feat: Update llama.cpp
This commit is contained in:
parent
ffcd4b2636
commit
0d37ce52b1
3 changed files with 5 additions and 145 deletions
|
@ -111,6 +111,7 @@ if TYPE_CHECKING:
|
|||
|
||||
F = TypeVar("F", bound=Callable[..., Any])
|
||||
|
||||
|
||||
def ctypes_function_for_shared_library(lib: ctypes.CDLL):
|
||||
def ctypes_function(
|
||||
name: str, argtypes: List[Any], restype: Any, enabled: bool = True
|
||||
|
@ -938,18 +939,6 @@ def llama_supports_gpu_offload() -> bool:
|
|||
...
|
||||
|
||||
|
||||
# LLAMA_API DEPRECATED(bool llama_mmap_supported (void), "use llama_supports_mmap() instead");
|
||||
@ctypes_function("llama_mmap_supported", [], ctypes.c_bool)
|
||||
def llama_mmap_supported() -> bool:
|
||||
...
|
||||
|
||||
|
||||
# LLAMA_API DEPRECATED(bool llama_mlock_supported(void), "use llama_supports_mlock() instead");
|
||||
@ctypes_function("llama_mlock_supported", [], ctypes.c_bool)
|
||||
def llama_mlock_supported() -> bool:
|
||||
...
|
||||
|
||||
|
||||
# LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
|
||||
@ctypes_function("llama_get_model", [llama_context_p_ctypes], llama_model_p_ctypes)
|
||||
def llama_get_model(ctx: llama_context_p, /) -> Optional[llama_model_p]:
|
||||
|
@ -1158,47 +1147,6 @@ def llama_model_quantize(
|
|||
...
|
||||
|
||||
|
||||
# // Apply a LoRA adapter to a loaded model
|
||||
# // path_base_model is the path to a higher quality model to use as a base for
|
||||
# // the layers modified by the adapter. Can be NULL to use the current loaded model.
|
||||
# // The model needs to be reloaded before applying a new adapter, otherwise the adapter
|
||||
# // will be applied on top of the previous one
|
||||
# // Returns 0 on success
|
||||
# LLAMA_API DEPRECATED(int32_t llama_apply_lora_from_file(
|
||||
# struct llama_context * ctx,
|
||||
# const char * path_lora,
|
||||
# float scale,
|
||||
# const char * path_base_model,
|
||||
# int32_t n_threads),
|
||||
# "use llama_model_apply_lora_from_file instead");
|
||||
@ctypes_function(
|
||||
"llama_apply_lora_from_file",
|
||||
[
|
||||
llama_context_p_ctypes,
|
||||
ctypes.c_char_p,
|
||||
ctypes.c_float,
|
||||
ctypes.c_char_p,
|
||||
ctypes.c_int32,
|
||||
],
|
||||
ctypes.c_int32,
|
||||
)
|
||||
def llama_apply_lora_from_file(
|
||||
ctx: llama_context_p,
|
||||
path_lora: Union[ctypes.c_char_p, bytes],
|
||||
scale: Union[ctypes.c_float, float],
|
||||
path_base_model: Union[ctypes.c_char_p, bytes],
|
||||
n_threads: Union[ctypes.c_int32, int],
|
||||
/,
|
||||
) -> int:
|
||||
"""Apply a LoRA adapter to a loaded model
|
||||
path_base_model is the path to a higher quality model to use as a base for
|
||||
the layers modified by the adapter. Can be NULL to use the current loaded model.
|
||||
The model needs to be reloaded before applying a new adapter, otherwise the adapter
|
||||
will be applied on top of the previous one
|
||||
Returns 0 on success"""
|
||||
...
|
||||
|
||||
|
||||
# LLAMA_API int32_t llama_model_apply_lora_from_file(
|
||||
# const struct llama_model * model,
|
||||
# const char * path_lora,
|
||||
|
@ -1220,7 +1168,7 @@ def llama_model_apply_lora_from_file(
|
|||
model: llama_model_p,
|
||||
path_lora: Union[ctypes.c_char_p, bytes],
|
||||
scale: Union[ctypes.c_float, float],
|
||||
path_base_model: Union[ctypes.c_char_p, bytes],
|
||||
path_base_model: Union[ctypes.c_char_p, bytes, None],
|
||||
n_threads: Union[ctypes.c_int32, int],
|
||||
/,
|
||||
) -> int:
|
||||
|
@ -1647,72 +1595,6 @@ def llama_save_session_file(
|
|||
# //
|
||||
|
||||
|
||||
# // Run the llama inference to obtain the logits and probabilities for the next token(s).
|
||||
# // tokens + n_tokens is the provided batch of new tokens to process
|
||||
# // n_past is the number of tokens to use from previous eval calls
|
||||
# // Returns 0 on success
|
||||
# // DEPRECATED: use llama_decode() instead
|
||||
# LLAMA_API DEPRECATED(int llama_eval(
|
||||
# struct llama_context * ctx,
|
||||
# llama_token * tokens,
|
||||
# int32_t n_tokens,
|
||||
# int32_t n_past),
|
||||
# "use llama_decode() instead");
|
||||
@ctypes_function(
|
||||
"llama_eval",
|
||||
[
|
||||
llama_context_p_ctypes,
|
||||
llama_token_p,
|
||||
ctypes.c_int32,
|
||||
ctypes.c_int32,
|
||||
],
|
||||
ctypes.c_int,
|
||||
)
|
||||
def llama_eval(
|
||||
ctx: llama_context_p,
|
||||
tokens: CtypesArray[llama_token],
|
||||
n_tokens: Union[ctypes.c_int, int],
|
||||
n_past: Union[ctypes.c_int, int],
|
||||
/,
|
||||
) -> int:
|
||||
"""Run the llama inference to obtain the logits and probabilities for the next token(s).
|
||||
tokens + n_tokens is the provided batch of new tokens to process
|
||||
n_past is the number of tokens to use from previous eval calls
|
||||
Returns 0 on success
|
||||
DEPRECATED: use llama_decode() instead"""
|
||||
...
|
||||
|
||||
|
||||
# // Same as llama_eval, but use float matrix input directly.
|
||||
# // DEPRECATED: use llama_decode() instead
|
||||
# LLAMA_API DEPRECATED(int llama_eval_embd(
|
||||
# struct llama_context * ctx,
|
||||
# float * embd,
|
||||
# int32_t n_tokens,
|
||||
# int32_t n_past),
|
||||
# "use llama_decode() instead");
|
||||
@ctypes_function(
|
||||
"llama_eval_embd",
|
||||
[
|
||||
llama_context_p_ctypes,
|
||||
ctypes.POINTER(ctypes.c_float),
|
||||
ctypes.c_int32,
|
||||
ctypes.c_int32,
|
||||
],
|
||||
ctypes.c_int,
|
||||
)
|
||||
def llama_eval_embd(
|
||||
ctx: llama_context_p,
|
||||
embd: CtypesArray[ctypes.c_float],
|
||||
n_tokens: Union[ctypes.c_int, int],
|
||||
n_past: Union[ctypes.c_int, int],
|
||||
/,
|
||||
) -> int:
|
||||
"""Same as llama_eval, but use float matrix input directly.
|
||||
DEPRECATED: use llama_decode() instead"""
|
||||
...
|
||||
|
||||
|
||||
# // Return batch for single sequence of tokens starting at pos_0
|
||||
# //
|
||||
# // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
|
||||
|
@ -2474,28 +2356,6 @@ def llama_sample_temp(
|
|||
...
|
||||
|
||||
|
||||
# LLAMA_API DEPRECATED(void llama_sample_temperature(
|
||||
# struct llama_context * ctx,
|
||||
# llama_token_data_array * candidates,
|
||||
# float temp),
|
||||
# "use llama_sample_temp instead");
|
||||
@ctypes_function(
|
||||
"llama_sample_temperature",
|
||||
[llama_context_p_ctypes, llama_token_data_array_p, ctypes.c_float],
|
||||
None,
|
||||
)
|
||||
def llama_sample_temperature(
|
||||
ctx: llama_context_p,
|
||||
candidates: Union[
|
||||
CtypesArray[llama_token_data_array], CtypesPointerOrRef[llama_token_data_array]
|
||||
],
|
||||
temp: Union[ctypes.c_float, float],
|
||||
/,
|
||||
):
|
||||
"""use llama_sample_temp instead"""
|
||||
...
|
||||
|
||||
|
||||
# /// @details Apply constraints from grammar
|
||||
# LLAMA_API void llama_sample_grammar(
|
||||
# struct llama_context * ctx,
|
||||
|
|
|
@ -45,11 +45,11 @@ class ModelSettings(BaseSettings):
|
|||
default=False, description="Whether to only return the vocabulary."
|
||||
)
|
||||
use_mmap: bool = Field(
|
||||
default=llama_cpp.llama_mmap_supported(),
|
||||
default=llama_cpp.llama_supports_mmap(),
|
||||
description="Use mmap.",
|
||||
)
|
||||
use_mlock: bool = Field(
|
||||
default=llama_cpp.llama_mlock_supported(),
|
||||
default=llama_cpp.llama_supports_mlock(),
|
||||
description="Use mlock.",
|
||||
)
|
||||
kv_overrides: Optional[List[str]] = Field(
|
||||
|
|
2
vendor/llama.cpp
vendored
2
vendor/llama.cpp
vendored
|
@ -1 +1 @@
|
|||
Subproject commit cb49e0f8c906e5da49e9f6d64a57742a9a241c6a
|
||||
Subproject commit 08c5ee87e4cceb603ecceac90734fcdade57311b
|
Loading…
Reference in a new issue