33 lines
1.3 KiB
Markdown
33 lines
1.3 KiB
Markdown
# Get model from Hugging Face
|
|
`python3 ./hug_model.py`
|
|
|
|
You should now have a model in the current directory and model.bin symlinked to it for the subsequent Docker build and copy step. e.g.
|
|
```
|
|
docker $ ls -lh *.bin
|
|
-rw-rw-r-- 1 user user 4.8G May 23 18:30 llama-7b.ggmlv3.q5_1.bin
|
|
lrwxrwxrwx 1 user user 24 May 23 18:30 model.bin -> <downloaded-model-file>.q5_1.bin
|
|
```
|
|
- Note #1: Make sure you have enough disk space to d/l the model. As the model is then copied into the image you will need at least
|
|
**TWICE** as much disk space as the size of the model:
|
|
|
|
| Model | Quantized size |
|
|
|------:|----------------:|
|
|
| 7B | 5 GB |
|
|
| 13B | 10 GB |
|
|
| 30B | 25 GB |
|
|
| 65B | 50 GB |
|
|
|
|
- Note #2: If you want to pass or tune additional parameters, customise `./start_server.sh` before running `docker build ...`
|
|
|
|
# Use OpenBLAS (No NVidia GPU, defaults to `python:3-slim-bullseye` Docker base image)
|
|
## Build:
|
|
`docker build --build-arg -t openblas .`
|
|
## Run:
|
|
`docker run --cap-add SYS_RESOURCE -t openblas`
|
|
|
|
# Use CuBLAS
|
|
Requires NVidia GPU and Docker NVidia support (see https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html)
|
|
## Build:
|
|
`docker build --build-arg IMAGE=nvidia/cuda:12.1.1-devel-ubuntu22.04 -t opencuda .`
|
|
## Run:
|
|
`docker run --cap-add SYS_RESOURCE -t cublas`
|