2024-02-22 02:00:09 -05:00
from __future__ import annotations
2023-04-02 21:50:13 -04:00
import sys
import os
2023-03-23 05:33:06 -04:00
import ctypes
2024-02-23 03:39:38 -05:00
import functools
2023-03-23 05:33:06 -04:00
import pathlib
2024-02-23 03:39:38 -05:00
2024-02-22 02:00:09 -05:00
from typing import (
2024-02-23 03:39:38 -05:00
Any ,
Callable ,
2024-02-22 02:00:09 -05:00
List ,
Union ,
NewType ,
Optional ,
TYPE_CHECKING ,
TypeVar ,
Generic ,
)
2024-02-22 03:27:28 -05:00
from typing_extensions import TypeAlias
2023-03-23 05:33:06 -04:00
2023-04-11 11:59:03 -04:00
2023-03-23 05:33:06 -04:00
# Load the library
2023-05-05 12:22:27 -04:00
def _load_shared_library ( lib_base_name : str ) :
2023-06-08 00:27:19 -04:00
# Construct the paths to the possible shared library names
2023-09-14 14:51:43 -04:00
_base_path = pathlib . Path ( os . path . abspath ( os . path . dirname ( __file__ ) ) )
2023-06-08 00:27:19 -04:00
# Searching for the library in the current directory under the name "libllama" (default name
# for llamacpp) and "llama" (default name for this repo)
_lib_paths : List [ pathlib . Path ] = [ ]
2023-04-02 21:50:13 -04:00
# Determine the file extension based on the platform
if sys . platform . startswith ( " linux " ) :
2023-06-08 00:27:19 -04:00
_lib_paths + = [
_base_path / f " lib { lib_base_name } .so " ,
]
2023-04-02 21:50:13 -04:00
elif sys . platform == " darwin " :
2023-06-08 00:27:19 -04:00
_lib_paths + = [
_base_path / f " lib { lib_base_name } .so " ,
_base_path / f " lib { lib_base_name } .dylib " ,
]
2023-04-02 21:50:13 -04:00
elif sys . platform == " win32 " :
2023-06-08 00:27:19 -04:00
_lib_paths + = [
_base_path / f " { lib_base_name } .dll " ,
2023-11-02 04:25:57 +05:30
_base_path / f " lib { lib_base_name } .dll " ,
2023-06-08 00:27:19 -04:00
]
2023-04-02 21:50:13 -04:00
else :
raise RuntimeError ( " Unsupported platform " )
2023-04-11 11:59:03 -04:00
if " LLAMA_CPP_LIB " in os . environ :
2023-04-10 17:27:17 +02:00
lib_base_name = os . environ [ " LLAMA_CPP_LIB " ]
2023-04-10 17:12:25 +02:00
_lib = pathlib . Path ( lib_base_name )
_base_path = _lib . parent . resolve ( )
_lib_paths = [ _lib . resolve ( ) ]
2023-04-10 17:00:35 +02:00
2023-05-19 11:59:33 -04:00
cdll_args = dict ( ) # type: ignore
2023-04-02 21:50:13 -04:00
# Add the library directory to the DLL search path on Windows (if needed)
if sys . platform == " win32 " and sys . version_info > = ( 3 , 8 ) :
os . add_dll_directory ( str ( _base_path ) )
2023-05-17 15:26:38 -04:00
if " CUDA_PATH " in os . environ :
2023-05-19 11:59:33 -04:00
os . add_dll_directory ( os . path . join ( os . environ [ " CUDA_PATH " ] , " bin " ) )
os . add_dll_directory ( os . path . join ( os . environ [ " CUDA_PATH " ] , " lib " ) )
2023-12-22 15:29:56 -05:00
if " HIP_PATH " in os . environ :
os . add_dll_directory ( os . path . join ( os . environ [ " HIP_PATH " ] , " bin " ) )
os . add_dll_directory ( os . path . join ( os . environ [ " HIP_PATH " ] , " lib " ) )
2023-09-16 14:57:49 -04:00
cdll_args [ " winmode " ] = ctypes . RTLD_GLOBAL
2023-04-02 21:50:13 -04:00
# Try to load the shared library, handling potential errors
for _lib_path in _lib_paths :
if _lib_path . exists ( ) :
try :
2024-02-22 02:00:09 -05:00
return ctypes . CDLL ( str ( _lib_path ) , * * cdll_args ) # type: ignore
2023-04-02 21:50:13 -04:00
except Exception as e :
raise RuntimeError ( f " Failed to load shared library ' { _lib_path } ' : { e } " )
2023-04-11 11:59:03 -04:00
raise FileNotFoundError (
f " Shared library with base name ' { lib_base_name } ' not found "
)
2023-04-02 21:50:13 -04:00
# Specify the base name of the shared library to load
2023-04-03 13:06:50 -04:00
_lib_base_name = " llama "
2023-04-02 21:50:13 -04:00
# Load the library
2023-04-03 13:06:50 -04:00
_lib = _load_shared_library ( _lib_base_name )
2023-03-23 05:33:06 -04:00
2024-02-22 02:00:09 -05:00
# ctypes sane type hint helpers
#
# - Generic Pointer and Array types
# - PointerOrRef type with a type hinted byref function
#
# NOTE: Only use these for static type checking not for runtime checks
# no good will come of that
if TYPE_CHECKING :
CtypesCData = TypeVar ( " CtypesCData " , bound = ctypes . _CData ) # type: ignore
CtypesArray : TypeAlias = ctypes . Array [ CtypesCData ] # type: ignore
CtypesPointer : TypeAlias = ctypes . _Pointer [ CtypesCData ] # type: ignore
CtypesVoidPointer : TypeAlias = ctypes . c_void_p
class CtypesRef ( Generic [ CtypesCData ] ) :
pass
CtypesPointerOrRef : TypeAlias = Union [
CtypesPointer [ CtypesCData ] , CtypesRef [ CtypesCData ]
]
CtypesFuncPointer : TypeAlias = ctypes . _FuncPointer # type: ignore
2024-02-25 16:54:37 -05:00
F = TypeVar ( " F " , bound = Callable [ . . . , Any ] )
2023-05-21 17:47:21 -04:00
2024-02-28 14:27:16 -05:00
2024-02-23 03:39:38 -05:00
def ctypes_function_for_shared_library ( lib : ctypes . CDLL ) :
def ctypes_function (
name : str , argtypes : List [ Any ] , restype : Any , enabled : bool = True
) :
2024-02-25 16:54:37 -05:00
def decorator ( f : F ) - > F :
2024-02-23 03:39:38 -05:00
if enabled :
func = getattr ( lib , name )
func . argtypes = argtypes
func . restype = restype
functools . wraps ( f ) ( func )
return func
else :
return f
return decorator
return ctypes_function
ctypes_function = ctypes_function_for_shared_library ( _lib )
def byref ( obj : CtypesCData , offset : Optional [ int ] = None ) - > CtypesRef [ CtypesCData ] :
""" Type-annotated version of ctypes.byref """
. . .
byref = ctypes . byref # type: ignore
2024-01-18 21:21:49 -05:00
# from ggml-backend.h
# typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data);
2024-02-22 02:00:09 -05:00
ggml_backend_sched_eval_callback = ctypes . CFUNCTYPE (
ctypes . c_bool , ctypes . c_void_p , ctypes . c_bool , ctypes . c_void_p
)
2024-01-18 21:21:49 -05:00
2023-05-21 17:47:21 -04:00
# llama.h bindings
2024-01-03 22:04:04 -05:00
_lib . llama_max_devices . argtypes = [ ]
2024-01-31 10:41:42 -05:00
_lib . llama_max_devices . restype = ctypes . c_size_t
2024-01-03 22:04:04 -05:00
2023-12-22 15:19:28 -05:00
LLAMA_MAX_DEVICES = _lib . llama_max_devices ( )
2023-06-06 16:23:55 -04:00
2023-08-24 00:17:00 -04:00
# define LLAMA_DEFAULT_SEED 0xFFFFFFFF
2023-09-13 21:11:52 -04:00
LLAMA_DEFAULT_SEED = 0xFFFFFFFF
2023-08-24 00:17:00 -04:00
2023-09-28 22:42:03 -04:00
# define LLAMA_MAX_RNG_STATE (64*1024)
LLAMA_MAX_RNG_STATE = 64 * 1024
2024-01-08 14:51:29 -05:00
# define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
2023-12-16 18:57:43 -05:00
LLAMA_FILE_MAGIC_GGLA = 0x67676C61
2023-08-24 00:17:00 -04:00
# define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
2023-09-13 21:11:52 -04:00
LLAMA_FILE_MAGIC_GGSN = 0x6767736E
2023-05-21 17:47:21 -04:00
2023-08-24 00:17:00 -04:00
# define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
2023-05-21 17:47:21 -04:00
LLAMA_SESSION_MAGIC = LLAMA_FILE_MAGIC_GGSN
2024-01-13 22:37:49 -05:00
# define LLAMA_SESSION_VERSION 4
LLAMA_SESSION_VERSION = 4
2023-05-01 10:44:28 -04:00
2023-07-05 01:00:14 -04:00
2023-06-26 08:50:38 -04:00
# struct llama_model;
2024-02-21 16:25:38 -05:00
llama_model_p = NewType ( " llama_model_p " , int )
llama_model_p_ctypes = ctypes . c_void_p
2023-06-26 08:50:38 -04:00
2023-05-21 17:47:21 -04:00
# struct llama_context;
2024-02-21 16:25:38 -05:00
llama_context_p = NewType ( " llama_context_p " , int )
llama_context_p_ctypes = ctypes . c_void_p
2023-03-24 14:58:42 -04:00
2023-09-28 22:42:03 -04:00
# typedef int32_t llama_pos;
2024-02-21 16:25:38 -05:00
llama_pos = ctypes . c_int32
2023-09-28 22:42:03 -04:00
# typedef int32_t llama_token;
2024-02-21 16:25:38 -05:00
llama_token = ctypes . c_int32
llama_token_p = ctypes . POINTER ( llama_token )
2023-09-28 22:42:03 -04:00
# typedef int32_t llama_seq_id;
2024-02-21 16:25:38 -05:00
llama_seq_id = ctypes . c_int32
2023-03-23 05:33:06 -04:00
2023-08-24 00:17:00 -04:00
# enum llama_vocab_type {
# LLAMA_VOCAB_TYPE_SPM = 0, // SentencePiece
# LLAMA_VOCAB_TYPE_BPE = 1, // Byte Pair Encoding
2024-02-11 19:00:17 -05:00
# LLAMA_VOCAB_TYPE_WPM = 2, // WordPiece
2023-08-24 00:17:00 -04:00
# };
2023-09-13 21:11:52 -04:00
LLAMA_VOCAB_TYPE_SPM = 0
LLAMA_VOCAB_TYPE_BPE = 1
2024-02-11 19:00:17 -05:00
LLAMA_VOCAB_TYPE_WPM = 2
2023-08-24 00:17:00 -04:00
2024-02-25 20:52:14 -05:00
# // note: these values should be synchronized with ggml_rope
# // TODO: maybe move this enum to ggml.h (ggml_rope_type)
# enum llama_rope_type {
# LLAMA_ROPE_TYPE_NONE = -1,
# LLAMA_ROPE_TYPE_NORM = 0,
# LLAMA_ROPE_TYPE_NEOX = 2,
# LLAMA_ROPE_TYPE_GLM = 4,
# };
LLAMA_ROPE_TYPE_NONE = - 1
LLAMA_ROPE_TYPE_NORM = 0
LLAMA_ROPE_TYPE_NEOX = 2
LLAMA_ROPE_TYPE_GLM = 4
2023-08-24 00:17:00 -04:00
# enum llama_token_type {
# LLAMA_TOKEN_TYPE_UNDEFINED = 0,
# LLAMA_TOKEN_TYPE_NORMAL = 1,
# LLAMA_TOKEN_TYPE_UNKNOWN = 2,
# LLAMA_TOKEN_TYPE_CONTROL = 3,
# LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
# LLAMA_TOKEN_TYPE_UNUSED = 5,
# LLAMA_TOKEN_TYPE_BYTE = 6,
# };
2023-09-13 21:11:52 -04:00
LLAMA_TOKEN_TYPE_UNDEFINED = 0
LLAMA_TOKEN_TYPE_NORMAL = 1
LLAMA_TOKEN_TYPE_UNKNOWN = 2
LLAMA_TOKEN_TYPE_CONTROL = 3
LLAMA_TOKEN_TYPE_USER_DEFINED = 4
LLAMA_TOKEN_TYPE_UNUSED = 5
LLAMA_TOKEN_TYPE_BYTE = 6
2023-08-24 00:17:00 -04:00
2023-09-28 22:42:03 -04:00
# // model file types
2023-08-24 00:17:00 -04:00
# enum llama_ftype {
# LLAMA_FTYPE_ALL_F32 = 0,
2023-09-28 22:42:03 -04:00
# LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
# // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
# // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
# LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
2024-01-08 14:51:29 -05:00
# LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
2024-01-11 22:51:12 -05:00
# LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
2024-02-26 11:40:58 -05:00
# LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
2024-01-30 09:48:09 -05:00
# LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
2024-02-18 21:30:36 -05:00
# LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
2024-02-21 11:05:58 -05:00
# LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
2024-02-24 23:47:29 -05:00
# LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
2024-02-26 11:40:58 -05:00
# LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
2024-02-27 12:22:17 -05:00
# LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
2023-09-28 22:42:03 -04:00
2023-08-24 00:17:00 -04:00
# LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
# };
2023-09-13 21:11:52 -04:00
LLAMA_FTYPE_ALL_F32 = 0
LLAMA_FTYPE_MOSTLY_F16 = 1
LLAMA_FTYPE_MOSTLY_Q4_0 = 2
LLAMA_FTYPE_MOSTLY_Q4_1 = 3
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4
LLAMA_FTYPE_MOSTLY_Q8_0 = 7
LLAMA_FTYPE_MOSTLY_Q5_0 = 8
LLAMA_FTYPE_MOSTLY_Q5_1 = 9
LLAMA_FTYPE_MOSTLY_Q2_K = 10
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17
LLAMA_FTYPE_MOSTLY_Q6_K = 18
2024-01-11 22:51:12 -05:00
LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19
LLAMA_FTYPE_MOSTLY_IQ2_XS = 20
LLAMA_FTYPE_MOSTLY_Q2_K_S = 21
2024-02-26 11:40:58 -05:00
LLAMA_FTYPE_MOSTLY_IQ3_XS = 22
2024-01-30 09:48:09 -05:00
LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23
2024-02-18 21:30:36 -05:00
LLAMA_FTYPE_MOSTLY_IQ1_S = 24
2024-02-21 11:05:58 -05:00
LLAMA_FTYPE_MOSTLY_IQ4_NL = 25
2024-02-24 23:47:29 -05:00
LLAMA_FTYPE_MOSTLY_IQ3_S = 26
LLAMA_FTYPE_MOSTLY_IQ3_M = 27
2024-02-26 11:40:58 -05:00
LLAMA_FTYPE_MOSTLY_IQ2_S = 28
LLAMA_FTYPE_MOSTLY_IQ2_M = 29
2024-02-27 12:22:17 -05:00
LLAMA_FTYPE_MOSTLY_IQ4_XS = 30
2023-09-13 21:11:52 -04:00
LLAMA_FTYPE_GUESSED = 1024
2023-08-24 00:17:00 -04:00
2023-11-02 13:40:20 -04:00
# enum llama_rope_scaling_type {
2024-02-25 16:53:58 -05:00
# LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
# LLAMA_ROPE_SCALING_TYPE_NONE = 0,
# LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
# LLAMA_ROPE_SCALING_TYPE_YARN = 2,
# LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
2023-11-02 13:40:20 -04:00
# };
2024-02-25 16:53:58 -05:00
LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = - 1
LLAMA_ROPE_SCALING_TYPE_NONE = 0
LLAMA_ROPE_SCALING_TYPE_LINEAR = 1
LLAMA_ROPE_SCALING_TYPE_YARN = 2
LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN
2023-03-24 14:35:41 -04:00
2024-02-15 15:17:30 -05:00
# enum llama_pooling_type {
2024-02-25 16:53:58 -05:00
# LLAMA_POOLING_TYPE_NONE = 0,
# LLAMA_POOLING_TYPE_MEAN = 1,
# LLAMA_POOLING_TYPE_CLS = 2,
2024-02-15 15:17:30 -05:00
# };
2024-02-25 16:53:58 -05:00
LLAMA_POOLING_TYPE_NONE = 0
LLAMA_POOLING_TYPE_MEAN = 1
LLAMA_POOLING_TYPE_CLS = 2
2024-02-15 15:17:30 -05:00
2024-01-13 22:37:49 -05:00
# enum llama_split_mode {
2024-02-25 16:53:58 -05:00
# LLAMA_SPLIT_MODE_NONE = 0, // single GPU
# LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
# LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
2024-01-13 22:37:49 -05:00
# };
2024-02-25 16:53:58 -05:00
LLAMA_SPLIT_MODE_NONE = 0
LLAMA_SPLIT_MODE_LAYER = 1
LLAMA_SPLIT_MODE_ROW = 2
2023-11-20 14:11:33 -05:00
2024-01-15 10:12:10 -05:00
2023-05-21 17:47:21 -04:00
# typedef struct llama_token_data {
# llama_token id; // token id
# float logit; // log-odds of the token
# float p; // probability of the token
# } llama_token_data;
2024-02-21 16:25:38 -05:00
class llama_token_data ( ctypes . Structure ) :
2023-11-27 19:03:02 -05:00
""" Used to store token data
2024-01-08 14:51:29 -05:00
2023-11-27 19:03:02 -05:00
Attributes :
id ( llama_token ) : token id
logit ( float ) : log - odds of the token
p ( float ) : probability of the token """
2024-01-08 14:51:29 -05:00
2023-03-23 05:33:06 -04:00
_fields_ = [
2023-05-21 17:47:21 -04:00
( " id " , llama_token ) ,
2024-02-21 16:25:38 -05:00
( " logit " , ctypes . c_float ) ,
( " p " , ctypes . c_float ) ,
2023-03-23 05:33:06 -04:00
]
2023-03-24 14:35:41 -04:00
2024-02-21 16:25:38 -05:00
llama_token_data_p = ctypes . POINTER ( llama_token_data )
2023-03-23 05:33:06 -04:00
2023-05-01 10:44:28 -04:00
2023-05-21 17:47:21 -04:00
# typedef struct llama_token_data_array {
# llama_token_data * data;
# size_t size;
# bool sorted;
# } llama_token_data_array;
2024-02-21 16:25:38 -05:00
class llama_token_data_array ( ctypes . Structure ) :
2023-11-27 19:03:02 -05:00
""" Used to sample tokens given logits
2024-01-08 14:51:29 -05:00
2023-11-27 19:03:02 -05:00
Attributes :
data ( ctypes . Array [ llama_token_data ] ) : token data
size ( int ) : size of the array
sorted ( bool ) : whether the array is sorted """
2024-01-08 14:51:29 -05:00
2023-05-01 10:44:28 -04:00
_fields_ = [
( " data " , llama_token_data_p ) ,
2024-02-21 16:25:38 -05:00
( " size " , ctypes . c_size_t ) ,
( " sorted " , ctypes . c_bool ) ,
2023-05-01 10:44:28 -04:00
]
2024-02-21 16:25:38 -05:00
llama_token_data_array_p = ctypes . POINTER ( llama_token_data_array )
2023-05-01 10:44:28 -04:00
2023-12-22 14:10:34 -05:00
# typedef bool (*llama_progress_callback)(float progress, void *ctx);
2024-02-22 02:00:09 -05:00
llama_progress_callback = ctypes . CFUNCTYPE (
ctypes . c_bool , ctypes . c_float , ctypes . c_void_p
)
2023-03-24 14:35:41 -04:00
2023-08-24 00:17:00 -04:00
2023-09-28 22:42:03 -04:00
# // Input data for llama_decode
# // A llama_batch object can contain input about one or many sequences
# // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
# //
# // - token : the token ids of the input (used when embd is NULL)
# // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
# // - pos : the positions of the respective token in the sequence
# // - seq_id : the sequence to which the respective token belongs
# // - logits : if zero, the logits for the respective token will not be output
# //
# typedef struct llama_batch {
# int32_t n_tokens;
2023-10-19 02:55:08 -04:00
# llama_token * token;
# float * embd;
# llama_pos * pos;
2023-10-31 21:29:35 -04:00
# int32_t * n_seq_id;
2023-10-19 02:55:08 -04:00
# llama_seq_id ** seq_id;
# int8_t * logits;
2023-09-28 22:42:03 -04:00
# // NOTE: helpers for smooth API transition - can be deprecated in the future
# // for future-proof code, use the above fields instead and ignore everything below
# //
# // pos[i] = all_pos_0 + i*all_pos_1
# //
# llama_pos all_pos_0; // used if pos == NULL
# llama_pos all_pos_1; // used if pos == NULL
# llama_seq_id all_seq_id; // used if seq_id == NULL
# } llama_batch;
2024-02-21 16:25:38 -05:00
class llama_batch ( ctypes . Structure ) :
2023-11-23 00:26:26 -05:00
""" Input data for llama_decode
2023-11-23 16:26:00 -05:00
2023-11-23 00:26:26 -05:00
A llama_batch object can contain input about one or many sequences
2023-11-23 16:26:00 -05:00
2023-11-23 00:26:26 -05:00
The provided arrays ( i . e . token , embd , pos , etc . ) must have size of n_tokens
2023-11-23 16:26:00 -05:00
2023-11-23 00:26:26 -05:00
Attributes :
token ( ctypes . Array [ llama_token ] ) : the token ids of the input ( used when embd is NULL )
2024-02-21 16:25:38 -05:00
embd ( ctypes . Array [ ctypes . ctypes . c_float ] ) : token embeddings ( i . e . float vector of size n_embd ) ( used when token is NULL )
2023-11-23 00:26:26 -05:00
pos ( ctypes . Array [ ctypes . Array [ llama_pos ] ] ) : the positions of the respective token in the sequence
2024-01-08 14:51:29 -05:00
seq_id ( ctypes . Array [ ctypes . Array [ llama_seq_id ] ] ) : the sequence to which the respective token belongs
"""
2023-11-23 00:26:26 -05:00
2023-09-28 22:42:03 -04:00
_fields_ = [
2024-02-21 16:25:38 -05:00
( " n_tokens " , ctypes . c_int32 ) ,
( " token " , ctypes . POINTER ( llama_token ) ) ,
2024-02-22 02:00:09 -05:00
( " embd " , ctypes . POINTER ( ctypes . c_float ) ) ,
2024-02-21 16:25:38 -05:00
( " pos " , ctypes . POINTER ( llama_pos ) ) ,
( " n_seq_id " , ctypes . POINTER ( ctypes . c_int32 ) ) ,
( " seq_id " , ctypes . POINTER ( ctypes . POINTER ( llama_seq_id ) ) ) ,
( " logits " , ctypes . POINTER ( ctypes . c_int8 ) ) ,
2023-09-28 22:42:03 -04:00
( " all_pos_0 " , llama_pos ) ,
( " all_pos_1 " , llama_pos ) ,
( " all_seq_id " , llama_seq_id ) ,
]
2023-07-15 15:11:01 -04:00
2024-01-08 14:51:29 -05:00
2023-12-11 10:21:35 -05:00
# enum llama_model_kv_override_type {
2024-02-25 16:53:58 -05:00
# LLAMA_KV_OVERRIDE_TYPE_INT,
# LLAMA_KV_OVERRIDE_TYPE_FLOAT,
# LLAMA_KV_OVERRIDE_TYPE_BOOL,
2023-12-11 10:21:35 -05:00
# };
2024-02-25 16:53:58 -05:00
LLAMA_KV_OVERRIDE_TYPE_INT = 0
LLAMA_KV_OVERRIDE_TYPE_FLOAT = 1
LLAMA_KV_OVERRIDE_TYPE_BOOL = 2
2023-12-11 10:21:35 -05:00
2024-01-08 14:51:29 -05:00
2023-12-11 10:21:35 -05:00
# struct llama_model_kv_override {
# char key[128];
# enum llama_model_kv_override_type tag;
# union {
# int64_t int_value;
# double float_value;
# bool bool_value;
# };
# };
2024-02-21 16:25:38 -05:00
class llama_model_kv_override_value ( ctypes . Union ) :
2023-12-11 10:21:35 -05:00
_fields_ = [
2024-02-21 16:25:38 -05:00
( " int_value " , ctypes . c_int64 ) ,
( " float_value " , ctypes . c_double ) ,
( " bool_value " , ctypes . c_bool ) ,
2023-12-11 10:21:35 -05:00
]
2023-09-28 22:42:03 -04:00
2024-01-08 14:51:29 -05:00
2024-02-21 16:25:38 -05:00
class llama_model_kv_override ( ctypes . Structure ) :
2023-12-22 14:52:20 -05:00
_fields_ = [
( " key " , ctypes . c_char * 128 ) ,
2024-02-21 16:25:38 -05:00
( " tag " , ctypes . c_int ) ,
2023-12-22 14:52:20 -05:00
( " value " , llama_model_kv_override_value ) ,
]
2024-01-08 14:51:29 -05:00
2023-09-28 22:42:03 -04:00
# struct llama_model_params {
# int32_t n_gpu_layers; // number of layers to store in VRAM
2024-01-13 22:37:49 -05:00
# enum llama_split_mode split_mode; // how to split the model across multiple GPUs
# // main_gpu interpretation depends on split_mode:
# // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
# // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
# // LLAMA_SPLIT_LAYER: ignored
# int32_t main_gpu;
2024-01-31 10:41:42 -05:00
# // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
2024-01-13 22:37:49 -05:00
# const float * tensor_split;
2023-07-15 15:11:01 -04:00
2023-12-22 14:10:34 -05:00
# // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
# // If the provided progress_callback returns true, model loading continues.
# // If it returns false, model loading is immediately aborted.
2023-06-20 11:25:10 -04:00
# llama_progress_callback progress_callback;
2024-01-13 22:37:49 -05:00
2023-06-20 11:25:10 -04:00
# // context pointer passed to the progress callback
# void * progress_callback_user_data;
2023-05-21 17:47:21 -04:00
2023-12-11 10:21:35 -05:00
# // override key-value pairs of the model meta data
# const struct llama_model_kv_override * kv_overrides;
2023-07-20 18:51:53 -04:00
2024-01-15 10:12:10 -05:00
2023-06-20 11:25:10 -04:00
# // Keep the booleans together to avoid misalignment during copy-by-value.
2023-05-21 17:47:21 -04:00
# bool vocab_only; // only load the vocabulary, no weights
# bool use_mmap; // use mmap if possible
# bool use_mlock; // force system to keep model in RAM
# };
2024-02-21 16:25:38 -05:00
class llama_model_params ( ctypes . Structure ) :
2023-11-27 19:03:02 -05:00
""" Parameters for llama_model
2024-01-08 14:51:29 -05:00
2023-11-27 19:03:02 -05:00
Attributes :
n_gpu_layers ( int ) : number of layers to store in VRAM
2024-01-13 22:37:49 -05:00
split_mode ( int ) : how to split the model across multiple GPUs
main_gpu ( int ) : the GPU that is used for the entire model . main_gpu interpretation depends on split_mode : LLAMA_SPLIT_NONE : the GPU that is used for the entire model LLAMA_SPLIT_ROW : the GPU that is used for small tensors and intermediate results LLAMA_SPLIT_LAYER : ignored
2024-02-21 16:25:38 -05:00
tensor_split ( ctypes . Array [ ctypes . ctypes . c_float ] ) : proportion of the model ( layers or rows ) to offload to each GPU , size : llama_max_devices ( )
2023-12-22 14:10:34 -05:00
progress_callback ( llama_progress_callback ) : called with a progress value between 0.0 and 1.0 . Pass NULL to disable . If the provided progress_callback returns true , model loading continues . If it returns false , model loading is immediately aborted .
2024-02-21 16:25:38 -05:00
progress_callback_user_data ( ctypes . ctypes . c_void_p ) : context pointer passed to the progress callback
2023-12-11 10:21:35 -05:00
kv_overrides ( ctypes . Array [ llama_model_kv_override ] ) : override key - value pairs of the model meta data
2023-11-27 19:03:02 -05:00
vocab_only ( bool ) : only load the vocabulary , no weights
use_mmap ( bool ) : use mmap if possible
use_mlock ( bool ) : force system to keep model in RAM """
2024-01-08 14:51:29 -05:00
2023-03-23 05:33:06 -04:00
_fields_ = [
2024-02-21 16:25:38 -05:00
( " n_gpu_layers " , ctypes . c_int32 ) ,
( " split_mode " , ctypes . c_int ) ,
( " main_gpu " , ctypes . c_int32 ) ,
2024-02-22 02:00:09 -05:00
( " tensor_split " , ctypes . POINTER ( ctypes . c_float ) ) ,
2023-06-20 11:25:10 -04:00
( " progress_callback " , llama_progress_callback ) ,
2024-02-21 16:25:38 -05:00
( " progress_callback_user_data " , ctypes . c_void_p ) ,
( " kv_overrides " , ctypes . POINTER ( llama_model_kv_override ) ) ,
( " vocab_only " , ctypes . c_bool ) ,
( " use_mmap " , ctypes . c_bool ) ,
( " use_mlock " , ctypes . c_bool ) ,
2023-03-23 05:33:06 -04:00
]
2023-03-24 14:35:41 -04:00
2023-09-28 22:42:03 -04:00
# struct llama_context_params {
2023-11-03 11:34:50 -04:00
# uint32_t seed; // RNG seed, -1 for random
# uint32_t n_ctx; // text context, 0 = from model
# uint32_t n_batch; // prompt processing maximum batch size
# uint32_t n_threads; // number of threads to use for generation
# uint32_t n_threads_batch; // number of threads to use for batch processing
2024-02-05 13:26:50 -05:00
# int32_t rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
2023-09-28 22:42:03 -04:00
# // ref: https://github.com/ggerganov/llama.cpp/pull/2054
2023-11-02 13:40:20 -04:00
# float rope_freq_base; // RoPE base frequency, 0 = from model
# float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
2023-11-26 15:38:22 -05:00
# float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
2023-11-02 13:40:20 -04:00
# float yarn_attn_factor; // YaRN magnitude scaling factor
# float yarn_beta_fast; // YaRN low correction dim
# float yarn_beta_slow; // YaRN high correction dim
# uint32_t yarn_orig_ctx; // YaRN original context size
2024-02-27 12:22:17 -05:00
# float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
2023-09-28 22:42:03 -04:00
2024-01-18 21:21:49 -05:00
# ggml_backend_sched_eval_callback cb_eval;
# void * cb_eval_user_data;
2023-12-11 10:21:35 -05:00
# enum ggml_type type_k; // data type for K cache
# enum ggml_type type_v; // data type for V cache
2023-09-28 22:42:03 -04:00
2024-01-08 14:51:29 -05:00
2023-09-28 22:42:03 -04:00
# // Keep the booleans together to avoid misalignment during copy-by-value.
2023-12-11 10:21:35 -05:00
# bool mul_mat_q; // if true, use experimental mul_mat_q kernels (DEPRECATED - always true)
2023-12-13 21:43:16 -05:00
# bool logits_all; // the llama_eval() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
2023-12-11 10:21:35 -05:00
# bool embedding; // embedding mode only
# bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
2024-02-13 12:24:00 -05:00
# bool do_pooling; // whether to pool (sum) embedding results by sequence id (ignored if no pooling layer)
2023-09-28 22:42:03 -04:00
# };
2024-02-21 16:25:38 -05:00
class llama_context_params ( ctypes . Structure ) :
2023-11-27 19:03:02 -05:00
""" Parameters for llama_context
2024-01-08 14:51:29 -05:00
2023-11-27 19:03:02 -05:00
Attributes :
seed ( int ) : RNG seed , - 1 for random
n_ctx ( int ) : text context , 0 = from model
n_batch ( int ) : prompt processing maximum batch size
n_threads ( int ) : number of threads to use for generation
n_threads_batch ( int ) : number of threads to use for batch processing
rope_scaling_type ( int ) : RoPE scaling type , from ` enum llama_rope_scaling_type `
rope_freq_base ( float ) : RoPE base frequency , 0 = from model
rope_freq_scale ( float ) : RoPE frequency scaling factor , 0 = from model
yarn_ext_factor ( float ) : YaRN extrapolation mix factor , negative = from model
yarn_attn_factor ( float ) : YaRN magnitude scaling factor
yarn_beta_fast ( float ) : YaRN low correction dim
yarn_beta_slow ( float ) : YaRN high correction dim
yarn_orig_ctx ( int ) : YaRN original context size
2024-02-27 12:22:17 -05:00
defrag_thold ( float ) : defragment the KV cache if holes / size > thold , < 0 disabled ( default )
2024-01-18 21:21:49 -05:00
cb_eval ( ggml_backend_sched_eval_callback ) : callback for scheduling eval
2024-02-21 16:25:38 -05:00
cb_eval_user_data ( ctypes . ctypes . c_void_p ) : user data for cb_eval
2023-12-11 10:21:35 -05:00
type_k ( int ) : data type for K cache
type_v ( int ) : data type for V cache
2023-11-27 19:03:02 -05:00
mul_mat_q ( bool ) : if true , use experimental mul_mat_q kernels ( DEPRECATED - always true )
2023-12-13 21:43:16 -05:00
logits_all ( bool ) : the llama_eval ( ) call computes all logits , not just the last one ( DEPRECATED - set llama_batch . logits instead )
2023-12-18 12:27:11 -07:00
embedding ( bool ) : embedding mode only
2024-01-08 14:51:29 -05:00
offload_kqv ( bool ) : whether to offload the KQV ops ( including the KV cache ) to GPU
2024-02-13 12:24:00 -05:00
do_pooling ( bool ) : whether to pool ( sum ) embedding results by sequence id ( ignored if no pooling layer )
2024-01-08 14:51:29 -05:00
"""
2023-09-28 22:42:03 -04:00
_fields_ = [
2024-02-21 16:25:38 -05:00
( " seed " , ctypes . c_uint32 ) ,
( " n_ctx " , ctypes . c_uint32 ) ,
( " n_batch " , ctypes . c_uint32 ) ,
( " n_threads " , ctypes . c_uint32 ) ,
( " n_threads_batch " , ctypes . c_uint32 ) ,
( " rope_scaling_type " , ctypes . c_int32 ) ,
( " rope_freq_base " , ctypes . c_float ) ,
( " rope_freq_scale " , ctypes . c_float ) ,
( " yarn_ext_factor " , ctypes . c_float ) ,
( " yarn_attn_factor " , ctypes . c_float ) ,
( " yarn_beta_fast " , ctypes . c_float ) ,
( " yarn_beta_slow " , ctypes . c_float ) ,
( " yarn_orig_ctx " , ctypes . c_uint32 ) ,
2024-02-27 12:22:17 -05:00
( " defrag_thold " , ctypes . c_float ) ,
2024-01-18 21:21:49 -05:00
( " cb_eval " , ggml_backend_sched_eval_callback ) ,
2024-02-21 16:25:38 -05:00
( " cb_eval_user_data " , ctypes . c_void_p ) ,
( " type_k " , ctypes . c_int ) ,
( " type_v " , ctypes . c_int ) ,
( " mul_mat_q " , ctypes . c_bool ) ,
( " logits_all " , ctypes . c_bool ) ,
( " embedding " , ctypes . c_bool ) ,
( " offload_kqv " , ctypes . c_bool ) ,
( " do_pooling " , ctypes . c_bool ) ,
2023-09-28 22:42:03 -04:00
]
2023-03-23 05:33:06 -04:00
2023-08-24 00:17:00 -04:00
# // Signature for logging events
# // Note that text includes the new line character at the end for most events.
# // If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
# // if it exists.
# // It might not exist for progress report where '.' is output repeatedly.
# typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data);
2024-02-22 02:00:09 -05:00
llama_log_callback = ctypes . CFUNCTYPE (
None , ctypes . c_int , ctypes . c_char_p , ctypes . c_void_p
)
2023-11-23 00:26:26 -05:00
""" Signature for logging events
Note that text includes the new line character at the end for most events .
If your logging mechanism cannot handle that , check if the last character is ' \n ' and strip it
if it exists .
It might not exist for progress report where ' . ' is output repeatedly . """
2023-03-23 05:33:06 -04:00
2023-03-24 14:35:41 -04:00
2023-06-10 12:17:38 -04:00
# // model quantization parameters
# typedef struct llama_model_quantize_params {
2024-01-03 22:04:04 -05:00
# int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
2023-08-24 00:17:00 -04:00
# enum llama_ftype ftype; // quantize to this llama_ftype
2023-06-10 12:17:38 -04:00
# bool allow_requantize; // allow quantizing non-f32/f16 tensors
# bool quantize_output_tensor; // quantize output.weight
2023-09-01 14:26:13 -04:00
# bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
2023-10-31 21:29:35 -04:00
# bool pure; // disable k-quant mixtures and quantize all tensors to the same type
2024-01-14 08:17:22 -05:00
# void * imatrix; // pointer to importance matrix data
2023-06-10 12:17:38 -04:00
# } llama_model_quantize_params;
2024-02-21 16:25:38 -05:00
class llama_model_quantize_params ( ctypes . Structure ) :
2023-11-27 19:03:02 -05:00
""" Parameters for llama_model_quantize
2024-01-08 14:51:29 -05:00
2023-11-27 19:03:02 -05:00
Attributes :
nthread ( int ) : number of threads to use for quantizing , if < = 0 will use std : : thread : : hardware_concurrency ( )
ftype ( int ) : quantize to this llama_ftype
allow_requantize ( bool ) : allow quantizing non - f32 / f16 tensors
quantize_output_tensor ( bool ) : quantize output . weight
only_copy ( bool ) : only copy tensors - ftype , allow_requantize and quantize_output_tensor are ignored
2024-01-08 14:51:29 -05:00
pure ( bool ) : disable k - quant mixtures and quantize all tensors to the same type
2024-02-21 16:25:38 -05:00
imatrix ( ctypes . ctypes . c_void_p ) : pointer to importance matrix data
2024-01-08 14:51:29 -05:00
"""
2023-06-10 12:17:38 -04:00
_fields_ = [
2024-02-21 16:25:38 -05:00
( " nthread " , ctypes . c_int32 ) ,
( " ftype " , ctypes . c_int ) ,
( " allow_requantize " , ctypes . c_bool ) ,
( " quantize_output_tensor " , ctypes . c_bool ) ,
( " only_copy " , ctypes . c_bool ) ,
( " pure " , ctypes . c_bool ) ,
( " imatrix " , ctypes . c_void_p ) ,
2023-06-10 12:17:38 -04:00
]
2023-07-24 13:04:34 -04:00
# // grammar types
# struct llama_grammar;
2024-02-21 16:25:38 -05:00
llama_grammar_p = ctypes . c_void_p
2023-07-24 13:04:34 -04:00
# // grammar element type
# enum llama_gretype {
# // end of rule definition
# LLAMA_GRETYPE_END = 0,
# // start of alternate definition for rule
# LLAMA_GRETYPE_ALT = 1,
# // non-terminal element: reference to rule
# LLAMA_GRETYPE_RULE_REF = 2,
# // terminal element: character (code point)
# LLAMA_GRETYPE_CHAR = 3,
# // inverse char(s) ([^a], [^a-b] [^abc])
# LLAMA_GRETYPE_CHAR_NOT = 4,
# // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
# // be an inclusive range ([a-z])
# LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
# // modifies a preceding LLAMA_GRETYPE_CHAR or
# // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
# LLAMA_GRETYPE_CHAR_ALT = 6,
# };
2023-07-24 15:42:07 -04:00
LLAMA_GRETYPE_END = 0
LLAMA_GRETYPE_ALT = 1
LLAMA_GRETYPE_RULE_REF = 2
LLAMA_GRETYPE_CHAR = 3
LLAMA_GRETYPE_CHAR_NOT = 4
LLAMA_GRETYPE_CHAR_RNG_UPPER = 5
LLAMA_GRETYPE_CHAR_ALT = 6
2023-07-24 13:04:34 -04:00
# typedef struct llama_grammar_element {
# enum llama_gretype type;
# uint32_t value; // Unicode code point or rule ID
# } llama_grammar_element;
2024-02-21 16:25:38 -05:00
class llama_grammar_element ( ctypes . Structure ) :
2023-07-24 13:04:34 -04:00
_fields_ = [
2024-02-21 16:25:38 -05:00
( " type " , ctypes . c_int ) ,
( " value " , ctypes . c_uint32 ) ,
2023-07-24 13:04:34 -04:00
]
2024-02-21 16:25:38 -05:00
llama_grammar_element_p = ctypes . POINTER ( llama_grammar_element )
2023-07-24 13:04:34 -04:00
2023-07-06 17:57:56 -04:00
# // performance timing information
# struct llama_timings {
# double t_start_ms;
# double t_end_ms;
# double t_load_ms;
# double t_sample_ms;
# double t_p_eval_ms;
# double t_eval_ms;
# int32_t n_sample;
# int32_t n_p_eval;
# int32_t n_eval;
# };
2024-02-21 16:25:38 -05:00
class llama_timings ( ctypes . Structure ) :
2023-07-06 17:57:56 -04:00
_fields_ = [
2024-02-21 16:25:38 -05:00
( " t_start_ms " , ctypes . c_double ) ,
( " t_end_ms " , ctypes . c_double ) ,
( " t_load_ms " , ctypes . c_double ) ,
( " t_sample_ms " , ctypes . c_double ) ,
( " t_p_eval_ms " , ctypes . c_double ) ,
( " t_eval_ms " , ctypes . c_double ) ,
( " n_sample " , ctypes . c_int32 ) ,
( " n_p_eval " , ctypes . c_int32 ) ,
( " n_eval " , ctypes . c_int32 ) ,
2023-07-06 17:57:56 -04:00
]
2024-02-19 04:11:34 -05:00
# // used in chat template
# typedef struct llama_chat_message {
# const char * role;
# const char * content;
# } llama_chat_message;
2024-02-21 16:25:38 -05:00
class llama_chat_message ( ctypes . Structure ) :
2024-02-19 04:11:34 -05:00
_fields_ = [
2024-02-21 16:25:38 -05:00
( " role " , ctypes . c_char_p ) ,
( " content " , ctypes . c_char_p ) ,
2024-02-19 04:11:34 -05:00
]
2023-09-28 22:42:03 -04:00
# // Helpers for getting default parameters
# LLAMA_API struct llama_model_params llama_model_default_params(void);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_model_default_params " ,
[ ] ,
llama_model_params ,
)
2023-09-28 22:42:03 -04:00
def llama_model_default_params ( ) - > llama_model_params :
2023-11-27 19:03:02 -05:00
""" Get default parameters for llama_model """
2024-02-21 16:25:38 -05:00
. . .
2023-09-28 22:42:03 -04:00
2023-08-24 00:17:00 -04:00
# LLAMA_API struct llama_context_params llama_context_default_params(void);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_context_default_params " ,
[ ] ,
llama_context_params ,
)
2023-03-23 05:33:06 -04:00
def llama_context_default_params ( ) - > llama_context_params :
2023-11-27 19:03:02 -05:00
""" Get default parameters for llama_context """
2024-02-21 16:25:38 -05:00
. . .
2023-03-23 05:33:06 -04:00
2023-03-24 14:35:41 -04:00
2023-08-24 00:17:00 -04:00
# LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_model_quantize_default_params " ,
[ ] ,
llama_model_quantize_params ,
)
2023-06-10 12:17:38 -04:00
def llama_model_quantize_default_params ( ) - > llama_model_quantize_params :
2023-11-27 19:03:02 -05:00
""" Get default parameters for llama_model_quantize """
2024-02-21 16:25:38 -05:00
. . .
2023-06-10 12:17:38 -04:00
2023-05-21 17:47:21 -04:00
# // Initialize the llama + ggml backend
2023-06-29 01:08:15 -04:00
# // If numa is true, use NUMA optimizations
2023-05-21 17:47:21 -04:00
# // Call once at the start of the program
2023-07-15 15:11:01 -04:00
# LLAMA_API void llama_backend_init(bool numa);
2024-02-17 00:37:51 -05:00
# LLAMA_API void llama_backend_init(void);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_backend_init " ,
[ ] ,
None ,
)
2024-02-17 00:37:51 -05:00
def llama_backend_init ( ) :
2023-11-23 00:26:26 -05:00
""" Initialize the llama + ggml backend
If numa is true , use NUMA optimizations
Call once at the start of the program """
2024-02-21 16:25:38 -05:00
. . .
2023-07-15 15:11:01 -04:00
2024-02-17 00:37:51 -05:00
# // numa strategies
# enum ggml_numa_strategy {
# GGML_NUMA_STRATEGY_DISABLED = 0,
# GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
# GGML_NUMA_STRATEGY_ISOLATE = 2,
# GGML_NUMA_STRATEGY_NUMACTL = 3,
# GGML_NUMA_STRATEGY_MIRROR = 4,
# GGML_NUMA_STRATEGY_COUNT
# };
GGML_NUMA_STRATEGY_DISABLED = 0
GGML_NUMA_STRATEGY_DISTRIBUTE = 1
GGML_NUMA_STRATEGY_ISOLATE = 2
GGML_NUMA_STRATEGY_NUMACTL = 3
GGML_NUMA_STRATEGY_MIRROR = 4
GGML_NUMA_STRATEGY_COUNT = 5
# //optional:
# LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_numa_init " ,
[ ctypes . c_int ] ,
None ,
)
2024-02-21 16:25:38 -05:00
def llama_numa_init ( numa : int , / ) :
. . .
2024-02-17 00:37:51 -05:00
2023-07-15 15:11:01 -04:00
# // Call once at the end of the program - currently only used for MPI
2023-08-24 00:17:00 -04:00
# LLAMA_API void llama_backend_free(void);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_backend_free " ,
[ ] ,
None ,
)
2023-07-15 15:11:01 -04:00
def llama_backend_free ( ) :
2023-11-23 00:26:26 -05:00
""" Call once at the end of the program - currently only used for MPI """
2024-02-21 16:25:38 -05:00
. . .
2023-05-21 17:47:21 -04:00
2023-07-15 15:11:01 -04:00
2023-06-26 08:50:38 -04:00
# LLAMA_API struct llama_model * llama_load_model_from_file(
2023-08-24 00:17:00 -04:00
# const char * path_model,
2023-10-05 16:07:49 -04:00
# struct llama_model_params params);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_load_model_from_file " ,
[ ctypes . c_char_p , llama_model_params ] ,
llama_model_p_ctypes ,
)
2023-06-26 08:50:38 -04:00
def llama_load_model_from_file (
2024-02-21 16:25:38 -05:00
path_model : bytes , params : llama_model_params , /
) - > Optional [ llama_model_p ] :
. . .
2023-06-26 08:50:38 -04:00
# LLAMA_API void llama_free_model(struct llama_model * model);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_free_model " ,
[ llama_model_p_ctypes ] ,
None ,
)
2024-02-21 16:25:38 -05:00
def llama_free_model ( model : llama_model_p , / ) :
. . .
2023-06-26 08:50:38 -04:00
# LLAMA_API struct llama_context * llama_new_context_with_model(
2023-08-24 00:17:00 -04:00
# struct llama_model * model,
2023-06-26 08:50:38 -04:00
# struct llama_context_params params);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_new_context_with_model " ,
[ llama_model_p_ctypes , llama_context_params ] ,
llama_context_p_ctypes ,
)
2023-06-26 08:50:38 -04:00
def llama_new_context_with_model (
2024-02-21 16:25:38 -05:00
model : llama_model_p , params : llama_context_params , /
) - > Optional [ llama_context_p ] :
. . .
2023-06-26 08:50:38 -04:00
2023-08-24 00:17:00 -04:00
# // Frees all allocated memory
# LLAMA_API void llama_free(struct llama_context * ctx);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_free " ,
[ llama_context_p_ctypes ] ,
None ,
)
2024-02-21 16:25:38 -05:00
def llama_free ( ctx : llama_context_p , / ) :
2023-11-23 00:26:26 -05:00
""" Frees all allocated memory """
2024-02-21 16:25:38 -05:00
. . .
2023-08-24 00:17:00 -04:00
# LLAMA_API int64_t llama_time_us(void);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_time_us " ,
[ ] ,
ctypes . c_int64 ,
)
2023-05-21 17:47:21 -04:00
def llama_time_us ( ) - > int :
2024-02-21 16:25:38 -05:00
. . .
2023-05-21 17:47:21 -04:00
2024-02-23 03:39:38 -05:00
# LLAMA_API size_t llama_max_devices(void);
@ctypes_function ( " llama_max_devices " , [ ] , ctypes . c_size_t )
2023-08-24 00:17:00 -04:00
def llama_max_devices ( ) - > int :
2024-02-21 16:25:38 -05:00
. . .
2023-03-23 05:33:06 -04:00
2023-03-24 14:35:41 -04:00
2024-02-23 03:39:38 -05:00
# LLAMA_API bool llama_supports_mmap (void);
@ctypes_function ( " llama_supports_mmap " , [ ] , ctypes . c_bool )
2024-01-31 10:41:42 -05:00
def llama_supports_mmap ( ) - > bool :
2024-02-21 16:25:38 -05:00
. . .
2024-01-31 10:41:42 -05:00
2024-02-23 03:39:38 -05:00
# LLAMA_API bool llama_supports_mlock (void);
@ctypes_function ( " llama_supports_mlock " , [ ] , ctypes . c_bool )
2024-01-31 10:41:42 -05:00
def llama_supports_mlock ( ) - > bool :
2024-02-21 16:25:38 -05:00
. . .
2024-01-31 10:41:42 -05:00
2024-02-23 03:39:38 -05:00
# LLAMA_API bool llama_supports_gpu_offload(void);
@ctypes_function ( " llama_supports_gpu_offload " , [ ] , ctypes . c_bool )
2024-01-31 10:41:42 -05:00
def llama_supports_gpu_offload ( ) - > bool :
2024-02-21 16:25:38 -05:00
. . .
2024-01-31 10:41:42 -05:00
2024-02-23 03:39:38 -05:00
# LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
@ctypes_function ( " llama_get_model " , [ llama_context_p_ctypes ] , llama_model_p_ctypes )
2024-02-21 16:25:38 -05:00
def llama_get_model ( ctx : llama_context_p , / ) - > Optional [ llama_model_p ] :
. . .
2023-08-24 00:17:00 -04:00
2024-02-23 03:39:38 -05:00
# LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
@ctypes_function ( " llama_n_ctx " , [ llama_context_p_ctypes ] , ctypes . c_uint32 )
2024-02-21 16:25:38 -05:00
def llama_n_ctx ( ctx : llama_context_p , / ) - > int :
. . .
2023-08-24 00:17:00 -04:00
2024-02-23 03:39:38 -05:00
# LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
@ctypes_function ( " llama_n_batch " , [ llama_context_p_ctypes ] , ctypes . c_uint32 )
2024-02-21 16:25:38 -05:00
def llama_n_batch ( ctx : llama_context_p , / ) - > int :
. . .
2023-12-22 00:12:37 -05:00
2024-01-08 14:51:29 -05:00
2024-02-23 03:39:38 -05:00
# LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
@ctypes_function ( " llama_vocab_type " , [ llama_model_p_ctypes ] , ctypes . c_int )
2024-02-21 16:25:38 -05:00
def llama_vocab_type ( model : llama_model_p , / ) - > int :
. . .
2023-09-09 12:12:32 -04:00
2023-08-24 00:17:00 -04:00
2024-02-25 20:52:14 -05:00
# LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
@ctypes_function ( " llama_rope_type " , [ llama_model_p_ctypes ] , ctypes . c_int )
def llama_rope_type ( model : llama_model_p , / ) - > int :
. . .
2023-08-24 18:01:42 -04:00
2024-02-25 20:52:14 -05:00
# LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
2024-02-23 03:39:38 -05:00
@ctypes_function ( " llama_n_vocab " , [ llama_model_p_ctypes ] , ctypes . c_int32 )
2024-02-21 16:25:38 -05:00
def llama_n_vocab ( model : llama_model_p , / ) - > int :
. . .
2023-08-24 00:17:00 -04:00
2024-02-23 03:39:38 -05:00
# LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
@ctypes_function ( " llama_n_ctx_train " , [ llama_model_p_ctypes ] , ctypes . c_int32 )
2024-02-21 16:25:38 -05:00
def llama_n_ctx_train ( model : llama_model_p , / ) - > int :
. . .
2023-09-09 12:12:32 -04:00
2024-02-23 03:39:38 -05:00
# LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
@ctypes_function ( " llama_n_embd " , [ llama_model_p_ctypes ] , ctypes . c_int32 )
2024-02-21 16:25:38 -05:00
def llama_n_embd ( model : llama_model_p , / ) - > int :
. . .
2023-08-24 00:17:00 -04:00
2023-10-03 15:23:35 -04:00
# // Get the model's RoPE frequency scaling factor
# LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
2024-02-23 03:39:38 -05:00
@ctypes_function ( " llama_rope_freq_scale_train " , [ llama_model_p_ctypes ] , ctypes . c_float )
2024-02-21 16:25:38 -05:00
def llama_rope_freq_scale_train ( model : llama_model_p , / ) - > float :
2023-11-23 00:26:26 -05:00
""" Get the model ' s RoPE frequency scaling factor """
2024-02-21 16:25:38 -05:00
. . .
2023-10-03 15:23:35 -04:00
2023-11-20 14:11:33 -05:00
# // Functions to access the model's GGUF metadata scalar values
# // - The functions return the length of the string on success, or -1 on failure
# // - The output string is always null-terminated and cleared on failure
# // - GGUF array values are not supported by these functions
# // Get metadata value as a string by key name
2024-01-03 22:04:04 -05:00
# LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_model_meta_val_str " ,
[
llama_model_p_ctypes ,
ctypes . c_char_p ,
ctypes . c_char_p ,
ctypes . c_size_t ,
] ,
ctypes . c_int32 ,
)
2023-11-20 14:11:33 -05:00
def llama_model_meta_val_str (
2024-02-22 02:00:09 -05:00
model : llama_model_p ,
key : Union [ ctypes . c_char_p , bytes ] ,
buf : bytes ,
buf_size : int ,
/ ,
2023-11-20 14:11:33 -05:00
) - > int :
2023-11-23 00:26:26 -05:00
""" Get metadata value as a string by key name """
2024-02-21 16:25:38 -05:00
. . .
2023-11-20 14:11:33 -05:00
# // Get the number of metadata key/value pairs
2024-01-03 22:04:04 -05:00
# LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
2024-02-23 03:39:38 -05:00
@ctypes_function ( " llama_model_meta_count " , [ llama_model_p_ctypes ] , ctypes . c_int32 )
2024-02-21 16:25:38 -05:00
def llama_model_meta_count ( model : llama_model_p , / ) - > int :
2023-11-23 00:26:26 -05:00
""" Get the number of metadata key/value pairs """
2024-02-21 16:25:38 -05:00
. . .
2023-11-20 14:11:33 -05:00
# // Get metadata key name by index
2024-01-03 22:04:04 -05:00
# LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_model_meta_key_by_index " ,
[
llama_model_p_ctypes ,
ctypes . c_int32 ,
ctypes . c_char_p ,
ctypes . c_size_t ,
] ,
ctypes . c_int32 ,
)
2023-11-20 14:11:33 -05:00
def llama_model_meta_key_by_index (
2024-02-23 03:39:38 -05:00
model : llama_model_p ,
i : Union [ ctypes . c_int , int ] ,
buf : Union [ bytes , CtypesArray [ ctypes . c_char ] ] ,
buf_size : int ,
/ ,
2023-11-20 14:11:33 -05:00
) - > int :
2023-11-23 00:26:26 -05:00
""" Get metadata key name by index """
2024-02-21 16:25:38 -05:00
. . .
2023-11-20 14:11:33 -05:00
# // Get metadata value as a string by index
2024-01-03 22:04:04 -05:00
# LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_model_meta_val_str_by_index " ,
[
llama_model_p_ctypes ,
ctypes . c_int32 ,
ctypes . c_char_p ,
ctypes . c_size_t ,
] ,
ctypes . c_int32 ,
)
2023-11-20 14:11:33 -05:00
def llama_model_meta_val_str_by_index (
2024-02-23 03:39:38 -05:00
model : llama_model_p ,
i : Union [ ctypes . c_int , int ] ,
buf : Union [ bytes , CtypesArray [ ctypes . c_char ] ] ,
buf_size : int ,
/ ,
2023-11-20 14:11:33 -05:00
) - > int :
2023-11-23 00:26:26 -05:00
""" Get metadata value as a string by index """
2024-02-21 16:25:38 -05:00
. . .
2023-11-20 14:11:33 -05:00
2023-08-24 00:17:00 -04:00
# // Get a string describing the model type
2024-01-03 22:04:04 -05:00
# LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_model_desc " ,
[ llama_model_p_ctypes , ctypes . c_char_p , ctypes . c_size_t ] ,
ctypes . c_int32 ,
)
2023-09-28 22:42:03 -04:00
def llama_model_desc (
2024-02-23 03:39:38 -05:00
model : llama_model_p ,
buf : Union [ bytes , CtypesArray [ ctypes . c_char ] ] ,
buf_size : Union [ ctypes . c_size_t , int ] ,
/ ,
2023-09-28 22:42:03 -04:00
) - > int :
2023-11-23 00:26:26 -05:00
""" Get a string describing the model type """
2024-02-21 16:25:38 -05:00
. . .
2023-08-24 00:17:00 -04:00
2023-08-25 14:35:53 -04:00
# // Returns the total size of all the tensors in the model in bytes
# LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
2024-02-23 03:39:38 -05:00
@ctypes_function ( " llama_model_size " , [ llama_model_p_ctypes ] , ctypes . c_uint64 )
2024-02-21 16:25:38 -05:00
def llama_model_size ( model : llama_model_p , / ) - > int :
2023-11-23 00:26:26 -05:00
""" Returns the total size of all the tensors in the model in bytes """
2024-02-21 16:25:38 -05:00
. . .
2023-08-25 14:35:53 -04:00
2023-08-24 00:17:00 -04:00
2023-08-25 14:35:53 -04:00
# // Returns the total number of parameters in the model
# LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
2024-02-23 03:39:38 -05:00
@ctypes_function ( " llama_model_n_params " , [ llama_model_p_ctypes ] , ctypes . c_uint64 )
2024-02-21 16:25:38 -05:00
def llama_model_n_params ( model : llama_model_p , / ) - > int :
2023-11-23 00:26:26 -05:00
""" Returns the total number of parameters in the model """
2024-02-21 16:25:38 -05:00
. . .
2023-08-25 14:35:53 -04:00
2023-09-28 22:42:03 -04:00
# // Get a llama model tensor
# LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_get_model_tensor " , [ llama_model_p_ctypes , ctypes . c_char_p ] , ctypes . c_void_p
)
2023-09-28 22:42:03 -04:00
def llama_get_model_tensor (
2024-02-21 16:25:38 -05:00
model : llama_model_p , name : Union [ ctypes . c_char_p , bytes ] , /
) - > ctypes . c_void_p :
2023-11-23 00:26:26 -05:00
""" Get a llama model tensor """
2024-02-21 16:25:38 -05:00
. . .
2023-09-28 22:42:03 -04:00
2023-06-10 12:17:38 -04:00
# // Returns 0 on success
2024-01-03 22:04:04 -05:00
# LLAMA_API uint32_t llama_model_quantize(
2023-05-21 17:47:21 -04:00
# const char * fname_inp,
# const char * fname_out,
2023-06-10 12:17:38 -04:00
# const llama_model_quantize_params * params);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_model_quantize " ,
[
ctypes . c_char_p ,
ctypes . c_char_p ,
ctypes . POINTER ( llama_model_quantize_params ) ,
] ,
ctypes . c_uint32 ,
)
2023-04-22 19:50:28 -04:00
def llama_model_quantize (
2023-06-10 12:17:38 -04:00
fname_inp : bytes ,
fname_out : bytes ,
2024-02-22 02:00:09 -05:00
params : CtypesPointerOrRef [ llama_model_quantize_params ] ,
/ ,
2023-05-19 11:59:33 -04:00
) - > int :
2023-11-23 00:26:26 -05:00
""" Returns 0 on success """
2024-02-21 16:25:38 -05:00
. . .
2023-03-23 05:33:06 -04:00
2023-03-24 14:35:41 -04:00
2024-01-03 22:04:04 -05:00
# LLAMA_API int32_t llama_model_apply_lora_from_file(
2023-06-26 08:50:38 -04:00
# const struct llama_model * model,
2023-09-28 22:42:03 -04:00
# const char * path_lora,
# float scale,
# const char * path_base_model,
2024-01-03 22:04:04 -05:00
# int32_t n_threads);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_model_apply_lora_from_file " ,
[
llama_model_p_ctypes ,
ctypes . c_char_p ,
ctypes . c_float ,
ctypes . c_char_p ,
ctypes . c_int32 ,
] ,
ctypes . c_int32 ,
)
2023-06-26 08:50:38 -04:00
def llama_model_apply_lora_from_file (
model : llama_model_p ,
2024-02-21 16:25:38 -05:00
path_lora : Union [ ctypes . c_char_p , bytes ] ,
scale : Union [ ctypes . c_float , float ] ,
2024-02-28 14:27:16 -05:00
path_base_model : Union [ ctypes . c_char_p , bytes , None ] ,
2024-02-22 02:00:09 -05:00
n_threads : Union [ ctypes . c_int32 , int ] ,
/ ,
2023-06-26 08:50:38 -04:00
) - > int :
2024-02-21 16:25:38 -05:00
. . .
2023-06-26 08:50:38 -04:00
2023-09-28 22:42:03 -04:00
# //
# // KV cache
# //
2023-04-18 01:30:04 -04:00
2023-11-23 16:26:00 -05:00
# // Information associated with an individual cell in the KV cache view.
# struct llama_kv_cache_view_cell {
# // The position for this cell. Takes KV cache shifts into account.
# // May be negative if the cell is not populated.
# llama_pos pos;
# };
2024-02-21 16:25:38 -05:00
class llama_kv_cache_view_cell ( ctypes . Structure ) :
2023-11-23 16:26:00 -05:00
_fields_ = [ ( " pos " , llama_pos ) ]
# // An updateable view of the KV cache.
# struct llama_kv_cache_view {
# // Number of KV cache cells. This will be the same as the context size.
# int32_t n_cells;
# // Maximum number of sequences that can exist in a cell. It's not an error
# // if there are more sequences in a cell than this value, however they will
# // not be visible in the view cells_sequences.
# int32_t n_max_seq;
# // Number of tokens in the cache. For example, if there are two populated
# // cells, the first with 1 sequence id in it and the second with 2 sequence
# // ids then you'll have 3 tokens.
# int32_t token_count;
# // Number of populated cache cells.
# int32_t used_cells;
# // Maximum contiguous empty slots in the cache.
# int32_t max_contiguous;
# // Index to the start of the max_contiguous slot range. Can be negative
# // when cache is full.
# int32_t max_contiguous_idx;
# // Information for an individual cell.
# struct llama_kv_cache_view_cell * cells;
# // The sequences for each cell. There will be n_max_seq items per cell.
# llama_seq_id * cells_sequences;
# };
2024-02-21 16:25:38 -05:00
class llama_kv_cache_view ( ctypes . Structure ) :
2023-11-23 16:26:00 -05:00
_fields_ = [
2024-02-21 16:25:38 -05:00
( " n_cells " , ctypes . c_int32 ) ,
( " n_max_seq " , ctypes . c_int32 ) ,
( " token_count " , ctypes . c_int32 ) ,
( " used_cells " , ctypes . c_int32 ) ,
( " max_contiguous " , ctypes . c_int32 ) ,
( " max_contiguous_idx " , ctypes . c_int32 ) ,
( " cells " , ctypes . POINTER ( llama_kv_cache_view_cell ) ) ,
( " cells_sequences " , ctypes . POINTER ( llama_seq_id ) ) ,
2023-11-23 16:26:00 -05:00
]
2024-02-21 16:25:38 -05:00
llama_kv_cache_view_p = ctypes . POINTER ( llama_kv_cache_view )
2023-12-18 18:11:26 -05:00
2023-11-23 16:26:00 -05:00
# // Create an empty KV cache view. (use only for debugging purposes)
# LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_max_seq);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_kv_cache_view_init " ,
[ llama_context_p_ctypes , ctypes . c_int32 ] ,
llama_kv_cache_view ,
)
2023-11-23 16:26:00 -05:00
def llama_kv_cache_view_init (
2024-02-21 16:25:38 -05:00
ctx : llama_context_p , n_max_seq : Union [ ctypes . c_int32 , int ] , /
2023-11-23 16:26:00 -05:00
) - > llama_kv_cache_view :
""" Create an empty KV cache view. (use only for debugging purposes) """
2024-02-21 16:25:38 -05:00
. . .
2023-11-23 16:26:00 -05:00
# // Free a KV cache view. (use only for debugging purposes)
# LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
2024-02-23 03:39:38 -05:00
@ctypes_function ( " llama_kv_cache_view_free " , [ llama_kv_cache_view_p ] , None )
2024-02-21 16:25:38 -05:00
def llama_kv_cache_view_free ( view : " ctypes.pointer[llama_kv_cache_view] " , / ) : # type: ignore
2023-11-23 16:26:00 -05:00
""" Free a KV cache view. (use only for debugging purposes) """
2024-02-21 16:25:38 -05:00
. . .
2023-11-23 16:26:00 -05:00
# // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
# LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_kv_cache_view_update " , [ llama_context_p_ctypes , llama_kv_cache_view_p ] , None
)
2024-02-22 02:00:09 -05:00
def llama_kv_cache_view_update ( ctx : llama_context_p , view : CtypesPointerOrRef [ llama_kv_cache_view ] , / ) : # type: ignore
2023-11-23 16:26:00 -05:00
""" Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes) """
2024-02-21 16:25:38 -05:00
. . .
2023-11-23 16:26:00 -05:00
# // Returns the number of tokens in the KV cache (slow, use only for debug)
# // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
2024-01-03 22:04:04 -05:00
# LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_get_kv_cache_token_count " , [ llama_context_p_ctypes ] , ctypes . c_int32
)
2024-02-21 16:25:38 -05:00
def llama_get_kv_cache_token_count ( ctx : llama_context_p , / ) - > int :
2023-11-23 16:26:00 -05:00
""" Returns the number of tokens in the KV cache (slow, use only for debug)
If a KV cell has multiple sequences assigned to it , it will be counted multiple times
"""
2024-02-21 16:25:38 -05:00
. . .
2023-04-02 13:33:49 -04:00
2023-04-11 11:59:03 -04:00
2023-11-23 16:26:00 -05:00
# // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
2024-01-03 22:04:04 -05:00
# LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_get_kv_cache_used_cells " , [ llama_context_p_ctypes ] , ctypes . c_int32
)
2024-02-21 16:25:38 -05:00
def llama_get_kv_cache_used_cells ( ctx : llama_context_p , / ) - > int :
2023-11-23 16:26:00 -05:00
""" Returns the number of used KV cells (i.e. have at least one sequence assigned to them) """
2024-02-21 16:25:38 -05:00
. . .
2023-11-23 16:26:00 -05:00
2023-10-31 21:29:35 -04:00
# // Clear the KV cache
# LLAMA_API void llama_kv_cache_clear(
# struct llama_context * ctx);
2024-02-23 03:39:38 -05:00
@ctypes_function ( " llama_kv_cache_clear " , [ llama_context_p_ctypes ] , None )
2024-02-21 16:25:38 -05:00
def llama_kv_cache_clear ( ctx : llama_context_p , / ) :
2023-11-23 00:26:26 -05:00
""" Clear the KV cache """
2024-02-21 16:25:38 -05:00
. . .
2023-04-26 20:00:54 -04:00
2023-04-28 15:32:43 -04:00
2023-09-28 22:42:03 -04:00
# // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
2023-10-31 21:29:35 -04:00
# // seq_id < 0 : match any sequence
# // p0 < 0 : [0, p1]
# // p1 < 0 : [p0, inf)
2023-09-28 22:42:03 -04:00
# LLAMA_API void llama_kv_cache_seq_rm(
# struct llama_context * ctx,
# llama_seq_id seq_id,
# llama_pos p0,
# llama_pos p1);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_kv_cache_seq_rm " ,
[
llama_context_p_ctypes ,
llama_seq_id ,
llama_pos ,
llama_pos ,
] ,
None ,
)
2023-09-28 22:42:03 -04:00
def llama_kv_cache_seq_rm (
ctx : llama_context_p ,
2023-11-05 16:57:10 -05:00
seq_id : Union [ llama_seq_id , int ] ,
2023-09-28 22:42:03 -04:00
p0 : Union [ llama_pos , int ] ,
p1 : Union [ llama_pos , int ] ,
2024-02-22 02:00:09 -05:00
/ ,
2023-09-28 22:42:03 -04:00
) :
2023-11-23 00:26:26 -05:00
""" Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
seq_id < 0 : match any sequence
p0 < 0 : [ 0 , p1 ]
p1 < 0 : [ p0 , inf ) """
2024-02-21 16:25:38 -05:00
. . .
2023-09-28 22:42:03 -04:00
# // Copy all tokens that belong to the specified sequence to another sequence
# // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
2023-10-03 15:23:35 -04:00
# // p0 < 0 : [0, p1]
# // p1 < 0 : [p0, inf)
2023-09-28 22:42:03 -04:00
# LLAMA_API void llama_kv_cache_seq_cp(
# struct llama_context * ctx,
# llama_seq_id seq_id_src,
# llama_seq_id seq_id_dst,
# llama_pos p0,
# llama_pos p1);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_kv_cache_seq_cp " ,
[
llama_context_p_ctypes ,
llama_seq_id ,
llama_seq_id ,
llama_pos ,
llama_pos ,
] ,
None ,
)
2023-09-28 22:42:03 -04:00
def llama_kv_cache_seq_cp (
ctx : llama_context_p ,
2023-11-05 16:57:10 -05:00
seq_id_src : Union [ llama_seq_id , int ] ,
seq_id_dst : Union [ llama_seq_id , int ] ,
2023-09-28 22:42:03 -04:00
p0 : Union [ llama_pos , int ] ,
p1 : Union [ llama_pos , int ] ,
2024-02-22 02:00:09 -05:00
/ ,
2023-09-28 22:42:03 -04:00
) :
2023-11-23 00:26:26 -05:00
""" Copy all tokens that belong to the specified sequence to another sequence
Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
p0 < 0 : [ 0 , p1 ]
p1 < 0 : [ p0 , inf ) """
2024-02-21 16:25:38 -05:00
. . .
2023-09-28 22:42:03 -04:00
# // Removes all tokens that do not belong to the specified sequence
# LLAMA_API void llama_kv_cache_seq_keep(
# struct llama_context * ctx,
# llama_seq_id seq_id);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_kv_cache_seq_keep " , [ llama_context_p_ctypes , llama_seq_id ] , None
)
2024-02-22 02:00:09 -05:00
def llama_kv_cache_seq_keep ( ctx : llama_context_p , seq_id : Union [ llama_seq_id , int ] , / ) :
2023-11-23 00:26:26 -05:00
""" Removes all tokens that do not belong to the specified sequence """
2024-02-21 16:25:38 -05:00
. . .
2023-09-28 22:42:03 -04:00
# // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
2024-02-25 20:52:14 -05:00
# // If the KV cache is RoPEd, the KV data is updated accordingly:
# // - lazily on next llama_decode()
# // - explicitly with llama_kv_cache_update()
2023-10-03 15:23:35 -04:00
# // p0 < 0 : [0, p1]
# // p1 < 0 : [p0, inf)
2024-02-25 20:52:14 -05:00
# LLAMA_API void llama_kv_cache_seq_add(
2023-09-28 22:42:03 -04:00
# struct llama_context * ctx,
# llama_seq_id seq_id,
# llama_pos p0,
# llama_pos p1,
# llama_pos delta);
2024-02-23 03:39:38 -05:00
@ctypes_function (
2024-02-25 20:52:14 -05:00
" llama_kv_cache_seq_add " ,
2024-02-23 03:39:38 -05:00
[
llama_context_p_ctypes ,
llama_seq_id ,
llama_pos ,
llama_pos ,
llama_pos ,
] ,
None ,
)
2024-02-25 20:52:14 -05:00
def llama_kv_cache_seq_add (
2023-09-28 22:42:03 -04:00
ctx : llama_context_p ,
2023-11-05 16:57:10 -05:00
seq_id : Union [ llama_seq_id , int ] ,
2023-09-28 22:42:03 -04:00
p0 : Union [ llama_pos , int ] ,
p1 : Union [ llama_pos , int ] ,
delta : Union [ llama_pos , int ] ,
2024-02-22 02:00:09 -05:00
/ ,
2023-09-28 22:42:03 -04:00
) :
2023-11-23 00:26:26 -05:00
""" Adds relative position " delta " to all tokens that belong to the specified sequence and have positions in [p0, p1)
2024-02-25 20:52:14 -05:00
If the KV cache is RoPEd , the KV data is updated accordingly :
- lazily on next llama_decode ( )
- explicitly with llama_kv_cache_update ( )
2023-11-23 00:26:26 -05:00
p0 < 0 : [ 0 , p1 ]
p1 < 0 : [ p0 , inf ) """
2024-02-21 16:25:38 -05:00
. . .
2023-09-28 22:42:03 -04:00
2024-01-08 14:51:29 -05:00
# // Integer division of the positions by factor of `d > 1`
# // If the KV cache is RoPEd, the KV data is updated accordingly
# // p0 < 0 : [0, p1]
# // p1 < 0 : [p0, inf)
# LLAMA_API void llama_kv_cache_seq_div(
# struct llama_context * ctx,
# llama_seq_id seq_id,
# llama_pos p0,
# llama_pos p1,
# int d);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_kv_cache_seq_div " ,
[
llama_context_p_ctypes ,
llama_seq_id ,
llama_pos ,
llama_pos ,
ctypes . c_int ,
] ,
None ,
)
2024-01-08 14:51:29 -05:00
def llama_kv_cache_seq_div (
ctx : llama_context_p ,
seq_id : Union [ llama_seq_id , int ] ,
p0 : Union [ llama_pos , int ] ,
p1 : Union [ llama_pos , int ] ,
2024-02-21 16:25:38 -05:00
d : Union [ ctypes . c_int , int ] ,
2024-02-22 02:00:09 -05:00
/ ,
2024-01-08 14:51:29 -05:00
) :
""" Integer division of the positions by factor of `d > 1`
If the KV cache is RoPEd , the KV data is updated accordingly
p0 < 0 : [ 0 , p1 ]
p1 < 0 : [ p0 , inf ) """
2024-02-21 16:25:38 -05:00
. . .
2024-01-08 14:51:29 -05:00
2024-02-25 20:52:14 -05:00
# // Defragment the KV cache
# // This will be applied:
# // - lazily on next llama_decode()
# // - explicitly with llama_kv_cache_update()
# LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
@ctypes_function ( " llama_kv_cache_defrag " , [ llama_context_p_ctypes ] , None )
def llama_kv_cache_defrag ( ctx : llama_context_p , / ) :
""" Defragment the KV cache
This will be applied :
- lazily on next llama_decode ( )
- explicitly with llama_kv_cache_update ( ) """
. . .
# // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
# LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
@ctypes_function ( " llama_kv_cache_update " , [ llama_context_p_ctypes ] , None )
def llama_kv_cache_update ( ctx : llama_context_p , / ) :
""" Apply the KV cache updates (such as K-shifts, defragmentation, etc.) """
. . .
2023-09-28 22:42:03 -04:00
# //
# // State / sessions
# //
2023-04-02 13:33:49 -04:00
2023-04-28 15:32:43 -04:00
2023-05-03 09:33:30 -04:00
# Returns the maximum size in bytes of the state (rng, logits, embedding
# and kv_cache) - will often be smaller after compacting tokens
2023-05-21 17:47:21 -04:00
# LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
2024-02-23 03:39:38 -05:00
@ctypes_function ( " llama_get_state_size " , [ llama_context_p_ctypes ] , ctypes . c_size_t )
2024-02-21 16:25:38 -05:00
def llama_get_state_size ( ctx : llama_context_p , / ) - > int :
2023-11-23 00:26:26 -05:00
""" Returns the maximum size in bytes of the state (rng, logits, embedding
and kv_cache ) - will often be smaller after compacting tokens """
2024-02-21 16:25:38 -05:00
. . .
2023-04-22 19:50:28 -04:00
# Copies the state to the specified destination address.
# Destination needs to have allocated enough memory.
# Returns the number of bytes copied
2023-09-28 22:42:03 -04:00
# LLAMA_API size_t llama_copy_state_data(
# struct llama_context * ctx,
# uint8_t * dst);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_copy_state_data " ,
[
llama_context_p_ctypes ,
ctypes . POINTER ( ctypes . c_uint8 ) ,
] ,
ctypes . c_size_t ,
)
2023-05-05 14:12:26 -04:00
def llama_copy_state_data (
2024-02-22 02:00:09 -05:00
ctx : llama_context_p , dst : CtypesArray [ ctypes . c_uint8 ] , /
2023-05-07 19:30:14 -04:00
) - > int :
2023-11-23 00:26:26 -05:00
""" Copies the state to the specified destination address.
Destination needs to have allocated enough memory .
Returns the number of bytes copied """
2024-02-21 16:25:38 -05:00
. . .
2023-04-22 19:50:28 -04:00
# Set the state reading from the specified address
# Returns the number of bytes read
2023-09-28 22:42:03 -04:00
# LLAMA_API size_t llama_set_state_data(
# struct llama_context * ctx,
# uint8_t * src);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_set_state_data " ,
[ llama_context_p_ctypes , ctypes . POINTER ( ctypes . c_uint8 ) ] ,
ctypes . c_size_t ,
)
2023-05-05 12:22:27 -04:00
def llama_set_state_data (
2024-02-22 02:00:09 -05:00
ctx : llama_context_p , src : CtypesArray [ ctypes . c_uint8 ] , /
2023-05-07 19:30:14 -04:00
) - > int :
2023-11-23 00:26:26 -05:00
""" Set the state reading from the specified address """
2024-02-21 16:25:38 -05:00
. . .
2023-04-22 19:50:28 -04:00
2023-04-28 15:32:43 -04:00
# Save/load session file
2023-09-28 22:42:03 -04:00
# LLAMA_API bool llama_load_session_file(
# struct llama_context * ctx,
# const char * path_session,
# llama_token * tokens_out,
# size_t n_token_capacity,
# size_t * n_token_count_out);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_load_session_file " ,
[
llama_context_p_ctypes ,
ctypes . c_char_p ,
llama_token_p ,
ctypes . c_size_t ,
ctypes . POINTER ( ctypes . c_size_t ) ,
] ,
ctypes . c_size_t ,
)
2023-04-28 15:32:43 -04:00
def llama_load_session_file (
ctx : llama_context_p ,
path_session : bytes ,
2024-02-22 02:00:09 -05:00
tokens_out : CtypesArray [ llama_token ] ,
2024-02-21 16:25:38 -05:00
n_token_capacity : Union [ ctypes . c_size_t , int ] ,
2024-02-22 02:00:09 -05:00
n_token_count_out : CtypesPointerOrRef [ ctypes . c_size_t ] ,
/ ,
2023-05-19 11:59:33 -04:00
) - > int :
2024-02-21 16:25:38 -05:00
. . .
2023-04-28 15:32:43 -04:00
2023-09-28 22:42:03 -04:00
# LLAMA_API bool llama_save_session_file(
# struct llama_context * ctx,
# const char * path_session,
# const llama_token * tokens,
# size_t n_token_count);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_save_session_file " ,
[
llama_context_p_ctypes ,
ctypes . c_char_p ,
llama_token_p ,
ctypes . c_size_t ,
] ,
ctypes . c_size_t ,
)
2023-04-28 15:32:43 -04:00
def llama_save_session_file (
2023-05-05 12:22:27 -04:00
ctx : llama_context_p ,
path_session : bytes ,
2024-02-22 02:00:09 -05:00
tokens : CtypesArray [ llama_token ] ,
2024-02-21 16:25:38 -05:00
n_token_count : Union [ ctypes . c_size_t , int ] ,
2024-02-22 02:00:09 -05:00
/ ,
2023-05-19 11:59:33 -04:00
) - > int :
2024-02-21 16:25:38 -05:00
. . .
2023-04-28 15:32:43 -04:00
2023-09-28 22:42:03 -04:00
# //
# // Decoding
# //
2023-04-28 15:32:43 -04:00
2023-09-28 22:42:03 -04:00
# // Return batch for single sequence of tokens starting at pos_0
# //
# // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
# //
# LLAMA_API struct llama_batch llama_batch_get_one(
# llama_token * tokens,
# int32_t n_tokens,
# llama_pos pos_0,
# llama_seq_id seq_id);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_batch_get_one " ,
[
llama_token_p ,
ctypes . c_int ,
llama_pos ,
llama_seq_id ,
] ,
llama_batch ,
)
2023-09-28 22:42:03 -04:00
def llama_batch_get_one (
2024-02-22 02:00:09 -05:00
tokens : CtypesArray [ llama_token ] ,
2024-02-21 16:25:38 -05:00
n_tokens : Union [ ctypes . c_int , int ] ,
2023-09-28 22:42:03 -04:00
pos_0 : Union [ llama_pos , int ] ,
seq_id : llama_seq_id ,
2024-02-22 02:00:09 -05:00
/ ,
2023-09-28 22:42:03 -04:00
) - > llama_batch :
2023-11-23 00:26:26 -05:00
""" Return batch for single sequence of tokens starting at pos_0
2023-11-23 16:26:00 -05:00
NOTE : this is a helper function to facilitate transition to the new batch API - avoid using it
"""
2024-02-21 16:25:38 -05:00
. . .
2023-09-28 22:42:03 -04:00
2023-10-19 02:55:08 -04:00
# // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
# // Each token can be assigned up to n_seq_max sequence ids
2023-09-28 22:42:03 -04:00
# // The batch has to be freed with llama_batch_free()
# // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
# // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
# // The rest of the llama_batch members are allocated with size n_tokens
# // All members are left uninitialized
# LLAMA_API struct llama_batch llama_batch_init(
# int32_t n_tokens,
2023-10-19 02:55:08 -04:00
# int32_t embd,
# int32_t n_seq_max);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_batch_init " , [ ctypes . c_int32 , ctypes . c_int32 , ctypes . c_int32 ] , llama_batch
)
2023-09-28 22:42:03 -04:00
def llama_batch_init (
2024-02-21 16:25:38 -05:00
n_tokens : Union [ ctypes . c_int32 , int ] ,
embd : Union [ ctypes . c_int32 , int ] ,
n_seq_max : Union [ ctypes . c_int32 , int ] ,
2024-02-22 02:00:09 -05:00
/ ,
2023-09-28 22:42:03 -04:00
) - > llama_batch :
2023-11-23 00:26:26 -05:00
""" Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
Each token can be assigned up to n_seq_max sequence ids
The batch has to be freed with llama_batch_free ( )
If embd != 0 , llama_batch . embd will be allocated with size of n_tokens * embd * sizeof ( float )
Otherwise , llama_batch . token will be allocated to store n_tokens llama_token
The rest of the llama_batch members are allocated with size n_tokens
All members are left uninitialized """
2024-02-21 16:25:38 -05:00
. . .
2023-09-28 22:42:03 -04:00
# // Frees a batch of tokens allocated with llama_batch_init()
# LLAMA_API void llama_batch_free(struct llama_batch batch);
2024-02-23 03:39:38 -05:00
@ctypes_function ( " llama_batch_free " , [ llama_batch ] , None )
2024-02-21 16:25:38 -05:00
def llama_batch_free ( batch : llama_batch , / ) :
2023-11-23 00:26:26 -05:00
""" Frees a batch of tokens allocated with llama_batch_init() """
2024-02-21 16:25:38 -05:00
. . .
2023-09-28 22:42:03 -04:00
# // Positive return values does not mean a fatal error, but rather a warning.
# // 0 - success
# // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
# // < 0 - error
2024-01-03 22:04:04 -05:00
# LLAMA_API int32_t llama_decode(
2023-09-28 22:42:03 -04:00
# struct llama_context * ctx,
# struct llama_batch batch);
2024-02-23 03:39:38 -05:00
@ctypes_function ( " llama_decode " , [ llama_context_p_ctypes , llama_batch ] , ctypes . c_int32 )
2024-02-21 16:25:38 -05:00
def llama_decode ( ctx : llama_context_p , batch : llama_batch , / ) - > int :
2023-11-23 00:26:26 -05:00
""" Positive return values does not mean a fatal error, but rather a warning.
0 - success
1 - could not find a KV slot for the batch ( try reducing the size of the batch or increase the context )
< 0 - error """
2024-02-21 16:25:38 -05:00
. . .
2023-09-28 22:42:03 -04:00
# // Set the number of threads used for decoding
# // n_threads is the number of threads used for generation (single token)
# // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
# LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_set_n_threads " ,
[
llama_context_p_ctypes ,
ctypes . c_uint32 ,
ctypes . c_uint32 ,
] ,
None ,
)
2023-09-28 22:42:03 -04:00
def llama_set_n_threads (
ctx : llama_context_p ,
2024-02-21 16:25:38 -05:00
n_threads : Union [ ctypes . c_uint32 , int ] ,
n_threads_batch : Union [ ctypes . c_uint32 , int ] ,
2024-02-22 02:00:09 -05:00
/ ,
2023-09-28 22:42:03 -04:00
) :
2023-11-23 00:26:26 -05:00
""" Set the number of threads used for decoding
n_threads is the number of threads used for generation ( single token )
2023-11-23 16:26:00 -05:00
n_threads_batch is the number of threads used for prompt and batch processing ( multiple tokens )
"""
2024-02-21 16:25:38 -05:00
. . .
2023-09-28 22:42:03 -04:00
2023-08-24 00:17:00 -04:00
2023-09-28 22:42:03 -04:00
# // Token logits obtained from the last call to llama_eval()
# // The logits for the last token are stored in the last row
# // Logits for which llama_batch.logits[i] == 0 are undefined
# // Rows: n_tokens provided with llama_batch
# // Cols: n_vocab
2023-08-24 00:17:00 -04:00
# LLAMA_API float * llama_get_logits(struct llama_context * ctx);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_get_logits " , [ llama_context_p_ctypes ] , ctypes . POINTER ( ctypes . c_float )
)
def llama_get_logits ( ctx : llama_context_p , / ) - > CtypesArray [ ctypes . c_float ] :
2023-11-23 00:26:26 -05:00
""" Token logits obtained from the last call to llama_eval()
The logits for the last token are stored in the last row
Logits for which llama_batch . logits [ i ] == 0 are undefined
Rows : n_tokens provided with llama_batch
Cols : n_vocab """
2024-02-21 16:25:38 -05:00
. . .
2023-03-23 05:33:06 -04:00
2023-03-24 14:35:41 -04:00
2023-09-28 22:42:03 -04:00
# // Logits for the ith token. Equivalent to:
# // llama_get_logits(ctx) + i*n_vocab
# LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_get_logits_ith " ,
[ llama_context_p_ctypes , ctypes . c_int32 ] ,
ctypes . POINTER ( ctypes . c_float ) ,
)
2023-09-28 22:42:03 -04:00
def llama_get_logits_ith (
2024-02-22 02:00:09 -05:00
ctx : llama_context_p , i : Union [ ctypes . c_int32 , int ] , /
2024-02-23 03:39:38 -05:00
) - > CtypesArray [ ctypes . c_float ] :
2023-11-23 00:26:26 -05:00
""" Logits for the ith token. Equivalent to:
llama_get_logits ( ctx ) + i * n_vocab """
2024-02-21 16:25:38 -05:00
. . .
2023-09-28 22:42:03 -04:00
2023-08-24 00:17:00 -04:00
# Get the embeddings for the input
# shape: [n_embd] (1-dimensional)
# LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_get_embeddings " , [ llama_context_p_ctypes ] , ctypes . POINTER ( ctypes . c_float )
)
def llama_get_embeddings ( ctx : llama_context_p , / ) - > CtypesArray [ ctypes . c_float ] :
2023-11-23 00:26:26 -05:00
""" Get the embeddings for the input
shape : [ n_embd ] ( 1 - dimensional ) """
2024-02-21 16:25:38 -05:00
. . .
2023-07-15 15:11:01 -04:00
2024-02-13 12:24:00 -05:00
# // Get the embeddings for the ith sequence
# // llama_get_embeddings(ctx) + i*n_embd
# LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_get_embeddings_ith " ,
[ llama_context_p_ctypes , ctypes . c_int32 ] ,
ctypes . POINTER ( ctypes . c_float ) ,
)
2024-02-13 12:24:00 -05:00
def llama_get_embeddings_ith (
2024-02-21 16:25:38 -05:00
ctx : llama_context_p , i : Union [ ctypes . c_int32 , int ] , /
2024-02-23 03:39:38 -05:00
) - > CtypesArray [ ctypes . c_float ] :
2024-02-13 12:24:00 -05:00
""" Get the embeddings for the ith sequence
llama_get_embeddings ( ctx ) + i * n_embd """
2024-02-21 16:25:38 -05:00
. . .
2024-02-13 12:24:00 -05:00
2023-08-24 00:17:00 -04:00
# //
# // Vocab
# //
2023-03-24 14:58:42 -04:00
2023-10-24 03:13:32 -04:00
# LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_token_get_text " , [ llama_model_p_ctypes , llama_token ] , ctypes . c_char_p
)
2024-02-22 02:00:09 -05:00
def llama_token_get_text (
model : llama_model_p , token : Union [ llama_token , int ] , /
) - > bytes :
2024-02-21 16:25:38 -05:00
. . .
2023-03-23 05:33:06 -04:00
2023-03-24 14:35:41 -04:00
2024-02-23 03:39:38 -05:00
# LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
@ctypes_function (
" llama_token_get_score " , [ llama_model_p_ctypes , llama_token ] , ctypes . c_float
)
2023-11-20 14:11:33 -05:00
def llama_token_get_score (
2024-02-21 16:25:38 -05:00
model : llama_model_p , token : Union [ llama_token , int ] , /
2023-11-20 14:11:33 -05:00
) - > float :
2024-02-21 16:25:38 -05:00
. . .
2023-03-25 16:26:03 -04:00
2024-02-23 03:39:38 -05:00
# LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
@ctypes_function (
" llama_token_get_type " , [ llama_model_p_ctypes , llama_token ] , ctypes . c_int
)
2024-02-22 02:00:09 -05:00
def llama_token_get_type (
model : llama_model_p , token : Union [ llama_token , int ] , /
) - > int :
2024-02-21 16:25:38 -05:00
. . .
2023-07-15 15:11:01 -04:00
2023-08-24 00:17:00 -04:00
# // Special tokens
2023-07-15 15:11:01 -04:00
2023-10-24 03:13:32 -04:00
# LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
2024-02-23 03:39:38 -05:00
@ctypes_function ( " llama_token_bos " , [ llama_model_p_ctypes ] , llama_token )
2024-02-21 16:25:38 -05:00
def llama_token_bos ( model : llama_model_p , / ) - > int :
2023-11-23 00:26:26 -05:00
""" beginning-of-sentence """
2024-02-21 16:25:38 -05:00
. . .
2023-07-15 15:11:01 -04:00
2024-02-23 03:39:38 -05:00
# LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
@ctypes_function ( " llama_token_eos " , [ llama_model_p_ctypes ] , llama_token )
2024-02-21 16:25:38 -05:00
def llama_token_eos ( model : llama_model_p , / ) - > int :
2023-11-23 00:26:26 -05:00
""" end-of-sentence """
2024-02-21 16:25:38 -05:00
. . .
2023-07-15 15:11:01 -04:00
2024-02-23 03:39:38 -05:00
# LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
@ctypes_function ( " llama_token_nl " , [ llama_model_p_ctypes ] , llama_token )
2024-02-21 16:25:38 -05:00
def llama_token_nl ( model : llama_model_p , / ) - > int :
2023-11-23 00:26:26 -05:00
""" next-line """
2024-02-21 16:25:38 -05:00
. . .
2023-08-24 00:17:00 -04:00
2023-11-20 14:11:33 -05:00
# // Returns -1 if unknown, 1 for true or 0 for false.
2024-01-03 22:04:04 -05:00
# LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
2024-02-23 03:39:38 -05:00
@ctypes_function ( " llama_add_bos_token " , [ llama_model_p_ctypes ] , ctypes . c_int32 )
2024-02-21 16:25:38 -05:00
def llama_add_bos_token ( model : llama_model_p , / ) - > int :
2023-11-23 00:26:26 -05:00
""" Returns -1 if unknown, 1 for true or 0 for false. """
2024-02-21 16:25:38 -05:00
. . .
2023-11-20 14:11:33 -05:00
# // Returns -1 if unknown, 1 for true or 0 for false.
2024-01-03 22:04:04 -05:00
# LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
2024-02-23 03:39:38 -05:00
@ctypes_function ( " llama_add_eos_token " , [ llama_model_p_ctypes ] , ctypes . c_int32 )
2024-02-21 16:25:38 -05:00
def llama_add_eos_token ( model : llama_model_p , / ) - > int :
2023-11-23 00:26:26 -05:00
""" Returns -1 if unknown, 1 for true or 0 for false. """
2024-02-21 16:25:38 -05:00
. . .
2023-11-20 14:11:33 -05:00
2023-10-03 15:23:35 -04:00
# // codellama infill tokens
2023-10-24 03:13:32 -04:00
# LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
2024-02-23 03:39:38 -05:00
@ctypes_function ( " llama_token_prefix " , [ llama_model_p_ctypes ] , llama_token )
2023-10-24 03:13:32 -04:00
def llama_token_prefix ( model : llama_model_p ) - > int :
2023-11-23 00:26:26 -05:00
""" codellama infill tokens """
2024-02-21 16:25:38 -05:00
. . .
2023-10-03 15:23:35 -04:00
2024-02-23 03:39:38 -05:00
# LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
@ctypes_function ( " llama_token_middle " , [ llama_model_p_ctypes ] , llama_token )
2024-02-21 16:25:38 -05:00
def llama_token_middle ( model : llama_model_p , / ) - > int :
. . .
2023-10-03 15:23:35 -04:00
2024-02-23 03:39:38 -05:00
# LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
@ctypes_function ( " llama_token_suffix " , [ llama_model_p_ctypes ] , llama_token )
2024-02-21 16:25:38 -05:00
def llama_token_suffix ( model : llama_model_p , / ) - > int :
. . .
2023-10-03 15:23:35 -04:00
2024-02-23 03:39:38 -05:00
# LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
@ctypes_function ( " llama_token_eot " , [ llama_model_p_ctypes ] , llama_token )
2024-02-21 16:25:38 -05:00
def llama_token_eot ( model : llama_model_p , / ) - > int :
. . .
2023-10-03 15:23:35 -04:00
2023-08-24 00:17:00 -04:00
# //
# // Tokenization
# //
2023-10-19 02:55:08 -04:00
# /// @details Convert the provided text into tokens.
# /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
# /// @return Returns the number of tokens on success, no more than n_max_tokens
# /// @return Returns a negative number on failure - the number of tokens that would have been returned
# /// @param special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext.
# /// Does not insert a leading space.
2024-01-03 22:04:04 -05:00
# LLAMA_API int32_t llama_tokenize(
2023-10-19 02:55:08 -04:00
# const struct llama_model * model,
# const char * text,
2024-01-03 22:04:04 -05:00
# int32_t text_len,
2023-10-19 02:55:08 -04:00
# llama_token * tokens,
2024-01-03 22:04:04 -05:00
# int32_t n_max_tokens,
2023-10-19 02:55:08 -04:00
# bool add_bos,
# bool special);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_tokenize " ,
[
llama_model_p_ctypes ,
ctypes . c_char_p ,
ctypes . c_int32 ,
llama_token_p ,
ctypes . c_int32 ,
ctypes . c_bool ,
ctypes . c_bool ,
] ,
ctypes . c_int32 ,
)
2023-10-19 02:55:08 -04:00
def llama_tokenize (
model : llama_model_p ,
text : bytes ,
2024-02-21 16:25:38 -05:00
text_len : Union [ ctypes . c_int , int ] ,
2024-02-22 02:00:09 -05:00
tokens : CtypesArray [ llama_token ] ,
2024-02-21 16:25:38 -05:00
n_max_tokens : Union [ ctypes . c_int , int ] ,
add_bos : Union [ ctypes . c_bool , bool ] ,
special : Union [ ctypes . c_bool , bool ] ,
2024-02-22 02:00:09 -05:00
/ ,
2023-10-19 02:55:08 -04:00
) - > int :
2023-11-23 00:26:26 -05:00
""" Convert the provided text into tokens. """
2024-02-21 16:25:38 -05:00
. . .
2023-10-19 02:55:08 -04:00
2023-08-27 12:59:20 -04:00
# // Token Id -> Piece.
# // Uses the vocabulary in the provided context.
# // Does not write null terminator to the buffer.
# // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
2024-01-03 22:04:04 -05:00
# LLAMA_API int32_t llama_token_to_piece(
2023-09-28 22:42:03 -04:00
# const struct llama_model * model,
# llama_token token,
# char * buf,
2024-01-03 22:04:04 -05:00
# int32_t length);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_token_to_piece " ,
[
llama_model_p_ctypes ,
llama_token ,
ctypes . c_char_p ,
ctypes . c_int32 ,
] ,
ctypes . c_int32 ,
)
2023-08-27 12:59:20 -04:00
def llama_token_to_piece (
2023-09-28 22:42:03 -04:00
model : llama_model_p ,
2023-11-05 16:57:10 -05:00
token : Union [ llama_token , int ] ,
2024-02-23 03:39:38 -05:00
buf : Union [ ctypes . c_char_p , bytes , CtypesArray [ ctypes . c_char ] ] ,
2024-02-21 16:25:38 -05:00
length : Union [ ctypes . c_int , int ] ,
2024-02-22 02:00:09 -05:00
/ ,
2023-08-24 00:17:00 -04:00
) - > int :
2023-11-23 00:26:26 -05:00
""" Token Id -> Piece.
Uses the vocabulary in the provided context .
Does not write null terminator to the buffer .
2023-11-23 16:26:00 -05:00
User code is responsible to remove the leading whitespace of the first non - BOS token when decoding multiple tokens .
"""
2024-02-21 16:25:38 -05:00
. . .
2023-03-24 14:58:42 -04:00
2023-03-24 14:59:29 -04:00
2024-02-19 04:11:34 -05:00
# /// Apply chat template. Inspired by hf apply_chat_template() on python.
# /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
2024-02-21 23:04:52 -05:00
# /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
2024-02-19 04:11:34 -05:00
# /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’ s default chat template will be used instead.
# /// @param chat Pointer to a list of multiple llama_chat_message
# /// @param n_msg Number of llama_chat_message in this chat
# /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
# /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
# /// @param length The size of the allocated buffer
# /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
# LLAMA_API int32_t llama_chat_apply_template(
# const struct llama_model * model,
# const char * tmpl,
# const struct llama_chat_message * chat,
# size_t n_msg,
# bool add_ass,
# char * buf,
# int32_t length);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_chat_apply_template " ,
[
ctypes . c_void_p ,
ctypes . c_char_p ,
ctypes . POINTER ( llama_chat_message ) ,
ctypes . c_size_t ,
] ,
ctypes . c_int32 ,
)
2024-02-19 04:11:34 -05:00
def llama_chat_apply_template (
2024-02-22 02:00:09 -05:00
model : llama_model_p ,
tmpl : bytes ,
chat : CtypesArray [ llama_chat_message ] ,
n_msg : int ,
/ ,
2024-02-19 04:11:34 -05:00
) - > int :
2024-02-21 16:25:38 -05:00
. . .
2024-02-19 04:11:34 -05:00
2024-02-22 02:00:09 -05:00
2023-08-24 00:17:00 -04:00
# //
2023-07-24 13:04:34 -04:00
# // Grammar
# //
2023-08-24 00:17:00 -04:00
2023-07-24 13:04:34 -04:00
# LLAMA_API struct llama_grammar * llama_grammar_init(
# const llama_grammar_element ** rules,
# size_t n_rules,
# size_t start_rule_index);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_grammar_init " ,
[
ctypes . POINTER ( llama_grammar_element_p ) ,
ctypes . c_size_t ,
ctypes . c_size_t ,
] ,
llama_grammar_p ,
)
2023-07-24 13:04:34 -04:00
def llama_grammar_init (
2024-02-22 02:00:09 -05:00
rules : CtypesArray [
CtypesPointer [ llama_grammar_element ]
] , # NOTE: This might be wrong type sig
2024-02-21 16:25:38 -05:00
n_rules : Union [ ctypes . c_size_t , int ] ,
start_rule_index : Union [ ctypes . c_size_t , int ] ,
2024-02-22 02:00:09 -05:00
/ ,
2023-07-24 13:04:34 -04:00
) - > llama_grammar_p :
2023-11-27 19:03:02 -05:00
""" Initialize a grammar from a set of rules. """
2024-02-21 16:25:38 -05:00
. . .
2023-07-24 13:04:34 -04:00
# LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_grammar_free " ,
[ llama_grammar_p ] ,
None ,
)
2024-02-21 16:25:38 -05:00
def llama_grammar_free ( grammar : llama_grammar_p , / ) :
2023-11-27 19:03:02 -05:00
""" Free a grammar. """
2024-02-21 16:25:38 -05:00
. . .
2023-07-24 13:04:34 -04:00
2023-09-09 12:12:32 -04:00
# LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_grammar_copy " ,
[ llama_grammar_p ] ,
llama_grammar_p ,
)
2024-02-21 16:25:38 -05:00
def llama_grammar_copy ( grammar : llama_grammar_p , / ) - > llama_grammar_p :
2023-11-27 19:03:02 -05:00
""" Copy a grammar. """
2024-02-21 16:25:38 -05:00
. . .
2023-08-25 14:35:53 -04:00
2023-08-24 00:17:00 -04:00
# //
# // Sampling functions
# //
2023-05-01 14:02:06 -04:00
2023-09-28 22:42:03 -04:00
# // Sets the current rng seed.
# LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_set_rng_seed " ,
[ llama_context_p_ctypes , ctypes . c_uint32 ] ,
None ,
)
2024-02-21 16:25:38 -05:00
def llama_set_rng_seed ( ctx : llama_context_p , seed : Union [ ctypes . c_uint32 , int ] , / ) :
2023-11-23 00:26:26 -05:00
""" Sets the current rng seed. """
2024-02-21 16:25:38 -05:00
. . .
2023-09-28 22:42:03 -04:00
2023-10-24 03:13:32 -04:00
# /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
# /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
# LLAMA_API void llama_sample_repetition_penalties(
2023-09-28 22:42:03 -04:00
# struct llama_context * ctx,
# llama_token_data_array * candidates,
# const llama_token * last_tokens,
2023-10-24 03:13:32 -04:00
# size_t penalty_last_n,
# float penalty_repeat,
# float penalty_freq,
# float penalty_present);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_sample_repetition_penalties " ,
[
llama_context_p_ctypes ,
llama_token_data_array_p ,
llama_token_p ,
ctypes . c_size_t ,
ctypes . c_float ,
ctypes . c_float ,
ctypes . c_float ,
] ,
None ,
)
2023-10-24 03:13:32 -04:00
def llama_sample_repetition_penalties (
2023-05-01 10:44:28 -04:00
ctx : llama_context_p ,
2024-02-22 02:00:09 -05:00
candidates : Union [
CtypesArray [ llama_token_data_array ] , CtypesPointerOrRef [ llama_token_data_array ]
] ,
last_tokens_data : CtypesArray [ llama_token ] ,
2024-02-21 16:25:38 -05:00
penalty_last_n : Union [ ctypes . c_size_t , int ] ,
penalty_repeat : Union [ ctypes . c_float , float ] ,
penalty_freq : Union [ ctypes . c_float , float ] ,
penalty_present : Union [ ctypes . c_float , float ] ,
2024-02-22 02:00:09 -05:00
/ ,
2023-05-01 14:02:06 -04:00
) :
2023-11-23 00:26:26 -05:00
""" Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
2023-11-23 16:26:00 -05:00
Frequency and presence penalties described in OpenAI API https : / / platform . openai . com / docs / api - reference / parameter - details .
"""
2024-02-21 16:25:38 -05:00
. . .
2023-03-24 14:35:41 -04:00
2023-03-23 05:33:06 -04:00
2023-07-15 15:11:01 -04:00
# /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
2024-01-15 10:12:10 -05:00
# /// @param logits Logits extracted from the original generation context.
# /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
# /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
# LLAMA_API void llama_sample_apply_guidance(
# struct llama_context * ctx,
# float * logits,
# float * logits_guidance,
# float scale);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_sample_apply_guidance " ,
[
llama_context_p_ctypes ,
ctypes . POINTER ( ctypes . c_float ) ,
ctypes . POINTER ( ctypes . c_float ) ,
ctypes . c_float ,
] ,
None ,
)
2024-01-15 10:12:10 -05:00
def llama_sample_apply_guidance (
ctx : llama_context_p ,
2024-02-22 02:00:09 -05:00
logits : CtypesArray [ ctypes . c_float ] ,
logits_guidance : CtypesArray [ ctypes . c_float ] ,
2024-02-21 16:25:38 -05:00
scale : Union [ ctypes . c_float , float ] ,
2024-02-22 02:00:09 -05:00
/ ,
2024-01-15 10:12:10 -05:00
) :
""" Apply classifier-free guidance to the logits as described in academic paper " Stay on topic with Classifier-Free Guidance " https://arxiv.org/abs/2306.17806 """
2024-02-21 16:25:38 -05:00
. . .
2024-01-15 10:12:10 -05:00
2023-10-31 21:29:35 -04:00
# /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
2023-09-28 22:42:03 -04:00
# LLAMA_API void llama_sample_softmax(
# struct llama_context * ctx,
# llama_token_data_array * candidates);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_sample_softmax " ,
[ llama_context_p_ctypes , llama_token_data_array_p ] ,
None ,
)
2023-05-05 14:12:26 -04:00
def llama_sample_softmax (
2024-02-22 02:00:09 -05:00
ctx : llama_context_p ,
candidates : Union [
CtypesArray [ llama_token_data_array ] , CtypesPointerOrRef [ llama_token_data_array ]
] ,
/ ,
2023-05-05 14:12:26 -04:00
) :
2023-11-23 00:26:26 -05:00
""" Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. """
2024-02-21 16:25:38 -05:00
. . .
2023-05-01 10:44:28 -04:00
2023-10-31 21:29:35 -04:00
# /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
2023-09-28 22:42:03 -04:00
# LLAMA_API void llama_sample_top_k(
# struct llama_context * ctx,
# llama_token_data_array * candidates,
2024-01-03 22:04:04 -05:00
# int32_t k,
2023-09-28 22:42:03 -04:00
# size_t min_keep);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_sample_top_k " ,
[ llama_context_p_ctypes , llama_token_data_array_p , ctypes . c_int32 , ctypes . c_size_t ] ,
None ,
)
2023-05-01 14:47:55 -04:00
def llama_sample_top_k (
2023-05-05 13:54:22 -04:00
ctx : llama_context_p ,
2024-02-22 02:00:09 -05:00
candidates : Union [
CtypesArray [ llama_token_data_array ] , CtypesPointerOrRef [ llama_token_data_array ]
] ,
2024-02-21 16:25:38 -05:00
k : Union [ ctypes . c_int , int ] ,
min_keep : Union [ ctypes . c_size_t , int ] ,
2024-02-22 02:00:09 -05:00
/ ,
2023-05-01 14:47:55 -04:00
) :
2023-11-23 00:26:26 -05:00
""" Top-K sampling described in academic paper " The Curious Case of Neural Text Degeneration " https://arxiv.org/abs/1904.09751 """
2024-02-21 16:25:38 -05:00
. . .
2023-05-01 10:44:28 -04:00
2023-10-31 21:29:35 -04:00
# /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
2023-09-28 22:42:03 -04:00
# LLAMA_API void llama_sample_top_p(
# struct llama_context * ctx,
# llama_token_data_array * candidates,
# float p,
# size_t min_keep);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_sample_top_p " ,
[ llama_context_p_ctypes , llama_token_data_array_p , ctypes . c_float , ctypes . c_size_t ] ,
None ,
)
2023-05-01 14:47:55 -04:00
def llama_sample_top_p (
2023-05-05 13:54:22 -04:00
ctx : llama_context_p ,
2024-02-22 02:00:09 -05:00
candidates : Union [
CtypesArray [ llama_token_data_array ] , CtypesPointerOrRef [ llama_token_data_array ]
] ,
2024-02-21 16:25:38 -05:00
p : Union [ ctypes . c_float , float ] ,
min_keep : Union [ ctypes . c_size_t , int ] ,
2024-02-22 02:00:09 -05:00
/ ,
2023-05-01 14:47:55 -04:00
) :
2023-11-23 00:26:26 -05:00
""" Nucleus sampling described in academic paper " The Curious Case of Neural Text Degeneration " https://arxiv.org/abs/1904.09751 """
2024-02-21 16:25:38 -05:00
. . .
2023-05-01 10:44:28 -04:00
2023-10-31 21:29:35 -04:00
# /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
# LLAMA_API void llama_sample_min_p(
# struct llama_context * ctx,
# llama_token_data_array * candidates,
# float p,
# size_t min_keep);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_sample_min_p " ,
[ llama_context_p_ctypes , llama_token_data_array_p , ctypes . c_float , ctypes . c_size_t ] ,
None ,
)
2023-10-31 21:29:35 -04:00
def llama_sample_min_p (
ctx : llama_context_p ,
2024-02-22 02:00:09 -05:00
candidates : Union [
CtypesArray [ llama_token_data_array ] , CtypesPointerOrRef [ llama_token_data_array ]
] ,
2024-02-21 16:25:38 -05:00
p : Union [ ctypes . c_float , float ] ,
min_keep : Union [ ctypes . c_size_t , int ] ,
2024-02-22 02:00:09 -05:00
/ ,
2023-10-31 21:29:35 -04:00
) :
2023-11-23 00:26:26 -05:00
""" Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841 """
2024-02-21 16:25:38 -05:00
. . .
2023-10-31 21:29:35 -04:00
# /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
2023-09-28 22:42:03 -04:00
# LLAMA_API void llama_sample_tail_free(
# struct llama_context * ctx,
# llama_token_data_array * candidates,
# float z,
# size_t min_keep);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_sample_tail_free " ,
[ llama_context_p_ctypes , llama_token_data_array_p , ctypes . c_float , ctypes . c_size_t ] ,
None ,
)
2023-05-01 10:44:28 -04:00
def llama_sample_tail_free (
2023-05-05 12:22:27 -04:00
ctx : llama_context_p ,
2024-02-22 02:00:09 -05:00
candidates : Union [
CtypesArray [ llama_token_data_array ] , CtypesPointerOrRef [ llama_token_data_array ]
] ,
2024-02-21 16:25:38 -05:00
z : Union [ ctypes . c_float , float ] ,
min_keep : Union [ ctypes . c_size_t , int ] ,
2024-02-22 02:00:09 -05:00
/ ,
2023-05-01 14:02:06 -04:00
) :
2023-11-23 00:26:26 -05:00
""" Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/. """
2024-02-21 16:25:38 -05:00
. . .
2023-05-01 10:44:28 -04:00
2023-10-31 21:29:35 -04:00
# /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
2023-09-28 22:42:03 -04:00
# LLAMA_API void llama_sample_typical(
# struct llama_context * ctx,
# llama_token_data_array * candidates,
# float p,
# size_t min_keep);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_sample_typical " ,
[ llama_context_p_ctypes , llama_token_data_array_p , ctypes . c_float , ctypes . c_size_t ] ,
None ,
)
2023-05-01 14:47:55 -04:00
def llama_sample_typical (
2023-05-05 12:22:27 -04:00
ctx : llama_context_p ,
2024-02-22 02:00:09 -05:00
candidates : Union [
CtypesArray [ llama_token_data_array ] , CtypesPointerOrRef [ llama_token_data_array ]
] ,
2024-02-21 16:25:38 -05:00
p : Union [ ctypes . c_float , float ] ,
min_keep : Union [ ctypes . c_size_t , int ] ,
2024-02-22 02:00:09 -05:00
/ ,
2023-05-01 14:47:55 -04:00
) :
2023-11-23 00:26:26 -05:00
""" Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666. """
2024-02-21 16:25:38 -05:00
. . .
2023-05-01 10:44:28 -04:00
2024-01-26 11:45:48 -05:00
# /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
# LLAMA_API void llama_sample_entropy(
# struct llama_context * ctx,
# llama_token_data_array * candidates_p,
# float min_temp,
# float max_temp,
# float exponent_val);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_sample_entropy " ,
[
llama_context_p_ctypes ,
llama_token_data_array_p ,
ctypes . c_float ,
ctypes . c_float ,
ctypes . c_float ,
] ,
None ,
)
2024-01-26 11:45:48 -05:00
def llama_sample_entropy (
ctx : llama_context_p ,
2024-02-22 02:00:09 -05:00
candidates : Union [
CtypesArray [ llama_token_data_array ] , CtypesPointerOrRef [ llama_token_data_array ]
] ,
2024-02-21 16:25:38 -05:00
min_temp : Union [ ctypes . c_float , float ] ,
max_temp : Union [ ctypes . c_float , float ] ,
exponent_val : Union [ ctypes . c_float , float ] ,
2024-02-22 02:00:09 -05:00
/ ,
2024-01-26 11:45:48 -05:00
) :
""" Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772. """
2024-02-21 16:25:38 -05:00
. . .
2024-01-26 11:45:48 -05:00
2023-09-28 22:42:03 -04:00
# LLAMA_API void llama_sample_temp(
# struct llama_context * ctx,
# llama_token_data_array * candidates,
# float temp);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_sample_temp " ,
[ llama_context_p_ctypes , llama_token_data_array_p , ctypes . c_float ] ,
None ,
)
2023-09-28 22:42:03 -04:00
def llama_sample_temp (
ctx : llama_context_p ,
2024-02-22 02:00:09 -05:00
candidates : Union [
CtypesArray [ llama_token_data_array ] , CtypesPointerOrRef [ llama_token_data_array ]
] ,
2024-02-21 16:25:38 -05:00
temp : Union [ ctypes . c_float , float ] ,
2024-02-22 02:00:09 -05:00
/ ,
2023-09-28 22:42:03 -04:00
) :
2023-11-27 19:03:02 -05:00
""" Temperature sampling described in academic paper " Generating Long Sequences with Sparse Transformers " https://arxiv.org/abs/1904.10509
2024-01-08 14:51:29 -05:00
2023-11-27 19:03:02 -05:00
Parameters :
candidates : A vector of ` llama_token_data ` containing the candidate tokens , their probabilities ( p ) , and log - odds ( logit ) for the current position in the generated text .
2024-01-08 14:51:29 -05:00
temp : The temperature value to use for the sampling . A higher value corresponds to more surprising or less predictable text , while a lower value corresponds to less surprising or more predictable text .
"""
2024-02-21 16:25:38 -05:00
. . .
2023-09-28 22:42:03 -04:00
2023-10-31 21:29:35 -04:00
# /// @details Apply constraints from grammar
# LLAMA_API void llama_sample_grammar(
# struct llama_context * ctx,
# llama_token_data_array * candidates,
# const struct llama_grammar * grammar);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_sample_grammar " ,
[ llama_context_p_ctypes , llama_token_data_array_p , llama_grammar_p ] ,
None ,
)
2023-07-24 15:42:31 -04:00
def llama_sample_grammar (
ctx : llama_context_p ,
2024-02-22 02:00:09 -05:00
candidates : Union [
CtypesArray [ llama_token_data_array ] , CtypesPointerOrRef [ llama_token_data_array ]
] ,
2023-08-05 14:43:35 +09:00
grammar , # type: llama_grammar_p
2024-02-22 02:00:09 -05:00
/ ,
2023-07-24 15:42:31 -04:00
) :
2023-11-27 19:03:02 -05:00
""" Apply constraints from grammar
2024-01-08 14:51:29 -05:00
2023-11-27 19:03:02 -05:00
Parameters :
candidates : A vector of ` llama_token_data ` containing the candidate tokens , their probabilities ( p ) , and log - odds ( logit ) for the current position in the generated text .
2024-01-08 14:51:29 -05:00
grammar : A grammar object containing the rules and constraints to apply to the generated text .
"""
2024-02-21 16:25:38 -05:00
. . .
2023-07-24 15:42:31 -04:00
2023-10-31 21:29:35 -04:00
# /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
# /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
# /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
# /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
# /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
# /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
2023-09-28 22:42:03 -04:00
# LLAMA_API llama_token llama_sample_token_mirostat(
# struct llama_context * ctx,
# llama_token_data_array * candidates,
# float tau,
# float eta,
2024-01-03 22:04:04 -05:00
# int32_t m,
2023-09-28 22:42:03 -04:00
# float * mu);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_sample_token_mirostat " ,
[
llama_context_p_ctypes ,
llama_token_data_array_p ,
ctypes . c_float ,
ctypes . c_float ,
ctypes . c_int32 ,
ctypes . POINTER ( ctypes . c_float ) ,
] ,
llama_token ,
)
2023-05-01 10:44:28 -04:00
def llama_sample_token_mirostat (
2023-05-05 12:22:27 -04:00
ctx : llama_context_p ,
2024-02-22 02:00:09 -05:00
candidates : Union [
CtypesArray [ llama_token_data_array ] , CtypesPointerOrRef [ llama_token_data_array ]
] ,
2024-02-21 16:25:38 -05:00
tau : Union [ ctypes . c_float , float ] ,
eta : Union [ ctypes . c_float , float ] ,
m : Union [ ctypes . c_int , int ] ,
2024-02-22 02:00:09 -05:00
mu : CtypesPointerOrRef [ ctypes . c_float ] ,
/ ,
2023-05-19 11:59:33 -04:00
) - > int :
2023-11-27 19:03:02 -05:00
""" Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
2024-01-08 14:51:29 -05:00
2023-11-27 19:03:02 -05:00
Parameters :
candidates : A vector of ` llama_token_data ` containing the candidate tokens , their probabilities ( p ) , and log - odds ( logit ) for the current position in the generated text .
tau : The target cross - entropy ( or surprise ) value you want to achieve for the generated text . A higher value corresponds to more surprising or less predictable text , while a lower value corresponds to less surprising or more predictable text .
eta : The learning rate used to update ` mu ` based on the error between the target and observed surprisal of the sampled word . A larger learning rate will cause ` mu ` to be updated more quickly , while a smaller learning rate will result in slower updates .
m : The number of tokens considered in the estimation of ` s_hat ` . This is an arbitrary value that is used to calculate ` s_hat ` , which in turn helps to calculate the value of ` k ` . In the paper , they use ` m = 100 ` , but you can experiment with different values to see how it affects the performance of the algorithm .
2024-01-08 14:51:29 -05:00
mu : Maximum cross - entropy . This value is initialized to be twice the target cross - entropy ( ` 2 * tau ` ) and is updated in the algorithm based on the error between the target and observed surprisal .
"""
2024-02-21 16:25:38 -05:00
. . .
2023-05-01 10:44:28 -04:00
2023-10-31 21:29:35 -04:00
# /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
# /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
# /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
# /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
# /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
2023-09-28 22:42:03 -04:00
# LLAMA_API llama_token llama_sample_token_mirostat_v2(
# struct llama_context * ctx,
# llama_token_data_array * candidates,
# float tau,
# float eta,
# float * mu);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_sample_token_mirostat_v2 " ,
[
llama_context_p_ctypes ,
llama_token_data_array_p ,
ctypes . c_float ,
ctypes . c_float ,
ctypes . POINTER ( ctypes . c_float ) ,
] ,
llama_token ,
)
2023-05-01 10:44:28 -04:00
def llama_sample_token_mirostat_v2 (
2023-05-05 12:22:27 -04:00
ctx : llama_context_p ,
2024-02-22 02:00:09 -05:00
candidates : Union [
CtypesArray [ llama_token_data_array ] , CtypesPointerOrRef [ llama_token_data_array ]
] ,
2024-02-21 16:25:38 -05:00
tau : Union [ ctypes . c_float , float ] ,
eta : Union [ ctypes . c_float , float ] ,
2024-02-23 03:39:38 -05:00
mu : CtypesPointerOrRef [ ctypes . c_float ] ,
2024-02-22 02:00:09 -05:00
/ ,
2023-05-19 11:59:33 -04:00
) - > int :
2023-11-27 19:03:02 -05:00
""" Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
2024-01-08 14:51:29 -05:00
2023-11-27 19:03:02 -05:00
Parameters :
candidates : A vector of ` llama_token_data ` containing the candidate tokens , their probabilities ( p ) , and log - odds ( logit ) for the current position in the generated text .
tau : The target cross - entropy ( or surprise ) value you want to achieve for the generated text . A higher value corresponds to more surprising or less predictable text , while a lower value corresponds to less surprising or more predictable text .
eta : The learning rate used to update ` mu ` based on the error between the target and observed surprisal of the sampled word . A larger learning rate will cause ` mu ` to be updated more quickly , while a smaller learning rate will result in slower updates .
2024-01-08 14:51:29 -05:00
mu : Maximum cross - entropy . This value is initialized to be twice the target cross - entropy ( ` 2 * tau ` ) and is updated in the algorithm based on the error between the target and observed surprisal .
"""
2024-02-21 16:25:38 -05:00
. . .
2023-05-01 10:44:28 -04:00
2023-10-31 21:29:35 -04:00
# /// @details Selects the token with the highest probability.
# /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
2023-09-28 22:42:03 -04:00
# LLAMA_API llama_token llama_sample_token_greedy(
# struct llama_context * ctx,
# llama_token_data_array * candidates);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_sample_token_greedy " ,
[ llama_context_p_ctypes , llama_token_data_array_p ] ,
llama_token ,
)
2023-05-05 12:22:27 -04:00
def llama_sample_token_greedy (
2023-05-05 14:12:26 -04:00
ctx : llama_context_p ,
2024-02-22 02:00:09 -05:00
candidates : Union [
CtypesArray [ llama_token_data_array ] , CtypesPointerOrRef [ llama_token_data_array ]
] ,
/ ,
2023-05-19 11:59:33 -04:00
) - > int :
2023-11-27 19:03:02 -05:00
""" Selects the token with the highest probability. """
2024-02-21 16:25:38 -05:00
. . .
2023-05-01 10:44:28 -04:00
2023-10-31 21:29:35 -04:00
# /// @details Randomly selects a token from the candidates based on their probabilities.
2023-09-28 22:42:03 -04:00
# LLAMA_API llama_token llama_sample_token(
# struct llama_context * ctx,
# llama_token_data_array * candidates);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_sample_token " ,
[ llama_context_p_ctypes , llama_token_data_array_p ] ,
llama_token ,
)
2023-05-05 12:22:27 -04:00
def llama_sample_token (
2023-05-05 14:12:26 -04:00
ctx : llama_context_p ,
2024-02-22 02:00:09 -05:00
candidates : Union [
CtypesArray [ llama_token_data_array ] , CtypesPointerOrRef [ llama_token_data_array ]
] ,
/ ,
2023-05-19 11:59:33 -04:00
) - > int :
2023-11-27 19:03:02 -05:00
""" Randomly selects a token from the candidates based on their probabilities. """
2024-02-21 16:25:38 -05:00
. . .
2023-05-01 10:44:28 -04:00
2023-07-24 15:55:26 -04:00
# /// @details Accepts the sampled token into the grammar
2023-09-28 22:42:03 -04:00
# LLAMA_API void llama_grammar_accept_token(
# struct llama_context * ctx,
# struct llama_grammar * grammar,
# llama_token token);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_grammar_accept_token " ,
[ llama_context_p_ctypes , llama_grammar_p , llama_token ] ,
None ,
)
2023-07-24 15:55:26 -04:00
def llama_grammar_accept_token (
2024-02-22 02:00:09 -05:00
ctx : llama_context_p , grammar : llama_grammar_p , token : Union [ llama_token , int ] , /
2023-08-05 14:43:35 +09:00
) - > None :
2023-11-27 19:03:02 -05:00
""" Accepts the sampled token into the grammar """
2024-02-21 16:25:38 -05:00
. . .
2023-07-24 15:55:26 -04:00
2023-09-09 12:12:32 -04:00
# //
# // Beam search
# //
# struct llama_beam_view {
# const llama_token * tokens;
2023-09-28 22:42:03 -04:00
2023-10-03 15:23:35 -04:00
2023-09-09 12:12:32 -04:00
# size_t n_tokens;
2023-09-28 22:42:03 -04:00
# float p; // Cumulative beam probability (renormalized relative to all beams)
# bool eob; // Callback should set this to true when a beam is at end-of-beam.
2023-09-09 12:12:32 -04:00
# };
class llama_beam_view ( ctypes . Structure ) :
_fields_ = [
( " tokens " , llama_token_p ) ,
2024-02-21 16:25:38 -05:00
( " n_tokens " , ctypes . c_size_t ) ,
( " p " , ctypes . c_float ) ,
( " eob " , ctypes . c_bool ) ,
2023-09-09 12:12:32 -04:00
]
# // Passed to beam_search_callback function.
# // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
# // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
# // These pointers are valid only during the synchronous callback, so should not be saved.
# struct llama_beams_state {
# struct llama_beam_view * beam_views;
# size_t n_beams; // Number of elements in beam_views[].
# size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
2023-09-28 22:42:03 -04:00
# bool last_call; // True iff this is the last callback invocation.
2023-09-09 12:12:32 -04:00
# };
class llama_beams_state ( ctypes . Structure ) :
_fields_ = [
2024-02-21 16:25:38 -05:00
( " beam_views " , ctypes . POINTER ( llama_beam_view ) ) ,
( " n_beams " , ctypes . c_size_t ) ,
( " common_prefix_length " , ctypes . c_size_t ) ,
( " last_call " , ctypes . c_bool ) ,
2023-09-09 12:12:32 -04:00
]
# // Type of pointer to the beam_search_callback function.
# // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
# // passed back to beam_search_callback. This avoids having to use global variables in the callback.
# typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
2024-02-22 02:00:09 -05:00
llama_beam_search_callback_fn_t = ctypes . CFUNCTYPE (
None , ctypes . c_void_p , llama_beams_state
)
2023-09-09 12:12:32 -04:00
# /// @details Deterministically returns entire sentence constructed by a beam search.
# /// @param ctx Pointer to the llama_context.
# /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
# /// @param callback_data A pointer that is simply passed back to callback.
# /// @param n_beams Number of beams to use.
# /// @param n_past Number of tokens already evaluated.
# /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
# /// @param n_threads Number of threads as passed to llama_eval().
2023-09-28 22:42:03 -04:00
# LLAMA_API void llama_beam_search(
# struct llama_context * ctx,
# llama_beam_search_callback_fn_t callback,
# void * callback_data,
# size_t n_beams,
2024-01-03 22:04:04 -05:00
# int32_t n_past,
# int32_t n_predict);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_beam_search " ,
[
llama_context_p_ctypes ,
llama_beam_search_callback_fn_t ,
ctypes . c_void_p ,
ctypes . c_size_t ,
ctypes . c_int32 ,
ctypes . c_int32 ,
] ,
None ,
)
2023-09-09 12:12:32 -04:00
def llama_beam_search (
ctx : llama_context_p ,
2024-02-22 02:00:09 -05:00
callback : CtypesFuncPointer ,
2024-02-21 16:25:38 -05:00
callback_data : ctypes . c_void_p ,
n_beams : Union [ ctypes . c_size_t , int ] ,
n_past : Union [ ctypes . c_int , int ] ,
n_predict : Union [ ctypes . c_int , int ] ,
2024-02-22 02:00:09 -05:00
/ ,
2023-09-09 12:12:32 -04:00
) :
2024-02-21 16:25:38 -05:00
. . .
2023-09-09 12:12:32 -04:00
2023-10-03 15:23:35 -04:00
2023-03-24 14:58:42 -04:00
# Performance information
2023-03-24 14:59:29 -04:00
2023-07-06 17:57:56 -04:00
# LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_get_timings " ,
[ llama_context_p_ctypes ] ,
llama_timings ,
)
2024-02-21 16:25:38 -05:00
def llama_get_timings ( ctx : llama_context_p , / ) - > llama_timings :
2023-11-27 19:03:02 -05:00
""" Get performance information """
2024-02-21 16:25:38 -05:00
. . .
2023-07-06 17:57:56 -04:00
2023-05-21 17:47:21 -04:00
# LLAMA_API void llama_print_timings(struct llama_context * ctx);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_print_timings " ,
[ llama_context_p_ctypes ] ,
None ,
)
2024-02-21 16:25:38 -05:00
def llama_print_timings ( ctx : llama_context_p , / ) :
2023-11-27 19:03:02 -05:00
""" Print performance information """
2024-02-21 16:25:38 -05:00
. . .
2023-03-23 05:33:06 -04:00
2023-03-24 14:35:41 -04:00
2023-05-21 17:47:21 -04:00
# LLAMA_API void llama_reset_timings(struct llama_context * ctx);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_reset_timings " ,
[ llama_context_p_ctypes ] ,
None ,
)
2024-02-21 16:25:38 -05:00
def llama_reset_timings ( ctx : llama_context_p , / ) :
2023-11-27 19:03:02 -05:00
""" Reset performance information """
2024-02-21 16:25:38 -05:00
. . .
2023-03-23 05:33:06 -04:00
2023-03-24 14:35:41 -04:00
2023-03-24 14:58:42 -04:00
# Print system information
2023-05-21 17:47:21 -04:00
# LLAMA_API const char * llama_print_system_info(void);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_print_system_info " ,
[ ] ,
ctypes . c_char_p ,
)
2023-03-23 05:33:06 -04:00
def llama_print_system_info ( ) - > bytes :
2023-11-27 19:03:02 -05:00
""" Print system information """
2024-02-21 16:25:38 -05:00
. . .
2023-03-24 14:58:42 -04:00
2023-09-28 22:42:03 -04:00
# NOTE: THIS IS CURRENTLY BROKEN AS ggml_log_callback IS NOT EXPOSED IN LLAMA.H
2023-08-24 00:17:00 -04:00
# // Set callback for all future logging events.
# // If this is not called, or NULL is supplied, everything is output on stderr.
2023-09-28 22:42:03 -04:00
# LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_log_set " ,
[ ctypes . c_void_p , ctypes . c_void_p ] ,
None ,
)
2023-08-24 00:17:00 -04:00
def llama_log_set (
2024-02-22 02:00:09 -05:00
log_callback : Optional [ CtypesFuncPointer ] ,
2024-02-23 03:39:38 -05:00
user_data : ctypes . c_void_p ,
2024-02-22 02:00:09 -05:00
/ ,
2023-08-24 00:17:00 -04:00
) :
2023-11-27 19:03:02 -05:00
""" Set callback for all future logging events.
If this is not called , or NULL is supplied , everything is output on stderr . """
2024-02-21 16:25:38 -05:00
. . .
2023-08-24 00:17:00 -04:00
2023-08-29 07:36:20 -04:00
# LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
2024-02-23 03:39:38 -05:00
@ctypes_function (
" llama_dump_timing_info_yaml " ,
[ ctypes . c_void_p , llama_context_p_ctypes ] ,
None ,
)
2024-02-21 16:25:38 -05:00
def llama_dump_timing_info_yaml ( stream : ctypes . c_void_p , ctx : llama_context_p , / ) :
. . .