ggml_fp16_t d; // super-block scale for quantized scales
|
||||
ggml_fp16_t dmin; // super-block scale for quantized mins
|
||||
} block_q2_K;
|
||||
static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
|
||||
|
||||
// 3-bit quantization
|
||||
// weight is represented as x = a * q
|
||||
// 16 blocks of 16 elemenets each
|
||||
// Effectively 3.4375 bits per weight
|
||||
#ifdef GGML_QKK_64
|
||||
typedef struct {
|
||||
uint8_t hmask[QK_K/8]; // quants - high bit
|
||||
uint8_t qs[QK_K/4]; // quants - low 2 bits
|
||||
uint8_t scales[2];
|
||||
ggml_fp16_t d; // super-block scale
|
||||
} block_q3_K;
|
||||
static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 2, "wrong q3_K block size/padding");
|
||||
#else
|
||||
typedef struct {
|
||||
uint8_t hmask[QK_K/8]; // quants - high bit
|
||||
uint8_t qs[QK_K/4]; // quants - low 2 bits
|
||||
uint8_t scales[12]; // scales, quantized with 6 bits
|
||||
ggml_fp16_t d; // super-block scale
|
||||
} block_q3_K;
|
||||
static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding");
|
||||
#endif
|
||||
|
||||
// 4-bit quantization
|
||||
// 16 blocks of 32 elements each
|
||||
// weight is represented as x = a * q + b
|
||||
// Effectively 4.5 bits per weight
|
||||
#ifdef GGML_QKK_64
|
||||
typedef struct {
|
||||
ggml_fp16_t d[2]; // super-block scales/mins
|
||||
uint8_t scales[2]; // 4-bit block scales/mins
|
||||
uint8_t qs[QK_K/2]; // 4--bit quants
|
||||
} block_q4_K;
|
||||
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding");
|
||||
#else
|
||||
typedef struct {
|
||||
ggml_fp16_t d; // super-block scale for quantized scales
|
||||
ggml_fp16_t dmin; // super-block scale for quantized mins
|
||||
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
|
||||
uint8_t qs[QK_K/2]; // 4--bit quants
|
||||
} block_q4_K;
|
||||
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding");
|
||||
#endif
|
||||
|
||||
// 5-bit quantization
|
||||
// 16 blocks of 32 elements each
|
||||
// weight is represented as x = a * q + b
|
||||
// Effectively 5.5 bits per weight
|
||||
#ifdef GGML_QKK_64
|
||||
typedef struct {
|
||||
ggml_fp16_t d; // super-block scale
|
||||
int8_t scales[QK_K/16]; // 8-bit block scales
|
||||
uint8_t qh[QK_K/8]; // quants, high bit
|
||||
uint8_t qs[QK_K/2]; // quants, low 4 bits
|
||||
} block_q5_K;
|
||||
static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
|
||||
#else
|
||||
typedef struct {
|
||||
ggml_fp16_t d; // super-block scale for quantized scales
|
||||
ggml_fp16_t dmin; // super-block scale for quantized mins
|
||||
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
|
||||
uint8_t qh[QK_K/8]; // quants, high bit
|
||||
uint8_t qs[QK_K/2]; // quants, low 4 bits
|
||||
} block_q5_K;
|
||||
static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
|
||||
#endif
|
||||
|
||||
// 6-bit quantization
|
||||
// weight is represented as x = a * q
|
||||
// 16 blocks of 16 elemenets each
|
||||
// Effectively 6.5625 bits per weight
|
||||
typedef struct {
|
||||
uint8_t ql[QK_K/2]; // quants, lower 4 bits
|
||||
uint8_t qh[QK_K/4]; // quants, upper 2 bits
|
||||
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
|
||||
ggml_fp16_t d; // super-block scale
|
||||
} block_q6_K;
|
||||
static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + QK_K / 16 + 3*QK_K/4, "wrong q6_K block size/padding");
|
||||
|
||||
// This is only used for intermediate quantization and dot products
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
int8_t qs[QK_K]; // quants
|
||||
int16_t bsums[QK_K/16]; // sum of quants in groups of 16
|
||||
} block_q8_K;
|
||||
static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_K block size/padding");
|
||||
|
||||
|
||||
// Quantization
|
||||
void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k);
|
||||
void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k);
|
||||
void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k);
|
||||
void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k);
|
||||
void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k);
|
||||
void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k);
|
||||
|
||||
void quantize_row_q2_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q3_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q4_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q5_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q6_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q8_K(const float * restrict x, void * restrict y, int k);
|
||||
|
||||
// Dequantization
|
||||
void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k);
|
||||
|
||||
// Dot product
|
||||
void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
|
||||
// Quantization with histogram collection
|
||||
size_t ggml_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
size_t ggml_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
|
579
llm/llama-util.h
579
llm/llama-util.h
|
@ -1,579 +0,0 @@
|
|||
/**
|
||||
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
|
||||
*
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2023 Georgi Gerganov
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
// Internal header to be included only by llama.cpp.
|
||||
// Contains wrappers around OS interfaces.
|
||||
|
||||
#ifndef LLAMA_UTIL_H
|
||||
#define LLAMA_UTIL_H
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdint>
|
||||
#include <cerrno>
|
||||
#include <cstring>
|
||||
#include <cstdarg>
|
||||
#include <cstdlib>
|
||||
#include <climits>
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <stdexcept>
|
||||
|
||||
#ifdef __has_include
|
||||
#if __has_include(<unistd.h>)
|
||||
#include <unistd.h>
|
||||
#if defined(_POSIX_MAPPED_FILES)
|
||||
#include <sys/mman.h>
|
||||
#endif
|
||||
#if defined(_POSIX_MEMLOCK_RANGE)
|
||||
#include <sys/resource.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#include <io.h>
|
||||
#include <stdio.h> // for _fseeki64
|
||||
#endif
|
||||
|
||||
#define LLAMA_ASSERT(x) \
|
||||
do { \
|
||||
if (!(x)) { \
|
||||
fprintf(stderr, "LLAMA_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
|
||||
abort(); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#ifdef __GNUC__
|
||||
#ifdef __MINGW32__
|
||||
__attribute__((format(gnu_printf, 1, 2)))
|
||||
#else
|
||||
__attribute__((format(printf, 1, 2)))
|
||||
#endif
|
||||
#endif
|
||||
static std::string format(const char * fmt, ...) {
|
||||
va_list ap, ap2;
|
||||
va_start(ap, fmt);
|
||||
va_copy(ap2, ap);
|
||||
int size = vsnprintf(NULL, 0, fmt, ap);
|
||||
LLAMA_ASSERT(size >= 0 && size < INT_MAX);
|
||||
std::vector<char> buf(size + 1);
|
||||
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||||
LLAMA_ASSERT(size2 == size);
|
||||
va_end(ap2);
|
||||
va_end(ap);
|
||||
return std::string(buf.data(), size);
|
||||
}
|
||||
|
||||
struct llama_file {
|
||||
// use FILE * so we don't have to re-open the file to mmap
|
||||
FILE * fp;
|
||||
size_t size;
|
||||
|
||||
llama_file(const char * fname, const char * mode) {
|
||||
fp = std::fopen(fname, mode);
|
||||
if (fp == NULL) {
|
||||
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
|
||||
}
|
||||
seek(0, SEEK_END);
|
||||
size = tell();
|
||||
seek(0, SEEK_SET);
|
||||
}
|
||||
|
||||
size_t tell() const {
|
||||
#ifdef _WIN32
|
||||
__int64 ret = _ftelli64(fp);
|
||||
#else
|
||||
long ret = std::ftell(fp);
|
||||
#endif
|
||||
LLAMA_ASSERT(ret != -1); // this really shouldn't fail
|
||||
return (size_t) ret;
|
||||
}
|
||||
|
||||
void seek(size_t offset, int whence) {
|
||||
#ifdef _WIN32
|
||||
int ret = _fseeki64(fp, (__int64) offset, whence);
|
||||
#else
|
||||
int ret = std::fseek(fp, (long) offset, whence);
|
||||
#endif
|
||||
LLAMA_ASSERT(ret == 0); // same
|
||||
}
|
||||
|
||||
void read_raw(void * ptr, size_t len) const {
|
||||
if (len == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
std::size_t ret = std::fread(ptr, len, 1, fp);
|
||||
if (ferror(fp)) {
|
||||
throw std::runtime_error(format("read error: %s", strerror(errno)));
|
||||
}
|
||||
if (ret != 1) {
|
||||
throw std::runtime_error(std::string("unexpectedly reached end of file"));
|
||||
}
|
||||
}
|
||||
|
||||
std::uint32_t read_u32() {
|
||||
std::uint32_t ret;
|
||||
read_raw(&ret, sizeof(ret));
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::string read_string(std::uint32_t len) {
|
||||
std::vector<char> chars(len);
|
||||
read_raw(chars.data(), len);
|
||||
return std::string(chars.data(), len);
|
||||
}
|
||||
|
||||
void write_raw(const void * ptr, size_t len) const {
|
||||
if (len == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
size_t ret = std::fwrite(ptr, len, 1, fp);
|
||||
if (ret != 1) {
|
||||
throw std::runtime_error(format("write error: %s", strerror(errno)));
|
||||
}
|
||||
}
|
||||
|
||||
void write_u32(std::uint32_t val) {
|
||||
write_raw(&val, sizeof(val));
|
||||
}
|
||||
|
||||
~llama_file() {
|
||||
if (fp) {
|
||||
std::fclose(fp);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// llama_context_data
|
||||
struct llama_data_context {
|
||||
virtual void write(const void * src, size_t size) = 0;
|
||||
virtual size_t get_size_written() = 0;
|
||||
virtual ~llama_data_context() = default;
|
||||
};
|
||||
|
||||
struct llama_data_buffer_context : llama_data_context {
|
||||
uint8_t* ptr;
|
||||
size_t size_written = 0;
|
||||
|
||||
llama_data_buffer_context(uint8_t * p) : ptr(p) {}
|
||||
|
||||
void write(const void * src, size_t size) override {
|
||||
memcpy(ptr, src, size);
|
||||
ptr += size;
|
||||
size_written += size;
|
||||
}
|
||||
|
||||
size_t get_size_written() override {
|
||||
return size_written;
|
||||
}
|
||||
};
|
||||
|
||||
struct llama_data_file_context : llama_data_context {
|
||||
llama_file* file;
|
||||
size_t size_written = 0;
|
||||
|
||||
llama_data_file_context(llama_file * f) : file(f) {}
|
||||
|
||||
void write(const void * src, size_t size) override {
|
||||
file->write_raw(src, size);
|
||||
size_written += size;
|
||||
}
|
||||
|
||||
size_t get_size_written() override {
|
||||
return size_written;
|
||||
}
|
||||
};
|
||||
|
||||
#if defined(_WIN32)
|
||||
static std::string llama_format_win_err(DWORD err) {
|
||||
LPSTR buf;
|
||||
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
|
||||
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
|
||||
if (!size) {
|
||||
return "FormatMessageA failed";
|
||||
}
|
||||
std::string ret(buf, size);
|
||||
LocalFree(buf);
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
|
||||
struct llama_mmap {
|
||||
void * addr;
|
||||
size_t size;
|
||||
|
||||
llama_mmap(const llama_mmap &) = delete;
|
||||
|
||||
#ifdef _POSIX_MAPPED_FILES
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
|
||||
size = file->size;
|
||||
int fd = fileno(file->fp);
|
||||
int flags = MAP_SHARED;
|
||||
// prefetch/readahead impairs performance on NUMA systems
|
||||
if (numa) { prefetch = 0; }
|
||||
#ifdef __linux__
|
||||
if (prefetch >= file->size) { flags |= MAP_POPULATE; }
|
||||
#endif
|
||||
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
|
||||
if (addr == MAP_FAILED) {
|
||||
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
|
||||
}
|
||||
|
||||
if (prefetch > 0) {
|
||||
// Advise the kernel to preload the mapped memory
|
||||
if (madvise(addr, std::min(file->size, prefetch), MADV_WILLNEED)) {
|
||||
fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
|
||||
strerror(errno));
|
||||
}
|
||||
}
|
||||
if (numa) {
|
||||
// advise the kernel not to use readahead
|
||||
// (because the next page might not belong on the same node)
|
||||
if (madvise(addr, file->size, MADV_RANDOM)) {
|
||||
fprintf(stderr, "warning: madvise(.., MADV_RANDOM) failed: %s\n",
|
||||
strerror(errno));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
~llama_mmap() {
|
||||
munmap(addr, size);
|
||||
}
|
||||
#elif defined(_WIN32)
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
|
||||
(void) numa;
|
||||
|
||||
size = file->size;
|
||||
|
||||
HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
|
||||
|
||||
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
|
||||
DWORD error = GetLastError();
|
||||
|
||||
if (hMapping == NULL) {
|
||||
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
|
||||
}
|
||||
|
||||
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
|
||||
error = GetLastError();
|
||||
CloseHandle(hMapping);
|
||||
|
||||
if (addr == NULL) {
|
||||
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
|
||||
}
|
||||
|
||||
if (prefetch) {
|
||||
// The PrefetchVirtualMemory API is only present on Windows 8 and above, so we
|
||||
// will dynamically load it using GetProcAddress.
|
||||
BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
|
||||
HMODULE hKernel32;
|
||||
|
||||
// This call is guaranteed to succeed.
|
||||
hKernel32 = GetModuleHandleW(L"kernel32.dll");
|
||||
|
||||
// This call may fail if on a pre-Win8 system.
|
||||
pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
|
||||
|
||||
if (pPrefetchVirtualMemory) {
|
||||
// Advise the kernel to preload the mapped memory.
|
||||
WIN32_MEMORY_RANGE_ENTRY range;
|
||||
range.VirtualAddress = addr;
|
||||
range.NumberOfBytes = (SIZE_T)size;
|
||||
if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
|
||||
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
~llama_mmap() {
|
||||
if (!UnmapViewOfFile(addr)) {
|
||||
fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
#else
|
||||
static constexpr bool SUPPORTED = false;
|
||||
|
||||
llama_mmap(struct llama_file *, bool prefetch = true, bool numa = false) {
|
||||
(void) prefetch;
|
||||
(void) numa;
|
||||
|
||||
throw std::runtime_error(std::string("mmap not supported"));
|
||||
}
|
||||
#endif
|
||||
};
|
||||
|
||||
// Represents some region of memory being locked using mlock or VirtualLock;
|
||||
// will automatically unlock on destruction.
|
||||
struct llama_mlock {
|
||||
void * addr = NULL;
|
||||
size_t size = 0;
|
||||
bool failed_already = false;
|
||||
|
||||
llama_mlock() {}
|
||||
llama_mlock(const llama_mlock &) = delete;
|
||||
|
||||
~llama_mlock() {
|
||||
if (size) {
|
||||
raw_unlock(addr, size);
|
||||
}
|
||||
}
|
||||
|
||||
void init(void * ptr) {
|
||||
LLAMA_ASSERT(addr == NULL && size == 0);
|
||||
addr = ptr;
|
||||
}
|
||||
|
||||
void grow_to(size_t target_size) {
|
||||
LLAMA_ASSERT(addr);
|
||||
if (failed_already) {
|
||||
return;
|
||||
}
|
||||
size_t granularity = lock_granularity();
|
||||
target_size = (target_size + granularity - 1) & ~(granularity - 1);
|
||||
if (target_size > size) {
|
||||
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
|
||||
size = target_size;
|
||||
} else {
|
||||
failed_already = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef _POSIX_MEMLOCK_RANGE
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
size_t lock_granularity() {
|
||||
return (size_t) sysconf(_SC_PAGESIZE);
|
||||
}
|
||||
|
||||
#ifdef __APPLE__
|
||||
#define MLOCK_SUGGESTION \
|
||||
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
|
||||
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
|
||||
#else
|
||||
#define MLOCK_SUGGESTION \
|
||||
"Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
|
||||
#endif
|
||||
|
||||
bool raw_lock(const void * addr, size_t size) {
|
||||
if (!mlock(addr, size)) {
|
||||
return true;
|
||||
} else {
|
||||
char* errmsg = std::strerror(errno);
|
||||
bool suggest = (errno == ENOMEM);
|
||||
|
||||
// Check if the resource limit is fine after all
|
||||
struct rlimit lock_limit;
|
||||
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit))
|
||||
suggest = false;
|
||||
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size))
|
||||
suggest = false;
|
||||
|
||||
fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
|
||||
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
#undef MLOCK_SUGGESTION
|
||||
|
||||
void raw_unlock(void * addr, size_t size) {
|
||||
if (munlock(addr, size)) {
|
||||
fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
|
||||
}
|
||||
}
|
||||
#elif defined(_WIN32)
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
size_t lock_granularity() {
|
||||
SYSTEM_INFO si;
|
||||
GetSystemInfo(&si);
|
||||
return (size_t) si.dwPageSize;
|
||||
}
|
||||
|
||||
bool raw_lock(void * ptr, size_t len) {
|
||||
for (int tries = 1; ; tries++) {
|
||||
if (VirtualLock(ptr, len)) {
|
||||
return true;
|
||||
}
|
||||
if (tries == 2) {
|
||||
fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
|
||||
len, size, llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
// It failed but this was only the first try; increase the working
|
||||
// set size and try again.
|
||||
SIZE_T min_ws_size, max_ws_size;
|
||||
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
|
||||
fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
// Per MSDN: "The maximum number of pages that a process can lock
|
||||
// is equal to the number of pages in its minimum working set minus
|
||||
// a small overhead."
|
||||
// Hopefully a megabyte is enough overhead:
|
||||
size_t increment = len + 1048576;
|
||||
// The minimum must be <= the maximum, so we need to increase both:
|
||||
min_ws_size += increment;
|
||||
max_ws_size += increment;
|
||||
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
|
||||
fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void raw_unlock(void * ptr, size_t len) {
|
||||
if (!VirtualUnlock(ptr, len)) {
|
||||
fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
#else
|
||||
static constexpr bool SUPPORTED = false;
|
||||
|
||||
size_t lock_granularity() {
|
||||
return (size_t) 65536;
|
||||
}
|
||||
|
||||
bool raw_lock(const void * addr, size_t len) {
|
||||
fprintf(stderr, "warning: mlock not supported on this system\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
void raw_unlock(const void * addr, size_t len) {}
|
||||
#endif
|
||||
};
|
||||
|
||||
// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
|
||||
struct llama_buffer {
|
||||
uint8_t * addr = NULL;
|
||||
size_t size = 0;
|
||||
|
||||
llama_buffer() = default;
|
||||
|
||||
void resize(size_t len) {
|
||||
#ifdef GGML_USE_METAL
|
||||
free(addr);
|
||||
int result = posix_memalign((void **) &addr, getpagesize(), len);
|
||||
if (result == 0) {
|
||||
memset(addr, 0, len);
|
||||
}
|
||||
else {
|
||||
addr = NULL;
|
||||
}
|
||||
#else
|
||||
delete[] addr;
|
||||
addr = new uint8_t[len];
|
||||
#endif
|
||||
size = len;
|
||||
}
|
||||
|
||||
~llama_buffer() {
|
||||
#ifdef GGML_USE_METAL
|
||||
free(addr);
|
||||
#else
|
||||
delete[] addr;
|
||||
#endif
|
||||
addr = NULL;
|
||||
}
|
||||
|
||||
// disable copy and move
|
||||
llama_buffer(const llama_buffer&) = delete;
|
||||
llama_buffer(llama_buffer&&) = delete;
|
||||
llama_buffer& operator=(const llama_buffer&) = delete;
|
||||
llama_buffer& operator=(llama_buffer&&) = delete;
|
||||
};
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#include "ggml-cuda.h"
|
||||
struct llama_ctx_buffer {
|
||||
uint8_t * addr = NULL;
|
||||
bool is_cuda;
|
||||
size_t size = 0;
|
||||
|
||||
llama_ctx_buffer() = default;
|
||||
|
||||
void resize(size_t size) {
|
||||
free();
|
||||
|
||||
addr = (uint8_t *) ggml_cuda_host_malloc(size);
|
||||
if (addr) {
|
||||
is_cuda = true;
|
||||
}
|
||||
else {
|
||||
// fall back to pageable memory
|
||||
addr = new uint8_t[size];
|
||||
is_cuda = false;
|
||||
}
|
||||
this->size = size;
|
||||
}
|
||||
|
||||
void free() {
|
||||
if (addr) {
|
||||
if (is_cuda) {
|
||||
ggml_cuda_host_free(addr);
|
||||
}
|
||||
else {
|
||||
delete[] addr;
|
||||
}
|
||||
}
|
||||
addr = NULL;
|
||||
}
|
||||
|
||||
~llama_ctx_buffer() {
|
||||
free();
|
||||
}
|
||||
|
||||
// disable copy and move
|
||||
llama_ctx_buffer(const llama_ctx_buffer&) = delete;
|
||||
llama_ctx_buffer(llama_ctx_buffer&&) = delete;
|
||||
llama_ctx_buffer& operator=(const llama_ctx_buffer&) = delete;
|
||||
llama_ctx_buffer& operator=(llama_ctx_buffer&&) = delete;
|
||||
};
|
||||
#else
|
||||
typedef llama_buffer llama_ctx_buffer;
|
||||
#endif
|
||||
|
||||
#endif
|
4375
llm/llama.cpp
4375
llm/llama.cpp
File diff suppressed because it is too large
Load diff
8
llm/llama.cpp/generate.go
Normal file
8
llm/llama.cpp/generate.go
Normal file
|
@ -0,0 +1,8 @@
|
|||
package llm
|
||||
|
||||
//go:generate git submodule init
|
||||
//go:generate git submodule update --force ggml
|
||||
//go:generate git -C ggml apply ../ggml_patch/0001-add-detokenize-endpoint.patch
|
||||
//go:generate git -C ggml apply ../ggml_patch/0002-34B-model-support.patch
|
||||
//go:generate cmake -S ggml -B ggml/build/cpu -DLLAMA_K_QUANTS=on
|
||||
//go:generate cmake --build ggml/build/cpu --target server --config Release
|
11
llm/llama.cpp/generate_darwin.go
Normal file
11
llm/llama.cpp/generate_darwin.go
Normal file
|
@ -0,0 +1,11 @@
|
|||
//go:build darwin
|
||||
// +build darwin
|
||||
|
||||
package llm
|
||||
|
||||
//go:generate git submodule init
|
||||
//go:generate git submodule update --force ggml
|
||||
//go:generate git -C ggml apply ../ggml_patch/0001-add-detokenize-endpoint.patch
|
||||
//go:generate git -C ggml apply ../ggml_patch/0002-34B-model-support.patch
|
||||
//go:generate cmake -S ggml -B ggml/build/gpu -DLLAMA_METAL=on -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on
|
||||
//go:generate cmake --build ggml/build/gpu --target server --config Release
|
1
llm/llama.cpp/ggml
Submodule
1
llm/llama.cpp/ggml
Submodule
|
@ -0,0 +1 @@
|
|||
Subproject commit 9e232f0234073358e7031c1b8d7aa45020469a3b
|
51
llm/llama.cpp/ggml_patch/0001-add-detokenize-endpoint.patch
Normal file
51
llm/llama.cpp/ggml_patch/0001-add-detokenize-endpoint.patch
Normal file
|
@ -0,0 +1,51 @@
|
|||
From 032ef7ff2423f5117bb59d42fb71be9cebf0a2de Mon Sep 17 00:00:00 2001
|
||||
From: Bruce MacDonald <brucewmacdonald@gmail.com>
|
||||
Date: Mon, 28 Aug 2023 18:08:12 -0400
|
||||
Subject: [PATCH] add detokenize endpoint
|
||||
|
||||
---
|
||||
examples/server/server.cpp | 21 +++++++++++++++++++++
|
||||
1 file changed, 21 insertions(+)
|
||||
|
||||
diff --git a/examples/server/server.cpp b/examples/server/server.cpp
|
||||
index 9966045..5014691 100644
|
||||
--- a/examples/server/server.cpp
|
||||
+++ b/examples/server/server.cpp
|
||||
@@ -1075,6 +1075,12 @@ static json format_tokenizer_response(const std::vector<llama_token> &tokens)
|
||||
{"tokens", tokens}};
|
||||
}
|
||||
|
||||
+static json format_detokenized_response(std::string content)
|
||||
+{
|
||||
+ return json{
|
||||
+ {"content", content}};
|
||||
+}
|
||||
+
|
||||
static void parse_options_completion(const json &body, llama_server_context &llama)
|
||||
{
|
||||
gpt_params default_params;
|
||||
@@ -1361,6 +1367,21 @@ int main(int argc, char **argv)
|
||||
const json data = format_tokenizer_response(tokens);
|
||||
return res.set_content(data.dump(), "application/json"); });
|
||||
|
||||
+ svr.Post("/detokenize", [&llama](const Request &req, Response &res)
|
||||
+ {
|
||||
+ auto lock = llama.lock();
|
||||
+
|
||||
+ const json body = json::parse(req.body);
|
||||
+ std::string content;
|
||||
+ if (body.count("tokens") != 0)
|
||||
+ {
|
||||
+ const std::vector<llama_token> tokens = body["tokens"];
|
||||
+ content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend());
|
||||
+ }
|
||||
+
|
||||
+ const json data = format_detokenized_response(content);
|
||||
+ return res.set_content(data.dump(), "application/json"); });
|
||||
+
|
||||
svr.Post("/embedding", [&llama](const Request &req, Response &res)
|
||||
{
|
||||
auto lock = llama.lock();
|
||||
--
|
||||
2.39.2 (Apple Git-143)
|
||||
|
89
llm/llama.cpp/ggml_patch/0002-34B-model-support.patch
Normal file
89
llm/llama.cpp/ggml_patch/0002-34B-model-support.patch
Normal file
|
@ -0,0 +1,89 @@
|
|||
From 6145068a6613c37bb43a7408b5496524bdcfc402 Mon Sep 17 00:00:00 2001
|
||||
From: Bruce MacDonald <brucewmacdonald@gmail.com>
|
||||
Date: Mon, 28 Aug 2023 18:08:53 -0400
|
||||
Subject: [PATCH] 34B model support
|
||||
|
||||
---
|
||||
llama.cpp | 10 ++++++++++
|
||||
1 file changed, 10 insertions(+)
|
||||
|
||||
diff --git a/llama.cpp b/llama.cpp
|
||||
index f2cbe76..62c5cdf 100644
|
||||
--- a/llama.cpp
|
||||
+++ b/llama.cpp
|
||||
@@ -79,6 +79,7 @@ enum e_model {
|
||||
MODEL_7B,
|
||||
MODEL_13B,
|
||||
MODEL_30B,
|
||||
+ MODEL_34B,
|
||||
MODEL_65B,
|
||||
MODEL_70B,
|
||||
};
|
||||
@@ -122,6 +123,7 @@ static std::map<e_model, size_t> MEM_REQ_SCRATCH0(int n_ctx)
|
||||
{ MODEL_7B, ((size_t) n_ctx / 16ull + 100ull) * MB },
|
||||
{ MODEL_13B, ((size_t) n_ctx / 12ull + 120ull) * MB },
|
||||
{ MODEL_30B, ((size_t) n_ctx / 9ull + 160ull) * MB },
|
||||
+ { MODEL_34B, ((size_t) n_ctx / 9ull + 160ull) * MB },
|
||||
{ MODEL_65B, ((size_t) n_ctx / 6ull + 256ull) * MB }, // guess
|
||||
{ MODEL_70B, ((size_t) n_ctx / 7ull + 164ull) * MB },
|
||||
};
|
||||
@@ -135,6 +137,7 @@ static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
|
||||
{ MODEL_7B, 160ull * MB },
|
||||
{ MODEL_13B, 192ull * MB },
|
||||
{ MODEL_30B, 256ull * MB },
|
||||
+ { MODEL_34B, 256ull * MB },
|
||||
{ MODEL_65B, 384ull * MB }, // guess
|
||||
{ MODEL_70B, 304ull * MB },
|
||||
};
|
||||
@@ -149,6 +152,7 @@ static const std::map<e_model, size_t> & MEM_REQ_EVAL()
|
||||
{ MODEL_7B, 10ull * MB },
|
||||
{ MODEL_13B, 12ull * MB },
|
||||
{ MODEL_30B, 16ull * MB },
|
||||
+ { MODEL_34B, 16ull * MB },
|
||||
{ MODEL_65B, 24ull * MB }, // guess
|
||||
{ MODEL_70B, 24ull * MB },
|
||||
};
|
||||
@@ -164,6 +168,7 @@ static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_BASE()
|
||||
{ MODEL_7B, 512ull * kB },
|
||||
{ MODEL_13B, 640ull * kB },
|
||||
{ MODEL_30B, 768ull * kB },
|
||||
+ { MODEL_34B, 768ull * kB },
|
||||
{ MODEL_65B, 1280ull * kB },
|
||||
{ MODEL_70B, 1280ull * kB },
|
||||
};
|
||||
@@ -179,6 +184,7 @@ static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_PER_CONTEXT()
|
||||
{ MODEL_7B, 128ull },
|
||||
{ MODEL_13B, 160ull },
|
||||
{ MODEL_30B, 208ull },
|
||||
+ { MODEL_34B, 208ull },
|
||||
{ MODEL_65B, 256ull },
|
||||
{ MODEL_70B, 256ull },
|
||||
};
|
||||
@@ -1027,6 +1033,7 @@ static const char * llama_model_type_name(e_model type) {
|
||||
case MODEL_7B: return "7B";
|
||||
case MODEL_13B: return "13B";
|
||||
case MODEL_30B: return "30B";
|
||||
+ case MODEL_34B: return "34B";
|
||||
case MODEL_65B: return "65B";
|
||||
case MODEL_70B: return "70B";
|
||||
default: LLAMA_ASSERT(false);
|
||||
@@ -1074,6 +1081,7 @@ static void llama_model_load_internal(
|
||||
case 26: model.type = e_model::MODEL_3B; break;
|
||||
case 32: model.type = e_model::MODEL_7B; break;
|
||||
case 40: model.type = e_model::MODEL_13B; break;
|
||||
+ case 48: model.type = e_model::MODEL_34B; break;
|
||||
case 60: model.type = e_model::MODEL_30B; break;
|
||||
case 80: model.type = e_model::MODEL_65B; break;
|
||||
default:
|
||||
@@ -1094,6 +1102,8 @@ static void llama_model_load_internal(
|
||||
LLAMA_LOG_WARN("%s: warning: assuming 70B model based on GQA == %d\n", __func__, n_gqa);
|
||||
model.type = e_model::MODEL_70B;
|
||||
hparams.f_ffn_mult = 1.3f; // from the params.json of the 70B model
|
||||
+ } else if (model.type == e_model::MODEL_34B && n_gqa == 8) {
|
||||
+ hparams.f_ffn_mult = 1.0f; // from the params.json of the 34B model
|
||||
}
|
||||
|
||||
hparams.rope_freq_base = rope_freq_base;
|
||||
--
|
||||
2.39.2 (Apple Git-143)
|
||||
|
596
llm/llama.go
596
llm/llama.go
|
@ -1,596 +0,0 @@
|
|||
package llm
|
||||
|
||||
/*
|
||||
#cgo CFLAGS: -Ofast -std=c11 -fPIC
|
||||
#cgo CPPFLAGS: -Ofast -Wall -Wextra -Wno-unused-function -Wno-unused-variable -DNDEBUG -DGGML_USE_K_QUANTS
|
||||
#cgo CXXFLAGS: -std=c++11 -fPIC
|
||||
#cgo darwin CPPFLAGS: -DGGML_USE_ACCELERATE
|
||||
#cgo darwin,arm64 CPPFLAGS: -DGGML_USE_METAL -DGGML_METAL_NDEBUG
|
||||
#cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
|
||||
#include <stdlib.h>
|
||||
#include "llama.h"
|
||||
|
||||
struct llama_sample_options
|
||||
{
|
||||
float repeat_penalty;
|
||||
float frequency_penalty;
|
||||
float presence_penalty;
|
||||
float temperature;
|
||||
int32_t top_k;
|
||||
float top_p;
|
||||
float tfs_z;
|
||||
float typical_p;
|
||||
int mirostat;
|
||||
float mirostat_tau;
|
||||
float mirostat_eta;
|
||||
bool penalize_newline;
|
||||
};
|
||||
|
||||
llama_token llama_sample(
|
||||
struct llama_context *ctx,
|
||||
struct llama_token_data *candidates,
|
||||
size_t n_candidates,
|
||||
const llama_token *last_tokens,
|
||||
size_t n_last_tokens,
|
||||
struct llama_sample_options *opts)
|
||||
{
|
||||
llama_token_data_array candidates_p = {
|
||||
candidates,
|
||||
n_candidates,
|
||||
false,
|
||||
};
|
||||
|
||||
struct llama_token_data newline = candidates_p.data[llama_token_nl()];
|
||||
|
||||
llama_sample_repetition_penalty(
|
||||
ctx, &candidates_p,
|
||||
last_tokens, n_last_tokens,
|
||||
opts->repeat_penalty);
|
||||
|
||||
llama_sample_frequency_and_presence_penalties(
|
||||
ctx, &candidates_p,
|
||||
last_tokens, n_last_tokens,
|
||||
opts->frequency_penalty, opts->presence_penalty);
|
||||
|
||||
if (!opts->penalize_newline) {
|
||||
candidates_p.data[llama_token_nl()] = newline;
|
||||
}
|
||||
|
||||
if (opts->temperature <= 0) {
|
||||
return llama_sample_token_greedy(ctx, &candidates_p);
|
||||
}
|
||||
|
||||
if (opts->mirostat == 1) {
|
||||
int mirostat_m = 100;
|
||||
float mirostat_mu = 2.0f * opts->mirostat_tau;
|
||||
llama_sample_temperature(ctx, &candidates_p, opts->temperature);
|
||||
return llama_sample_token_mirostat(
|
||||
ctx, &candidates_p,
|
||||
opts->mirostat_tau, opts->mirostat_eta,
|
||||
mirostat_m, &mirostat_mu);
|
||||
} else if (opts->mirostat == 2) {
|
||||
float mirostat_mu = 2.0f * opts->mirostat_tau;
|
||||
llama_sample_temperature(ctx, &candidates_p, opts->temperature);
|
||||
return llama_sample_token_mirostat_v2(
|
||||
ctx, &candidates_p,
|
||||
opts->mirostat_tau, opts->mirostat_eta,
|
||||
&mirostat_mu);
|
||||
} else {
|
||||
llama_sample_top_k(ctx, &candidates_p, opts->top_k, 1);
|
||||
llama_sample_tail_free(ctx, &candidates_p, opts->tfs_z, 1);
|
||||
llama_sample_typical(ctx, &candidates_p, opts->typical_p, 1);
|
||||
llama_sample_top_p(ctx, &candidates_p, opts->top_p, 1);
|
||||
llama_sample_temperature(ctx, &candidates_p, opts->temperature);
|
||||
return llama_sample_token(ctx, &candidates_p);
|
||||
}
|
||||
}
|
||||
*/
|
||||
import "C"
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"embed"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"log"
|
||||
"os"
|
||||
"strings"
|
||||
"sync"
|
||||
"unicode/utf8"
|
||||
"unsafe"
|
||||
|
||||
"github.com/jmorganca/ollama/api"
|
||||
)
|
||||
|
||||
//go:embed ggml-metal.metal
|
||||
var fs embed.FS
|
||||
|
||||
const ModelFamilyLlama ModelFamily = "llama"
|
||||
|
||||
type llamaModel struct {
|
||||
hyperparameters llamaHyperparameters
|
||||
}
|
||||
|
||||
func (llm *llamaModel) ModelFamily() ModelFamily {
|
||||
return ModelFamilyLlama
|
||||
}
|
||||
|
||||
func (llm *llamaModel) ModelType() ModelType {
|
||||
switch llm.hyperparameters.NumLayer {
|
||||
case 26:
|
||||
return ModelType3B
|
||||
case 32:
|
||||
return ModelType7B
|
||||
case 40:
|
||||
return ModelType13B
|
||||
case 60:
|
||||
return ModelType30B
|
||||
case 80:
|
||||
return ModelType65B
|
||||
}
|
||||
|
||||
// TODO: find a better default
|
||||
return ModelType7B
|
||||
}
|
||||
|
||||
func (llm *llamaModel) FileType() FileType {
|
||||
return llm.hyperparameters.FileType
|
||||
}
|
||||
|
||||
type llamaHyperparameters struct {
|
||||
// NumVocab is the size of the model's vocabulary.
|
||||
NumVocab uint32
|
||||
|
||||
// NumEmbd is the size of the model's embedding layer.
|
||||
NumEmbd uint32
|
||||
NumMult uint32
|
||||
NumHead uint32
|
||||
|
||||
// NumLayer is the number of layers in the model.
|
||||
NumLayer uint32
|
||||
NumRot uint32
|
||||
|
||||
// FileType describes the quantization level of the model, e.g. Q4_0, Q5_K, etc.
|
||||
FileType llamaFileType
|
||||
}
|
||||
|
||||
type llamaFileType uint32
|
||||
|
||||
const (
|
||||
llamaFileTypeF32 llamaFileType = iota
|
||||
llamaFileTypeF16
|
||||
llamaFileTypeQ4_0
|
||||
llamaFileTypeQ4_1
|
||||
llamaFileTypeQ4_1_F16
|
||||
llamaFileTypeQ8_0 llamaFileType = iota + 2
|
||||
llamaFileTypeQ5_0
|
||||
llamaFileTypeQ5_1
|
||||
llamaFileTypeQ2_K
|
||||
llamaFileTypeQ3_K_S
|
||||
llamaFileTypeQ3_K_M
|
||||
llamaFileTypeQ3_K_L
|
||||
llamaFileTypeQ4_K_S
|
||||
llamaFileTypeQ4_K_M
|
||||
llamaFileTypeQ5_K_S
|
||||
llamaFileTypeQ5_K_M
|
||||
llamaFileTypeQ6_K
|
||||
)
|
||||
|
||||
func (ft llamaFileType) String() string {
|
||||
switch ft {
|
||||
case llamaFileTypeF32:
|
||||
return "F32"
|
||||
case llamaFileTypeF16:
|
||||
return "F16"
|
||||
case llamaFileTypeQ4_0:
|
||||
return "Q4_0"
|
||||
case llamaFileTypeQ4_1:
|
||||
return "Q4_1"
|
||||
case llamaFileTypeQ4_1_F16:
|
||||
return "Q4_1_F16"
|
||||
case llamaFileTypeQ8_0:
|
||||
return "Q8_0"
|
||||
case llamaFileTypeQ5_0:
|
||||
return "Q5_0"
|
||||
case llamaFileTypeQ5_1:
|
||||
return "Q5_1"
|
||||
case llamaFileTypeQ2_K:
|
||||
return "Q2_K"
|
||||
case llamaFileTypeQ3_K_S:
|
||||
return "Q3_K_S"
|
||||
case llamaFileTypeQ3_K_M:
|
||||
return "Q3_K_M"
|
||||
case llamaFileTypeQ3_K_L:
|
||||
return "Q3_K_L"
|
||||
case llamaFileTypeQ4_K_S:
|
||||
return "Q4_K_S"
|
||||
case llamaFileTypeQ4_K_M:
|
||||
return "Q4_K_M"
|
||||
case llamaFileTypeQ5_K_S:
|
||||
return "Q5_K_S"
|
||||
case llamaFileTypeQ5_K_M:
|
||||
return "Q5_K_M"
|
||||
case llamaFileTypeQ6_K:
|
||||
return "Q6_K"
|
||||
default:
|
||||
return "Unknown"
|
||||
}
|
||||
}
|
||||
|
||||
type llama struct {
|
||||
params *C.struct_llama_context_params
|
||||
model *C.struct_llama_model
|
||||
ctx *C.struct_llama_context
|
||||
|
||||
last []C.llama_token
|
||||
embd []C.llama_token
|
||||
cursor int
|
||||
|
||||
mu sync.Mutex
|
||||
gc bool
|
||||
|
||||
api.Options
|
||||
}
|
||||
|
||||
func newLlama(model string, adapters []string, opts api.Options) (*llama, error) {
|
||||
if _, err := os.Stat(model); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
llm := llama{Options: opts}
|
||||
|
||||
C.llama_backend_init(C.bool(llm.UseNUMA))
|
||||
|
||||
params := C.llama_context_default_params()
|
||||
params.seed = C.uint(llm.Seed)
|
||||
params.n_ctx = C.int(llm.NumCtx)
|
||||
params.n_batch = C.int(llm.NumBatch)
|
||||
params.n_gqa = C.int(llm.NumGQA)
|
||||
params.n_gpu_layers = C.int(llm.NumGPU)
|
||||
params.main_gpu = C.int(llm.MainGPU)
|
||||
params.low_vram = C.bool(llm.LowVRAM)
|
||||
params.f16_kv = C.bool(llm.F16KV)
|
||||
params.logits_all = C.bool(llm.LogitsAll)
|
||||
params.vocab_only = C.bool(llm.VocabOnly)
|
||||
params.use_mmap = C.bool(llm.UseMMap)
|
||||
params.use_mlock = C.bool(llm.UseMLock)
|
||||
params.embedding = C.bool(llm.EmbeddingOnly)
|
||||
params.rope_freq_base = C.float(llm.RopeFrequencyBase)
|
||||
params.rope_freq_scale = C.float(llm.RopeFrequencyScale)
|
||||
|
||||
if len(adapters) > 0 && llm.UseMMap {
|
||||
log.Printf("must disable mmap to use lora adapters")
|
||||
params.use_mmap = C.bool(false)
|
||||
}
|
||||
|
||||
llm.params = ¶ms
|
||||
|
||||
cModel := C.CString(model)
|
||||
defer C.free(unsafe.Pointer(cModel))
|
||||
|
||||
llm.model = C.llama_load_model_from_file(cModel, params)
|
||||
if llm.model == nil {
|
||||
return nil, errors.New("failed to load model")
|
||||
}
|
||||
|
||||
llm.ctx = C.llama_new_context_with_model(llm.model, params)
|
||||
if llm.ctx == nil {
|
||||
return nil, errors.New("failed to create context")
|
||||
}
|
||||
|
||||
for _, adapter := range adapters {
|
||||
cAdapter := C.CString(adapter)
|
||||
defer C.free(unsafe.Pointer(cAdapter))
|
||||
|
||||
if retval := C.llama_model_apply_lora_from_file(llm.model, cAdapter, nil, C.int(llm.NumThread)); retval != 0 {
|
||||
return nil, fmt.Errorf("failed to load adapter %s", adapter)
|
||||
}
|
||||
}
|
||||
|
||||
// warm up the model
|
||||
bos := []C.llama_token{C.llama_token_bos()}
|
||||
C.llama_eval(llm.ctx, unsafe.SliceData(bos), C.int(len(bos)), 0, C.int(opts.NumThread))
|
||||
C.llama_reset_timings(llm.ctx)
|
||||
|
||||
return &llm, nil
|
||||
}
|
||||
|
||||
func (llm *llama) Close() {
|
||||
llm.gc = true
|
||||
|
||||
llm.mu.Lock()
|
||||
defer llm.mu.Unlock()
|
||||
|
||||
defer C.llama_free_model(llm.model)
|
||||
defer C.llama_free(llm.ctx)
|
||||
|
||||
C.llama_print_timings(llm.ctx)
|
||||
}
|
||||
|
||||
func (llm *llama) SetOptions(opts api.Options) {
|
||||
llm.Options = opts
|
||||
}
|
||||
|
||||
var errNeedMoreData = errors.New("need more data")
|
||||
|
||||
func (llm *llama) Predict(ctx []int, prompt string, fn func(api.GenerateResponse)) error {
|
||||
C.llama_reset_timings(llm.ctx)
|
||||
|
||||
llm.marshalPrompt(ctx, prompt)
|
||||
|
||||
C.llama_set_rng_seed(llm.ctx, C.uint(llm.Seed))
|
||||
|
||||
var b bytes.Buffer
|
||||
for {
|
||||
token, err := llm.next()
|
||||
if llm.gc {
|
||||
return nil
|
||||
} else if errors.Is(err, io.EOF) {
|
||||
break
|
||||
} else if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
b.WriteString(llm.Decode(int(token)))
|
||||
|
||||
stop, endsWithStopPrefix := handleStopSequences(&b, llm.Stop)
|
||||
if endsWithStopPrefix {
|
||||
continue
|
||||
}
|
||||
|
||||
if utf8.Valid(b.Bytes()) || b.Len() >= utf8.UTFMax {
|
||||
fn(api.GenerateResponse{Response: b.String()})
|
||||
b.Reset()
|
||||
}
|
||||
if stop {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
embd := make([]int, len(llm.embd))
|
||||
for i := range llm.embd {
|
||||
embd[i] = int(llm.embd[i])
|
||||
}
|
||||
|
||||
timings := C.llama_get_timings(llm.ctx)
|
||||
fn(api.GenerateResponse{
|
||||
Done: true,
|
||||
Context: embd,
|
||||
SampleCount: int(timings.n_sample),
|
||||
SampleDuration: parseDurationMs(float64(timings.t_sample_ms)),
|
||||
PromptEvalCount: int(timings.n_p_eval),
|
||||
PromptEvalDuration: parseDurationMs(float64(timings.t_p_eval_ms)),
|
||||
EvalCount: int(timings.n_eval),
|
||||
EvalDuration: parseDurationMs(float64(timings.t_eval_ms)),
|
||||
})
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// handleStopSequences checks whether b contains any of the stop sequences, or ends with a prefix of
|
||||
// any stop sequence (and therefore might contain data that should not ultimately be returned to the
|
||||
// client).
|
||||
//
|
||||
// If b contains a stop sequence, it modifies b to remove the stop sequence and all subsequent data.
|
||||
func handleStopSequences(b *bytes.Buffer, stopSequences []string) (stop bool, endsWithStopPrefix bool) {
|
||||
s := b.String()
|
||||
for _, seq := range stopSequences {
|
||||
// Check for an exact or substring match.
|
||||
if i := strings.Index(s, seq); i != -1 {
|
||||
b.Truncate(i)
|
||||
return true, false
|
||||
}
|
||||
|
||||
// Check if b ends with a prefix of the stop sequence.
|
||||
if len(seq) > 1 {
|
||||
for i := 1; i < len(seq); i++ {
|
||||
if strings.HasSuffix(s, seq[:i]) {
|
||||
return false, true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return false, false
|
||||
}
|
||||
|
||||
func (llm *llama) marshalPrompt(ctx []int, prompt string) []C.llama_token {
|
||||
tokens := append(ctx, llm.Encode(prompt)...)
|
||||
if llm.NumKeep < 0 {
|
||||
llm.NumKeep = len(tokens)
|
||||
}
|
||||
|
||||
cTokens := make([]C.llama_token, len(tokens))
|
||||
for i := range tokens {
|
||||
cTokens[i] = C.llama_token(tokens[i])
|
||||
}
|
||||
|
||||
// min(llm.NumCtx - 4, llm.NumKeep)
|
||||
if llm.NumCtx-4 < llm.NumKeep {
|
||||
llm.NumKeep = llm.NumCtx - 4
|
||||
}
|
||||
|
||||
if len(tokens) >= llm.NumCtx {
|
||||
// truncate input
|
||||
numLeft := (llm.NumCtx - llm.NumKeep) / 2
|
||||
truncated := cTokens[:llm.NumKeep]
|
||||
erasedBlocks := (len(cTokens) - llm.NumKeep - numLeft - 1) / numLeft
|
||||
truncated = append(truncated, cTokens[llm.NumKeep+erasedBlocks*numLeft:]...)
|
||||
copy(llm.last, cTokens[len(cTokens)-llm.NumCtx:])
|
||||
|
||||
cTokens = truncated
|
||||
log.Printf("input truncated: num_ctx=%d num_keep=%d num_left=%d num_tokens=%d", llm.NumCtx, llm.NumKeep, numLeft, len(truncated))
|
||||
} else {
|
||||
llm.last = make([]C.llama_token, llm.NumCtx-len(cTokens))
|
||||
llm.last = append(llm.last, cTokens...)
|
||||
}
|
||||
|
||||
var i int
|
||||
for i = 0; i < len(llm.embd) && i < len(cTokens) && llm.embd[i] == cTokens[i]; i++ {
|
||||
// noop
|
||||
}
|
||||
|
||||
llm.embd = cTokens
|
||||
if i == len(cTokens) {
|
||||
// evaluate at least one token to generate logits
|
||||
i--
|
||||
}
|
||||
|
||||
llm.cursor = i
|
||||
|
||||
log.Printf("prompt: num_past=%d cached=%v eval=%v", i, len(llm.embd[:i]), len(llm.embd[i:]))
|
||||
return cTokens
|
||||
}
|
||||
|
||||
func (llm *llama) Encode(prompt string) []int {
|
||||
cPrompt := C.CString(prompt)
|
||||
defer C.free(unsafe.Pointer(cPrompt))
|
||||
|
||||
cTokens := make([]C.llama_token, len(prompt)+1)
|
||||
if n := C.llama_tokenize(llm.ctx, cPrompt, unsafe.SliceData(cTokens), C.int(len(cTokens)), true); n > 0 {
|
||||
tokens := make([]int, n)
|
||||
for i := range cTokens[:n] {
|
||||
tokens[i] = int(cTokens[i])
|
||||
}
|
||||
|
||||
return tokens
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (llm *llama) Decode(tokens ...int) string {
|
||||
var sb strings.Builder
|
||||
for _, token := range tokens {
|
||||
sb.WriteString(C.GoString(C.llama_token_to_str(llm.ctx, C.llama_token(token))))
|
||||
}
|
||||
|
||||
return sb.String()
|
||||
}
|
||||
|
||||
func (llm *llama) next() (C.llama_token, error) {
|
||||
llm.mu.Lock()
|
||||
defer llm.mu.Unlock()
|
||||
|
||||
if len(llm.embd) >= llm.NumCtx {
|
||||
numLeft := (llm.NumCtx - llm.NumKeep) / 2
|
||||
truncated := llm.embd[:llm.NumKeep]
|
||||
truncated = append(truncated, llm.embd[len(llm.embd)-numLeft:]...)
|
||||
|
||||
llm.embd = truncated
|
||||
llm.cursor = llm.NumKeep
|
||||
log.Printf("input truncated: num_ctx=%d num_keep=%d num_left=%d num_tokens=%d cursor=%d", llm.NumCtx, llm.NumKeep, numLeft, len(truncated), llm.cursor)
|
||||
}
|
||||
|
||||
for {
|
||||
if llm.gc {
|
||||
return 0, io.EOF
|
||||
}
|
||||
|
||||
if llm.cursor >= len(llm.embd) {
|
||||
break
|
||||
}
|
||||
|
||||
numEval := len(llm.embd) - llm.cursor
|
||||
if numEval > llm.NumBatch {
|
||||
numEval = llm.NumBatch
|
||||
}
|
||||
|
||||
if retval := C.llama_eval(llm.ctx, unsafe.SliceData(llm.embd[llm.cursor:]), C.int(numEval), C.int(llm.cursor), C.int(llm.NumThread)); retval != 0 {
|
||||
return 0, fmt.Errorf("llama_eval: %d", retval)
|
||||
}
|
||||
|
||||
llm.cursor += numEval
|
||||
}
|
||||
|
||||
var sampleOpts C.struct_llama_sample_options
|
||||
sampleOpts.repeat_penalty = C.float(llm.RepeatPenalty)
|
||||
sampleOpts.frequency_penalty = C.float(llm.FrequencyPenalty)
|
||||
sampleOpts.presence_penalty = C.float(llm.PresencePenalty)
|
||||
sampleOpts.temperature = C.float(llm.Temperature)
|
||||
sampleOpts.top_k = C.int(llm.TopK)
|
||||
sampleOpts.top_p = C.float(llm.TopP)
|
||||
sampleOpts.tfs_z = C.float(llm.TFSZ)
|
||||
sampleOpts.typical_p = C.float(llm.TypicalP)
|
||||
sampleOpts.mirostat = C.int(llm.Mirostat)
|
||||
sampleOpts.mirostat_tau = C.float(llm.MirostatTau)
|
||||
sampleOpts.mirostat_eta = C.float(llm.MirostatEta)
|
||||
sampleOpts.penalize_newline = C.bool(llm.PenalizeNewline)
|
||||
|
||||
numVocab := C.llama_n_vocab(llm.ctx)
|
||||
logits := unsafe.Slice(C.llama_get_logits(llm.ctx), numVocab)
|
||||
|
||||
// TODO: logit bias
|
||||
|
||||
candidates := make([]C.llama_token_data, numVocab)
|
||||
for i := range logits {
|
||||
candidates[i] = C.llama_token_data{
|
||||
id: C.int(i),
|
||||
logit: logits[i],
|
||||
p: 0,
|
||||
}
|
||||
}
|
||||
|
||||
repeatLastN := llm.RepeatLastN
|
||||
if len(llm.last) < repeatLastN {
|
||||
repeatLastN = len(llm.last)
|
||||
}
|
||||
|
||||
if llm.NumCtx < repeatLastN {
|
||||
repeatLastN = llm.NumCtx
|
||||
}
|
||||
|
||||
lastN := llm.last[len(llm.last)-repeatLastN:]
|
||||
|
||||
token := C.llama_sample(
|
||||
llm.ctx,
|
||||
unsafe.SliceData(candidates), C.size_t(len(candidates)),
|
||||
unsafe.SliceData(lastN), C.size_t(len(lastN)),
|
||||
&sampleOpts,
|
||||
)
|
||||
|
||||
llm.last = append(llm.last, token)
|
||||
llm.embd = append(llm.embd, token)
|
||||
|
||||
if token == C.llama_token_eos() {
|
||||
return 0, io.EOF
|
||||
}
|
||||
|
||||
return token, nil
|
||||
}
|
||||
|
||||
func (llm *llama) Embedding(input string) ([]float64, error) {
|
||||
if !llm.EmbeddingOnly {
|
||||
return nil, errors.New("llama: embedding not enabled")
|
||||
}
|
||||
|
||||
tokens := llm.Encode(input)
|
||||
if tokens == nil {
|
||||
return nil, errors.New("llama: tokenize embedding")
|
||||
}
|
||||
|
||||
cTokens := make([]C.llama_token, len(tokens))
|
||||
for i := range tokens {
|
||||
cTokens[i] = C.llama_token(tokens[i])
|
||||
}
|
||||
|
||||
retval := C.llama_eval(llm.ctx, unsafe.SliceData(cTokens), C.int(len(tokens)), 0, C.int(llm.NumThread))
|
||||
if retval != 0 {
|
||||
return nil, errors.New("llama: eval")
|
||||
}
|
||||
|
||||
C.llama_print_timings(llm.ctx)
|
||||
|
||||
n := C.llama_n_embd(llm.ctx)
|
||||
if n <= 0 {
|
||||
return nil, errors.New("llama: no embeddings generated")
|
||||
}
|
||||
cEmbeddings := unsafe.Slice(C.llama_get_embeddings(llm.ctx), n)
|
||||
|
||||
embeddings := make([]float64, len(cEmbeddings))
|
||||
for i, v := range cEmbeddings {
|
||||
embeddings[i] = float64(v)
|
||||
}
|
||||
return embeddings, nil
|
||||
}
|
512
llm/llama.h
512
llm/llama.h
|
@ -1,512 +0,0 @@
|
|||
/**
|
||||
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
|
||||
*
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2023 Georgi Gerganov
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
#ifndef LLAMA_H
|
||||
#define LLAMA_H
|
||||
|
||||
#include "ggml.h"
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#include "ggml-cuda.h"
|
||||
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
|
||||
#else
|
||||
#define LLAMA_MAX_DEVICES 1
|
||||
#endif // GGML_USE_CUBLAS
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
# ifdef LLAMA_BUILD
|
||||
# define LLAMA_API __declspec(dllexport)
|
||||
# else
|
||||
# define LLAMA_API __declspec(dllimport)
|
||||
# endif
|
||||
# else
|
||||
# define LLAMA_API __attribute__ ((visibility ("default")))
|
||||
# endif
|
||||
#else
|
||||
# define LLAMA_API
|
||||
#endif
|
||||
|
||||
#ifdef __GNUC__
|
||||
# define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
|
||||
#elif defined(_MSC_VER)
|
||||
# define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
|
||||
#else
|
||||
# define DEPRECATED(func, hint) func
|
||||
#endif
|
||||
|
||||
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
|
||||
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
|
||||
#define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
|
||||
#define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
|
||||
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
||||
|
||||
#define LLAMA_FILE_VERSION 3
|
||||
#define LLAMA_FILE_MAGIC LLAMA_FILE_MAGIC_GGJT
|
||||
#define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML
|
||||
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||||
#define LLAMA_SESSION_VERSION 1
|
||||
|
||||
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
|
||||
|
||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
|
||||
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
||||
#define LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
#endif
|
||||
|
||||
#ifndef LLAMA_DEFAULT_RMS_EPS
|
||||
#define LLAMA_DEFAULT_RMS_EPS 5e-6f
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//
|
||||
// C interface
|
||||
//
|
||||
// TODO: show sample usage
|
||||
//
|
||||
|
||||
struct llama_model;
|
||||
struct llama_context;
|
||||
|
||||
typedef int llama_token;
|
||||
|
||||
typedef struct llama_token_data {
|
||||
llama_token id; // token id
|
||||
float logit; // log-odds of the token
|
||||
float p; // probability of the token
|
||||
} llama_token_data;
|
||||
|
||||
typedef struct llama_token_data_array {
|
||||
llama_token_data * data;
|
||||
size_t size;
|
||||
bool sorted;
|
||||
} llama_token_data_array;
|
||||
|
||||
typedef void (*llama_progress_callback)(float progress, void *ctx);
|
||||
|
||||
enum llama_log_level {
|
||||
LLAMA_LOG_LEVEL_ERROR = 2,
|
||||
LLAMA_LOG_LEVEL_WARN = 3,
|
||||
LLAMA_LOG_LEVEL_INFO = 4
|
||||
};
|
||||
|
||||
// Signature for logging events
|
||||
// Note that text includes the new line character at the end for most events.
|
||||
// If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
|
||||
// if it exists.
|
||||
// It might not exist for progress report where '.' is output repeatedly.
|
||||
typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data);
|
||||
|
||||
struct llama_context_params {
|
||||
uint32_t seed; // RNG seed, -1 for random
|
||||
int32_t n_ctx; // text context
|
||||
int32_t n_batch; // prompt processing batch size
|
||||
int32_t n_gqa; // grouped-query attention (TEMP - will be moved to model hparams)
|
||||
float rms_norm_eps; // rms norm epsilon (TEMP - will be moved to model hparams)
|
||||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||||
|
||||
const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
|
||||
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
||||
float rope_freq_base; // RoPE base frequency
|
||||
float rope_freq_scale; // RoPE frequency scaling factor
|
||||
|
||||
// called with a progress value between 0 and 1, pass NULL to disable
|
||||
llama_progress_callback progress_callback;
|
||||
// context pointer passed to the progress callback
|
||||
void * progress_callback_user_data;
|
||||
|
||||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||||
bool low_vram; // if true, reduce VRAM usage at the cost of performance
|
||||
bool mul_mat_q; // if true, use experimental mul_mat_q kernels
|
||||
bool f16_kv; // use fp16 for KV cache
|
||||
bool logits_all; // the llama_eval() call computes all logits, not just the last one
|
||||
bool vocab_only; // only load the vocabulary, no weights
|
||||
bool use_mmap; // use mmap if possible
|
||||
bool use_mlock; // force system to keep model in RAM
|
||||
bool embedding; // embedding mode only
|
||||
};
|
||||
// model file types
|
||||
enum llama_ftype {
|
||||
LLAMA_FTYPE_ALL_F32 = 0,
|
||||
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
||||
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
|
||||
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
|
||||
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
|
||||
};
|
||||
|
||||
// model quantization parameters
|
||||
typedef struct llama_model_quantize_params {
|
||||
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
|
||||
enum llama_ftype ftype; // quantize to this llama_ftype
|
||||
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
||||
bool quantize_output_tensor; // quantize output.weight
|
||||
} llama_model_quantize_params;
|
||||
|
||||
// grammar types
|
||||
struct llama_grammar;
|
||||
|
||||
// grammar element type
|
||||
enum llama_gretype {
|
||||
// end of rule definition
|
||||
LLAMA_GRETYPE_END = 0,
|
||||
|
||||
// start of alternate definition for rule
|
||||
LLAMA_GRETYPE_ALT = 1,
|
||||
|
||||
// non-terminal element: reference to rule
|
||||
LLAMA_GRETYPE_RULE_REF = 2,
|
||||
|
||||
// terminal element: character (code point)
|
||||
LLAMA_GRETYPE_CHAR = 3,
|
||||
|
||||
// inverse char(s) ([^a], [^a-b] [^abc])
|
||||
LLAMA_GRETYPE_CHAR_NOT = 4,
|
||||
|
||||
// modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
|
||||
// be an inclusive range ([a-z])
|
||||
LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
|
||||
|
||||
// modifies a preceding LLAMA_GRETYPE_CHAR or
|
||||
// LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
|
||||
LLAMA_GRETYPE_CHAR_ALT = 6,
|
||||
};
|
||||
|
||||
typedef struct llama_grammar_element {
|
||||
enum llama_gretype type;
|
||||
uint32_t value; // Unicode code point or rule ID
|
||||
} llama_grammar_element;
|
||||
|
||||
// performance timing information
|
||||
struct llama_timings {
|
||||
double t_start_ms;
|
||||
double t_end_ms;
|
||||
double t_load_ms;
|
||||
double t_sample_ms;
|
||||
double t_p_eval_ms;
|
||||
double t_eval_ms;
|
||||
|
||||
int32_t n_sample;
|
||||
int32_t n_p_eval;
|
||||
int32_t n_eval;
|
||||
};
|
||||
|
||||
// Set callback for all future logging events.
|
||||
// If this is not called, or NULL is supplied, everything is output on stderr.
|
||||
LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data);
|
||||
|
||||
LLAMA_API int llama_max_devices();
|
||||
|
||||
LLAMA_API struct llama_context_params llama_context_default_params();
|
||||
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params();
|
||||
|
||||
LLAMA_API bool llama_mmap_supported();
|
||||
LLAMA_API bool llama_mlock_supported();
|
||||
|
||||
// TODO: not great API - very likely to change
|
||||
// Initialize the llama + ggml backend
|
||||
// If numa is true, use NUMA optimizations
|
||||
// Call once at the start of the program
|
||||
LLAMA_API void llama_backend_init(bool numa);
|
||||
// Call once at the end of the program - currently only used for MPI
|
||||
LLAMA_API void llama_backend_free();
|
||||
|
||||
LLAMA_API int64_t llama_time_us();
|
||||
|
||||
LLAMA_API struct llama_model * llama_load_model_from_file(
|
||||
const char * path_model,
|
||||
struct llama_context_params params);
|
||||
|
||||
LLAMA_API void llama_free_model(struct llama_model * model);
|
||||
|
||||
LLAMA_API struct llama_context * llama_new_context_with_model(
|
||||
struct llama_model * model,
|
||||
struct llama_context_params params);
|
||||
|
||||
// Various functions for loading a ggml llama model.
|
||||
// Allocate (almost) all memory needed for the model.
|
||||
// Return NULL on failure
|
||||
LLAMA_API DEPRECATED(struct llama_context * llama_init_from_file(
|
||||
const char * path_model,
|
||||
struct llama_context_params params),
|
||||
"please use llama_load_model_from_file combined with llama_new_context_with_model instead");
|
||||
|
||||
// Frees all allocated memory
|
||||
LLAMA_API void llama_free(struct llama_context * ctx);
|
||||
|
||||
// Returns 0 on success
|
||||
LLAMA_API int llama_model_quantize(
|
||||
const char * fname_inp,
|
||||
const char * fname_out,
|
||||
const llama_model_quantize_params * params);
|
||||
|
||||
// Apply a LoRA adapter to a loaded model
|
||||
// path_base_model is the path to a higher quality model to use as a base for
|
||||
// the layers modified by the adapter. Can be NULL to use the current loaded model.
|
||||
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
|
||||
// will be applied on top of the previous one
|
||||
// Returns 0 on success
|
||||
LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
|
||||
struct llama_context * ctx,
|
||||
const char * path_lora,
|
||||
const char * path_base_model,
|
||||
int n_threads),
|
||||
"please use llama_model_apply_lora_from_file instead");
|
||||
|
||||
LLAMA_API int llama_model_apply_lora_from_file(
|
||||
const struct llama_model * model,
|
||||
const char * path_lora,
|
||||
const char * path_base_model,
|
||||
int n_threads);
|
||||
|
||||
// Returns the number of tokens in the KV cache
|
||||
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
|
||||
|
||||
// Sets the current rng seed.
|
||||
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
|
||||
|
||||
// Returns the maximum size in bytes of the state (rng, logits, embedding
|
||||
// and kv_cache) - will often be smaller after compacting tokens
|
||||
LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
|
||||
|
||||
// Copies the state to the specified destination address.
|
||||
// Destination needs to have allocated enough memory.
|
||||
// Returns the number of bytes copied
|
||||
LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst);
|
||||
|
||||
// Set the state reading from the specified address
|
||||
// Returns the number of bytes read
|
||||
LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src);
|
||||
|
||||
// Save/load session file
|
||||
LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
|
||||
LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
|
||||
|
||||
// Run the llama inference to obtain the logits and probabilities for the next token.
|
||||
// tokens + n_tokens is the provided batch of new tokens to process
|
||||
// n_past is the number of tokens to use from previous eval calls
|
||||
// Returns 0 on success
|
||||
LLAMA_API int llama_eval(
|
||||
struct llama_context * ctx,
|
||||
const llama_token * tokens,
|
||||
int n_tokens,
|
||||
int n_past,
|
||||
int n_threads);
|
||||
|
||||
// Same as llama_eval, but use float matrix input directly.
|
||||
LLAMA_API int llama_eval_embd(
|
||||
struct llama_context * ctx,
|
||||
const float * embd,
|
||||
int n_tokens,
|
||||
int n_past,
|
||||
int n_threads);
|
||||
|
||||
// Export a static computation graph for context of 511 and batch size of 1
|
||||
// NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
|
||||
// parameters here to keep things simple
|
||||
// IMPORTANT: do not use for anything else other than debugging and testing!
|
||||
LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname);
|
||||
|
||||
// Convert the provided text into tokens.
|
||||
// The tokens pointer must be large enough to hold the resulting tokens.
|
||||
// Returns the number of tokens on success, no more than n_max_tokens
|
||||
// Returns a negative number on failure - the number of tokens that would have been returned
|
||||
// TODO: not sure if correct
|
||||
LLAMA_API int llama_tokenize(
|
||||
struct llama_context * ctx,
|
||||
const char * text,
|
||||
llama_token * tokens,
|
||||
int n_max_tokens,
|
||||
bool add_bos);
|
||||
|
||||
LLAMA_API int llama_tokenize_with_model(
|
||||
const struct llama_model * model,
|
||||
const char * text,
|
||||
llama_token * tokens,
|
||||
int n_max_tokens,
|
||||
bool add_bos);
|
||||
|
||||
LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
|
||||
|
||||
LLAMA_API int llama_n_vocab_from_model(const struct llama_model * model);
|
||||
LLAMA_API int llama_n_ctx_from_model (const struct llama_model * model);
|
||||
LLAMA_API int llama_n_embd_from_model (const struct llama_model * model);
|
||||
|
||||
// Get the vocabulary as output parameters.
|
||||
// Returns number of results.
|
||||
LLAMA_API int llama_get_vocab(
|
||||
const struct llama_context * ctx,
|
||||
const char * * strings,
|
||||
float * scores,
|
||||
int capacity);
|
||||
|
||||
LLAMA_API int llama_get_vocab_from_model(
|
||||
const struct llama_model * model,
|
||||
const char * * strings,
|
||||
float * scores,
|
||||
int capacity);
|
||||
|
||||
// Token logits obtained from the last call to llama_eval()
|
||||
// The logits for the last token are stored in the last row
|
||||
// Can be mutated in order to change the probabilities of the next token
|
||||
// Rows: n_tokens
|
||||
// Cols: n_vocab
|
||||
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
|
||||
|
||||
// Get the embeddings for the input
|
||||
// shape: [n_embd] (1-dimensional)
|
||||
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
|
||||
|
||||
// Token Id -> String. Uses the vocabulary in the provided context
|
||||
LLAMA_API const char * llama_token_to_str(
|
||||
const struct llama_context * ctx,
|
||||
llama_token token);
|
||||
|
||||
LLAMA_API const char * llama_token_to_str_with_model(
|
||||
const struct llama_model * model,
|
||||
llama_token token);
|
||||
|
||||
// Special tokens
|
||||
LLAMA_API llama_token llama_token_bos(); // beginning-of-sentence
|
||||
LLAMA_API llama_token llama_token_eos(); // end-of-sentence
|
||||
LLAMA_API llama_token llama_token_nl(); // next-line
|
||||
|
||||
// Grammar
|
||||
//
|
||||
LLAMA_API struct llama_grammar * llama_grammar_init(
|
||||
const llama_grammar_element ** rules,
|
||||
size_t n_rules,
|
||||
size_t start_rule_index);
|
||||
|
||||
LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
|
||||
|
||||
// Sampling functions
|
||||
|
||||
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
||||
LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
|
||||
|
||||
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
||||
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
|
||||
|
||||
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
|
||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
|
||||
/// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
|
||||
/// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
|
||||
LLAMA_API void llama_sample_classifier_free_guidance(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
struct llama_context * guidance_ctx,
|
||||
float scale);
|
||||
|
||||
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||||
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||
|
||||
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||
LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
|
||||
|
||||
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||
LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
|
||||
|
||||
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
|
||||
LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
|
||||
|
||||
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
||||
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
|
||||
LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
|
||||
|
||||
/// @details Apply constraints from grammar
|
||||
LLAMA_API void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar);
|
||||
|
||||
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||||
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||||
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
||||
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
|
||||
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||||
LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
|
||||
|
||||
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||||
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||||
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
||||
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||||
LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
|
||||
|
||||
/// @details Selects the token with the highest probability.
|
||||
LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||
|
||||
/// @details Randomly selects a token from the candidates based on their probabilities.
|
||||
LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||
|
||||
/// @details Accepts the sampled token into the grammar
|
||||
LLAMA_API void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token);
|
||||
|
||||
// Performance information
|
||||
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
|
||||
LLAMA_API void llama_print_timings(struct llama_context * ctx);
|
||||
LLAMA_API void llama_reset_timings(struct llama_context * ctx);
|
||||
|
||||
// Print system information
|
||||
LLAMA_API const char * llama_print_system_info(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
|
||||
#ifdef LLAMA_API_INTERNAL
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
struct ggml_tensor;
|
||||
|
||||
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
|
||||
|
||||
#endif
|
||||
|
||||
#endif // LLAMA_H
|
|
@ -1,81 +0,0 @@
|
|||
package llm
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/sha256"
|
||||
"errors"
|
||||
"io"
|
||||
"log"
|
||||
"os"
|
||||
"path/filepath"
|
||||
)
|
||||
|
||||
func init() {
|
||||
if err := initBackend(); err != nil {
|
||||
log.Printf("WARNING: GPU could not be initialized correctly: %v", err)
|
||||
log.Printf("WARNING: falling back to CPU")
|
||||
}
|
||||
}
|
||||
|
||||
func initBackend() error {
|
||||
exec, err := os.Executable()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
exec, err = filepath.EvalSymlinks(exec)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
metal := filepath.Join(filepath.Dir(exec), "ggml-metal.metal")
|
||||
fi, err := os.Stat(metal)
|
||||
if err != nil && !errors.Is(err, os.ErrNotExist) {
|
||||
return err
|
||||
}
|
||||
|
||||
if fi != nil {
|
||||
actual, err := os.Open(metal)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer actual.Close()
|
||||
|
||||
actualSum := sha256.New()
|
||||
if _, err := io.Copy(actualSum, actual); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
expect, err := fs.Open("ggml-metal.metal")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
expectSum := sha256.New()
|
||||
if _, err := io.Copy(expectSum, expect); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if bytes.Equal(actualSum.Sum(nil), expectSum.Sum(nil)) {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
|
||||
dst, err := os.Create(filepath.Join(filepath.Dir(exec), "ggml-metal.metal"))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer dst.Close()
|
||||
|
||||
src, err := fs.Open("ggml-metal.metal")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer src.Close()
|
||||
|
||||
if _, err := io.Copy(dst, src); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
12
llm/llm.go
12
llm/llm.go
|
@ -1,6 +1,7 @@
|
|||
package llm
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"log"
|
||||
"os"
|
||||
|
@ -11,12 +12,13 @@ import (
|
|||
)
|
||||
|
||||
type LLM interface {
|
||||
Predict([]int, string, func(api.GenerateResponse)) error
|
||||
Embedding(string) ([]float64, error)
|
||||
Encode(string) []int
|
||||
Decode(...int) string
|
||||
Predict(context.Context, []int, string, func(api.GenerateResponse)) error
|
||||
Embedding(context.Context, string) ([]float64, error)
|
||||
Encode(context.Context, string) ([]int, error)
|
||||
Decode(context.Context, []int) (string, error)
|
||||
SetOptions(api.Options)
|
||||
Close()
|
||||
Ping(context.Context) error
|
||||
}
|
||||
|
||||
func New(model string, adapters []string, opts api.Options) (LLM, error) {
|
||||
|
@ -75,7 +77,7 @@ func New(model string, adapters []string, opts api.Options) (LLM, error) {
|
|||
|
||||
switch ggml.ModelFamily() {
|
||||
case ModelFamilyLlama:
|
||||
return newLlama(model, adapters, opts)
|
||||
return newLlama(model, adapters, ggmlRunner(), opts)
|
||||
default:
|
||||
return nil, fmt.Errorf("unknown ggml type: %s", ggml.ModelFamily())
|
||||
}
|
||||
|
|
|
@ -1,70 +0,0 @@
|
|||
#!/bin/sh
|
||||
|
||||
set -eu
|
||||
|
||||
|
||||
status() { echo >&2 ">>> $*"; }
|
||||
error() { status "ERROR $*"; }
|
||||
usage() {
|
||||
echo "usage: $(basename $0) /path/to/repo"
|
||||
exit 1
|
||||
}
|
||||
|
||||
OUT=$(dirname $0)
|
||||
while getopts "hC:" OPTION; do
|
||||
case $OPTION in
|
||||
C) OUT=$OPTARG ;;
|
||||
*) usage ;;
|
||||
esac
|
||||
done
|
||||
|
||||
shift $(( $OPTIND - 1 ))
|
||||
[ $# -eq 1 ] || usage
|
||||
|
||||
status "updating source..."
|
||||
cp -a "$1"/*.{c,h,cpp,m,metal,cu} "$OUT"
|
||||
|
||||
status "removing incompatible files..."
|
||||
rm -f "$OUT"/build-info.h
|
||||
|
||||
SHA1=$(git -C $1 rev-parse @)
|
||||
|
||||
LICENSE=$(mktemp)
|
||||
cleanup() {
|
||||
rm -f $LICENSE
|
||||
}
|
||||
trap cleanup 0
|
||||
|
||||
cat <<EOF | sed 's/ *$//' >$LICENSE
|
||||
/**
|
||||
* llama.cpp - git $SHA1
|
||||
*
|
||||
$(sed 's/^/ * /' <$1/LICENSE)
|
||||
*/
|
||||
|
||||
EOF
|
||||
|
||||
for IN in $OUT/*.{c,h,cpp,m,metal,cu}; do
|
||||
TMP=$(mktemp)
|
||||
status "updating license $IN"
|
||||
cat $LICENSE $IN >$TMP
|
||||
mv $TMP $IN
|
||||
done
|
||||
|
||||
touchup() {
|
||||
local CONSTRAINT=$1 && shift
|
||||
|
||||
for IN in $*; do
|
||||
status "touching up $IN..."
|
||||
TMP=$(mktemp)
|
||||
{
|
||||
echo "//go:build $CONSTRAINT"
|
||||
echo
|
||||
} | cat - $IN >$TMP
|
||||
mv $TMP $IN
|
||||
done
|
||||
}
|
||||
|
||||
touchup darwin $OUT/ggml-metal.*
|
||||
touchup mpi $OUT/ggml-mpi.*
|
||||
touchup opencl $OUT/ggml-opencl.*
|
|
@ -521,7 +521,7 @@ func embeddingLayers(e EmbeddingParams) ([]*LayerReader, error) {
|
|||
model = &Model{ModelPath: e.model}
|
||||
}
|
||||
|
||||
if err := load(model, e.opts, defaultSessionDuration); err != nil {
|
||||
if err := load(context.Background(), model, e.opts, defaultSessionDuration); err != nil {
|
||||
return nil, fmt.Errorf("load model to generate embeddings: %v", err)
|
||||
}
|
||||
|
||||
|
@ -584,7 +584,7 @@ func embeddingLayers(e EmbeddingParams) ([]*LayerReader, error) {
|
|||
embeddings = append(embeddings, vector.Embedding{Data: d, Vector: existing[d]})
|
||||
continue
|
||||
}
|
||||
embed, err := loaded.llm.Embedding(d)
|
||||
embed, err := loaded.llm.Embedding(context.Background(), d)
|
||||
if err != nil {
|
||||
log.Printf("failed to generate embedding for '%s' line %d: %v", filePath, i+1, err)
|
||||
continue
|
||||
|
|
|
@ -10,10 +10,12 @@ import (
|
|||
"net"
|
||||
"net/http"
|
||||
"os"
|
||||
"os/signal"
|
||||
"path/filepath"
|
||||
"reflect"
|
||||
"strings"
|
||||
"sync"
|
||||
"syscall"
|
||||
"time"
|
||||
|
||||
"github.com/gin-contrib/cors"
|
||||
|
@ -55,7 +57,7 @@ var loaded struct {
|
|||
var defaultSessionDuration = 5 * time.Minute
|
||||
|
||||
// load a model into memory if it is not already loaded, it is up to the caller to lock loaded.mu before calling this function
|
||||
func load(model *Model, reqOpts map[string]interface{}, sessionDuration time.Duration) error {
|
||||
func load(ctx context.Context, model *Model, reqOpts map[string]interface{}, sessionDuration time.Duration) error {
|
||||
opts := api.DefaultOptions()
|
||||
if err := opts.FromMap(model.Options); err != nil {
|
||||
log.Printf("could not load model options: %v", err)
|
||||
|
@ -67,8 +69,20 @@ func load(model *Model, reqOpts map[string]interface{}, sessionDuration time.Dur
|
|||
return err
|
||||
}
|
||||
|
||||
// check if the loaded model is still running in a subprocess, in case something unexpected happened
|
||||
if loaded.llm != nil {
|
||||
if err := loaded.llm.Ping(ctx); err != nil {
|
||||
log.Print("loaded llm process not responding, closing now")
|
||||
// the subprocess is no longer running, so close it
|
||||
loaded.llm.Close()
|
||||
loaded.llm = nil
|
||||
loaded.digest = ""
|
||||
}
|
||||
}
|
||||
|
||||
if model.Digest != loaded.digest || !reflect.DeepEqual(loaded.options, opts) {
|
||||
if loaded.llm != nil {
|
||||
log.Println("changing loaded model")
|
||||
loaded.llm.Close()
|
||||
loaded.llm = nil
|
||||
loaded.digest = ""
|
||||
|
@ -100,8 +114,14 @@ func load(model *Model, reqOpts map[string]interface{}, sessionDuration time.Dur
|
|||
return err
|
||||
}
|
||||
|
||||
tokensWithSystem := llmModel.Encode(promptWithSystem)
|
||||
tokensNoSystem := llmModel.Encode(promptNoSystem)
|
||||
tokensWithSystem, err := llmModel.Encode(ctx, promptWithSystem)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
tokensNoSystem, err := llmModel.Encode(ctx, promptNoSystem)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
opts.NumKeep = len(tokensWithSystem) - len(tokensNoSystem) + 1
|
||||
|
||||
|
@ -151,7 +171,7 @@ func GenerateHandler(c *gin.Context) {
|
|||
}
|
||||
|
||||
sessionDuration := defaultSessionDuration // TODO: set this duration from the request if specified
|
||||
if err := load(model, req.Options, sessionDuration); err != nil {
|
||||
if err := load(c.Request.Context(), model, req.Options, sessionDuration); err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
@ -160,7 +180,7 @@ func GenerateHandler(c *gin.Context) {
|
|||
|
||||
embedding := ""
|
||||
if model.Embeddings != nil && len(model.Embeddings) > 0 {
|
||||
promptEmbed, err := loaded.llm.Embedding(req.Prompt)
|
||||
promptEmbed, err := loaded.llm.Embedding(c.Request.Context(), req.Prompt)
|
||||
if err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
|
@ -196,7 +216,7 @@ func GenerateHandler(c *gin.Context) {
|
|||
ch <- r
|
||||
}
|
||||
|
||||
if err := loaded.llm.Predict(req.Context, prompt, fn); err != nil {
|
||||
if err := loaded.llm.Predict(c.Request.Context(), req.Context, prompt, fn); err != nil {
|
||||
ch <- gin.H{"error": err.Error()}
|
||||
}
|
||||
}()
|
||||
|
@ -219,7 +239,7 @@ func EmbeddingHandler(c *gin.Context) {
|
|||
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
if err := load(model, req.Options, 5*time.Minute); err != nil {
|
||||
if err := load(c.Request.Context(), model, req.Options, 5*time.Minute); err != nil {
|
||||
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
@ -229,7 +249,7 @@ func EmbeddingHandler(c *gin.Context) {
|
|||
return
|
||||
}
|
||||
|
||||
embedding, err := loaded.llm.Embedding(req.Prompt)
|
||||
embedding, err := loaded.llm.Embedding(c.Request.Context(), req.Prompt)
|
||||
if err != nil {
|
||||
log.Printf("embedding generation failed: %v", err)
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": "failed to generate embedding"})
|
||||
|
@ -455,6 +475,17 @@ func Serve(ln net.Listener, origins []string) error {
|
|||
Handler: r,
|
||||
}
|
||||
|
||||
// listen for a ctrl+c and stop any loaded llm
|
||||
signals := make(chan os.Signal, 1)
|
||||
signal.Notify(signals, syscall.SIGINT)
|
||||
go func() {
|
||||
<-signals
|
||||
if loaded.llm != nil {
|
||||
loaded.llm.Close()
|
||||
}
|
||||
os.Exit(0)
|
||||
}()
|
||||
|
||||
return s.Serve(ln)
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue