# Get model from Hugging Face `python3 ./hug_model.py` You should now have a model in the current directory and model.bin symlinked to it for the subsequent Docker build and copy step. e.g. ``` docker $ ls -lh *.bin -rw-rw-r-- 1 user user 4.8G May 23 18:30 llama-7b.ggmlv3.q5_1.bin lrwxrwxrwx 1 user user 24 May 23 18:30 model.bin -> .q5_1.bin ``` - Note #1: Make sure you have enough disk space to d/l the model. As the model is then copied into the image you will need at least **TWICE** as much disk space as the size of the model: | Model | Quantized size | |------:|----------------:| | 7B | 5 GB | | 13B | 10 GB | | 30B | 25 GB | | 65B | 50 GB | - Note #2: If you want to pass or tune additional parameters, customise `./start_server.sh` before running `docker build ...` # Use OpenBLAS (No NVidia GPU, defaults to `python:3-slim-bullseye` Docker base image) ## Build: `docker build --build-arg -t openblas .` ## Run: `docker run --cap-add SYS_RESOURCE -t openblas` # Use CuBLAS Requires NVidia GPU and Docker NVidia support (see https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html) ## Build: `docker build --build-arg IMAGE=nvidia/cuda:12.1.1-devel-ubuntu22.04 -t opencuda .` ## Run: `docker run --cap-add SYS_RESOURCE -t cublas`