llama.cpp/llama_cpp/llama.py

992 lines
34 KiB
Python
Raw Normal View History

2023-03-24 15:47:17 -04:00
import os
2023-04-04 13:09:24 -04:00
import sys
2023-03-23 05:33:06 -04:00
import uuid
import time
import math
2023-03-23 05:33:06 -04:00
import multiprocessing
from typing import List, Optional, Union, Generator, Sequence, Iterator, Deque, Tuple
from collections import deque
2023-03-23 05:33:06 -04:00
from . import llama_cpp
2023-04-01 13:01:27 -04:00
from .llama_types import *
2023-03-23 05:33:06 -04:00
2023-03-24 14:35:41 -04:00
2023-04-15 12:03:09 -04:00
class LlamaCache:
"""Cache for a llama.cpp model."""
2023-04-15 12:03:09 -04:00
def __init__(self):
self.cache_state: Dict[Tuple[llama_cpp.llama_token, ...], "LlamaState"] = dict()
2023-04-15 12:03:09 -04:00
def _sorted_keys(self) -> List[Tuple[llama_cpp.llama_token, ...]]:
return [
key
for _, key in sorted(
((len(key), key) for key in self.cache_state.keys()), reverse=True
)
]
def _find_key(
self, key: Tuple[llama_cpp.llama_token, ...]
) -> Optional[Tuple[llama_cpp.llama_token, ...]]:
for k in self._sorted_keys():
if key[: len(k)] == k:
return k
return None
2023-04-15 12:03:09 -04:00
def __getitem__(
self, key: Sequence[llama_cpp.llama_token]
) -> Optional["LlamaState"]:
_key = self._find_key(tuple(key))
if _key is None:
return None
return self.cache_state[_key]
def __contains__(self, key: Sequence[llama_cpp.llama_token]) -> bool:
return self._find_key(tuple(key)) is not None
def __setitem__(self, key: Sequence[llama_cpp.llama_token], value: "LlamaState"):
self.cache_state = dict() # NOTE: Currently limit to one cache entry.
self.cache_state[tuple(key)] = value
2023-04-15 12:03:09 -04:00
class LlamaState:
def __init__(
self,
eval_tokens: Deque[llama_cpp.llama_token],
2023-05-03 09:33:50 -04:00
eval_logits: Deque[List[llama_cpp.c_float]],
llama_state,
2023-05-03 09:33:50 -04:00
llama_state_size: llama_cpp.c_size_t,
):
self.eval_tokens = eval_tokens
self.eval_logits = eval_logits
self.llama_state = llama_state
2023-05-03 09:33:50 -04:00
self.llama_state_size = llama_state_size
2023-04-15 12:03:09 -04:00
2023-03-23 05:33:06 -04:00
class Llama:
2023-03-24 18:57:59 -04:00
"""High-level Python wrapper for a llama.cpp model."""
2023-03-23 05:33:06 -04:00
def __init__(
self,
model_path: str,
2023-04-01 13:01:27 -04:00
# NOTE: These parameters are likely to change in the future.
2023-03-23 05:33:06 -04:00
n_ctx: int = 512,
n_parts: int = -1,
seed: int = 1337,
2023-04-14 22:21:19 -04:00
f16_kv: bool = True,
2023-03-23 05:33:06 -04:00
logits_all: bool = False,
vocab_only: bool = False,
2023-04-10 02:11:35 -04:00
use_mmap: bool = True,
2023-03-25 16:26:23 -04:00
use_mlock: bool = False,
embedding: bool = False,
2023-03-23 05:33:06 -04:00
n_threads: Optional[int] = None,
n_batch: int = 512,
2023-04-01 13:01:27 -04:00
last_n_tokens_size: int = 64,
lora_base: Optional[str] = None,
2023-04-18 01:43:44 -04:00
lora_path: Optional[str] = None,
2023-04-04 13:09:24 -04:00
verbose: bool = True,
2023-04-01 13:01:27 -04:00
):
2023-03-24 18:57:59 -04:00
"""Load a llama.cpp model from `model_path`.
Args:
2023-03-25 12:33:18 -04:00
model_path: Path to the model.
n_ctx: Maximum context size.
2023-03-24 18:57:59 -04:00
n_parts: Number of parts to split the model into. If -1, the number of parts is automatically determined.
2023-03-25 12:33:18 -04:00
seed: Random seed. 0 for random.
f16_kv: Use half-precision for key/value cache.
logits_all: Return logits for all tokens, not just the last token.
vocab_only: Only load the vocabulary no weights.
2023-04-10 02:11:35 -04:00
use_mmap: Use mmap if possible.
2023-03-25 16:26:23 -04:00
use_mlock: Force the system to keep the model in RAM.
embedding: Embedding mode only.
2023-03-24 18:57:59 -04:00
n_threads: Number of threads to use. If None, the number of threads is automatically determined.
2023-04-01 13:01:27 -04:00
n_batch: Maximum number of prompt tokens to batch together when calling llama_eval.
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
lora_base: Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model.
2023-04-18 01:43:44 -04:00
lora_path: Path to a LoRA file to apply to the model.
2023-04-04 13:09:24 -04:00
verbose: Print verbose output to stderr.
2023-03-24 18:57:59 -04:00
Raises:
ValueError: If the model path does not exist.
Returns:
A Llama instance.
"""
2023-04-04 13:09:24 -04:00
self.verbose = verbose
2023-03-23 05:33:06 -04:00
self.model_path = model_path
self.params = llama_cpp.llama_context_default_params()
self.params.n_ctx = n_ctx
self.params.n_parts = n_parts
self.params.seed = seed
self.params.f16_kv = f16_kv
self.params.logits_all = logits_all
self.params.vocab_only = vocab_only
self.params.use_mmap = use_mmap if lora_path is None else False
2023-03-25 16:26:23 -04:00
self.params.use_mlock = use_mlock
self.params.embedding = embedding
2023-03-23 05:33:06 -04:00
2023-04-01 13:01:27 -04:00
self.last_n_tokens_size = last_n_tokens_size
self.n_batch = min(n_ctx, n_batch)
self.eval_tokens: Deque[llama_cpp.llama_token] = deque(maxlen=n_ctx)
2023-05-01 14:47:55 -04:00
self.eval_logits: Deque[List[llama_cpp.c_float]] = deque(
maxlen=n_ctx if logits_all else 1
)
2023-03-23 05:33:06 -04:00
self.cache: Optional[LlamaCache] = None
2023-04-15 12:03:09 -04:00
2023-04-08 19:54:04 -04:00
self.n_threads = n_threads or max(multiprocessing.cpu_count() // 2, 1)
2023-03-23 05:33:06 -04:00
self.lora_base = lora_base
self.lora_path = lora_path
2023-03-24 15:47:17 -04:00
if not os.path.exists(model_path):
raise ValueError(f"Model path does not exist: {model_path}")
2023-03-23 05:33:06 -04:00
self.ctx = llama_cpp.llama_init_from_file(
self.model_path.encode("utf-8"), self.params
)
assert self.ctx is not None
if self.lora_path:
2023-04-18 01:43:44 -04:00
if llama_cpp.llama_apply_lora_from_file(
self.ctx,
llama_cpp.c_char_p(self.lora_path.encode("utf-8")),
llama_cpp.c_char_p(self.lora_base.encode("utf-8"))
if self.lora_base is not None
else llama_cpp.c_char_p(0),
2023-04-18 01:43:44 -04:00
llama_cpp.c_int(self.n_threads),
):
raise RuntimeError(
f"Failed to apply LoRA from lora path: {self.lora_path} to base path: {self.lora_base}"
)
2023-04-18 01:43:44 -04:00
2023-04-04 13:09:24 -04:00
if self.verbose:
2023-04-28 12:50:30 +02:00
print(llama_cpp.llama_print_system_info().decode("utf-8"), file=sys.stderr)
2023-04-04 13:09:24 -04:00
2023-04-01 13:01:27 -04:00
def tokenize(self, text: bytes) -> List[llama_cpp.llama_token]:
"""Tokenize a string.
Args:
text: The utf-8 encoded string to tokenize.
2023-04-01 13:01:27 -04:00
Raises:
RuntimeError: If the tokenization failed.
Returns:
A list of tokens.
"""
2023-04-01 13:01:27 -04:00
assert self.ctx is not None
n_ctx = llama_cpp.llama_n_ctx(self.ctx)
2023-04-01 13:01:27 -04:00
tokens = (llama_cpp.llama_token * int(n_ctx))()
n_tokens = llama_cpp.llama_tokenize(
self.ctx,
text,
tokens,
n_ctx,
2023-04-01 13:01:27 -04:00
llama_cpp.c_bool(True),
)
2023-04-01 13:01:27 -04:00
if int(n_tokens) < 0:
raise RuntimeError(f'Failed to tokenize: text="{text}" n_tokens={n_tokens}')
return list(tokens[:n_tokens])
2023-04-01 13:01:27 -04:00
def detokenize(self, tokens: List[llama_cpp.llama_token]) -> bytes:
"""Detokenize a list of tokens.
Args:
tokens: The list of tokens to detokenize.
Returns:
The detokenized string.
"""
2023-04-01 13:01:27 -04:00
assert self.ctx is not None
output = b""
for token in tokens:
output += llama_cpp.llama_token_to_str(self.ctx, token)
return output
2023-04-15 12:03:09 -04:00
def set_cache(self, cache: Optional[LlamaCache]):
"""Set the cache.
Args:
cache: The cache to set.
"""
self.cache = cache
2023-04-15 12:03:09 -04:00
def reset(self):
"""Reset the model state."""
self.eval_tokens.clear()
self.eval_logits.clear()
def eval(self, tokens: Sequence[llama_cpp.llama_token]):
"""Evaluate a list of tokens.
Args:
tokens: The list of tokens to evaluate.
"""
assert self.ctx is not None
n_ctx = int(llama_cpp.llama_n_ctx(self.ctx))
for i in range(0, len(tokens), self.n_batch):
batch = tokens[i : min(len(tokens), i + self.n_batch)]
n_past = min(n_ctx - len(batch), len(self.eval_tokens))
n_tokens = len(batch)
return_code = llama_cpp.llama_eval(
ctx=self.ctx,
tokens=(llama_cpp.llama_token * len(batch))(*batch),
n_tokens=llama_cpp.c_int(n_tokens),
n_past=llama_cpp.c_int(n_past),
n_threads=llama_cpp.c_int(self.n_threads),
)
if int(return_code) != 0:
raise RuntimeError(f"llama_eval returned {return_code}")
2023-05-01 14:47:55 -04:00
# Save tokens
self.eval_tokens.extend(batch)
2023-05-01 14:47:55 -04:00
# Save logits
rows = n_tokens if self.params.logits_all else 1
n_vocab = llama_cpp.llama_n_vocab(self.ctx)
cols = int(n_vocab)
logits_view = llama_cpp.llama_get_logits(self.ctx)
logits: List[List[llama_cpp.c_float]] = [
[logits_view[i * cols + j] for j in range(cols)] for i in range(rows)
]
self.eval_logits.extend(logits)
def _sample_top_p_top_k(
self,
last_n_tokens_data, # type: llama_cpp.Array[llama_cpp.llama_token]
last_n_tokens_size: llama_cpp.c_int,
top_k: llama_cpp.c_int,
top_p: llama_cpp.c_float,
temp: llama_cpp.c_float,
repeat_penalty: llama_cpp.c_float,
):
assert self.ctx is not None
assert len(self.eval_logits) > 0
n_vocab = int(llama_cpp.llama_n_vocab(self.ctx))
logits = self.eval_logits[-1]
data = (llama_cpp.llama_token_data * n_vocab)(
*[
llama_cpp.llama_token_data(
id=llama_cpp.llama_token(i),
logit=logits[i],
p=llama_cpp.c_float(0.0),
)
for i in range(n_vocab)
]
)
size = llama_cpp.c_size_t(n_vocab)
sorted = False
candidates = llama_cpp.llama_token_data_array(
data=data,
size=size,
sorted=sorted,
)
llama_cpp.llama_sample_repetition_penalty(
ctx=self.ctx,
last_tokens_data=last_n_tokens_data,
last_tokens_size=last_n_tokens_size,
candidates=llama_cpp.ctypes.pointer(candidates),
penalty=repeat_penalty,
)
if temp == 0.0:
return llama_cpp.llama_sample_token_greedy(
ctx=self.ctx,
candidates=llama_cpp.ctypes.pointer(candidates),
)
else:
llama_cpp.llama_sample_top_k(
ctx=self.ctx,
candidates=llama_cpp.ctypes.pointer(candidates),
k=top_k,
)
llama_cpp.llama_sample_tail_free(
ctx=self.ctx,
candidates=llama_cpp.ctypes.pointer(candidates),
z=llama_cpp.c_float(1.0),
)
llama_cpp.llama_sample_typical(
ctx=self.ctx,
candidates=llama_cpp.ctypes.pointer(candidates),
2023-05-01 21:51:16 -04:00
p=llama_cpp.c_float(1.0),
2023-05-01 14:47:55 -04:00
)
llama_cpp.llama_sample_top_p(
ctx=self.ctx,
candidates=llama_cpp.ctypes.pointer(candidates),
p=top_p,
)
llama_cpp.llama_sample_temperature(
ctx=self.ctx,
candidates=llama_cpp.ctypes.pointer(candidates),
temp=temp,
)
return llama_cpp.llama_sample_token(
ctx=self.ctx,
candidates=llama_cpp.ctypes.pointer(candidates),
)
def sample(
self,
top_k: int,
top_p: float,
temp: float,
repeat_penalty: float,
):
"""Sample a token from the model.
Args:
top_k: The top-k sampling parameter.
top_p: The top-p sampling parameter.
temp: The temperature parameter.
repeat_penalty: The repeat penalty parameter.
Returns:
The sampled token.
"""
assert self.ctx is not None
last_n_tokens_data = [llama_cpp.llama_token(0)] * max(
0, self.last_n_tokens_size - len(self.eval_tokens)
) + list(self.eval_tokens)[-self.last_n_tokens_size :]
2023-05-01 14:47:55 -04:00
return self._sample_top_p_top_k(
last_n_tokens_data=(llama_cpp.llama_token * self.last_n_tokens_size)(
*last_n_tokens_data
),
last_n_tokens_size=llama_cpp.c_int(self.last_n_tokens_size),
top_k=llama_cpp.c_int(top_k),
top_p=llama_cpp.c_float(top_p),
temp=llama_cpp.c_float(temp),
repeat_penalty=llama_cpp.c_float(repeat_penalty),
)
2023-04-01 13:01:27 -04:00
def generate(
self,
tokens: Sequence[llama_cpp.llama_token],
top_k: int,
top_p: float,
temp: float,
repeat_penalty: float,
reset: bool = True,
2023-04-01 13:01:27 -04:00
) -> Generator[
llama_cpp.llama_token, Optional[Sequence[llama_cpp.llama_token]], None
]:
"""Create a generator of tokens from a prompt.
2023-04-01 17:36:30 -04:00
2023-04-01 17:39:35 -04:00
Examples:
>>> llama = Llama("models/ggml-7b.bin")
>>> tokens = llama.tokenize(b"Hello, world!")
>>> for token in llama.generate(tokens, top_k=40, top_p=0.95, temp=1.0, repeat_penalty=1.1):
... print(llama.detokenize([token]))
2023-04-01 17:36:30 -04:00
Args:
tokens: The prompt tokens.
top_k: The top-k sampling parameter.
top_p: The top-p sampling parameter.
temp: The temperature parameter.
repeat_penalty: The repeat penalty parameter.
reset: Whether to reset the model state.
2023-04-01 17:36:30 -04:00
Yields:
The generated tokens.
"""
2023-04-01 13:01:27 -04:00
assert self.ctx is not None
2023-04-15 12:03:09 -04:00
if (
reset
and len(self.eval_tokens) > 0
and tuple(self.eval_tokens) == tuple(tokens[: len(self.eval_tokens)])
2023-04-15 12:03:09 -04:00
):
if self.verbose:
2023-05-03 10:28:10 -04:00
print("Llama.generate: cache hit", file=sys.stderr)
2023-04-15 12:03:09 -04:00
reset = False
tokens = tokens[len(self.eval_tokens) :]
if reset:
self.reset()
2023-04-01 13:01:27 -04:00
while True:
self.eval(tokens)
token = self.sample(
top_k=top_k,
top_p=top_p,
temp=temp,
repeat_penalty=repeat_penalty,
2023-04-01 13:01:27 -04:00
)
tokens_or_none = yield token
tokens = [token]
if tokens_or_none is not None:
tokens.extend(tokens_or_none)
def create_embedding(self, input: str) -> Embedding:
"""Embed a string.
Args:
2023-04-01 13:01:27 -04:00
input: The utf-8 encoded string to embed.
Returns:
2023-04-01 13:01:27 -04:00
An embedding object.
"""
2023-04-01 13:01:27 -04:00
assert self.ctx is not None
2023-04-04 13:09:24 -04:00
if self.params.embedding == False:
raise RuntimeError(
"Llama model must be created with embedding=True to call this method"
)
2023-04-04 13:09:24 -04:00
if self.verbose:
llama_cpp.llama_reset_timings(self.ctx)
tokens = self.tokenize(input.encode("utf-8"))
self.reset()
self.eval(tokens)
2023-04-01 13:01:27 -04:00
n_tokens = len(tokens)
embedding = llama_cpp.llama_get_embeddings(self.ctx)[
: llama_cpp.llama_n_embd(self.ctx)
]
2023-04-04 13:09:24 -04:00
if self.verbose:
llama_cpp.llama_print_timings(self.ctx)
2023-04-01 13:01:27 -04:00
return {
"object": "list",
"data": [
{
"object": "embedding",
"embedding": embedding,
"index": 0,
}
],
"model": self.model_path,
"usage": {
"prompt_tokens": n_tokens,
"total_tokens": n_tokens,
},
}
2023-03-28 02:42:22 -04:00
2023-04-03 18:46:19 -04:00
def embed(self, input: str) -> List[float]:
"""Embed a string.
Args:
input: The utf-8 encoded string to embed.
Returns:
A list of embeddings
"""
return list(map(float, self.create_embedding(input)["data"][0]["embedding"]))
2023-04-01 13:01:27 -04:00
def _create_completion(
2023-03-23 05:33:06 -04:00
self,
prompt: str,
suffix: Optional[str] = None,
max_tokens: int = 16,
temperature: float = 0.8,
top_p: float = 0.95,
2023-03-23 15:51:05 -04:00
logprobs: Optional[int] = None,
2023-03-23 05:33:06 -04:00
echo: bool = False,
2023-04-14 09:59:08 -04:00
stop: Optional[List[str]] = [],
2023-03-23 05:33:06 -04:00
repeat_penalty: float = 1.1,
top_k: int = 40,
stream: bool = False,
2023-04-12 14:06:22 -04:00
) -> Union[Iterator[Completion], Iterator[CompletionChunk]]:
2023-04-01 13:01:27 -04:00
assert self.ctx is not None
2023-04-15 11:39:21 -04:00
completion_id: str = f"cmpl-{str(uuid.uuid4())}"
created: int = int(time.time())
2023-04-01 13:01:27 -04:00
completion_tokens: List[llama_cpp.llama_token] = []
# Add blank space to start of prompt to match OG llama tokenizer
2023-04-15 11:39:21 -04:00
prompt_tokens: List[llama_cpp.llama_token] = self.tokenize(
b" " + prompt.encode("utf-8")
2023-04-15 11:39:21 -04:00
)
text: bytes = b""
returned_characters: int = 0
2023-04-15 00:08:04 -04:00
stop = stop if stop is not None else []
2023-03-23 05:33:06 -04:00
2023-04-04 13:09:24 -04:00
if self.verbose:
llama_cpp.llama_reset_timings(self.ctx)
2023-04-01 13:01:27 -04:00
if len(prompt_tokens) + max_tokens > int(llama_cpp.llama_n_ctx(self.ctx)):
2023-03-23 05:33:06 -04:00
raise ValueError(
f"Requested tokens exceed context window of {llama_cpp.llama_n_ctx(self.ctx)}"
2023-03-23 05:33:06 -04:00
)
2023-04-01 13:01:27 -04:00
if stop != []:
stop_sequences = [s.encode("utf-8") for s in stop]
2023-04-01 13:01:27 -04:00
else:
stop_sequences = []
if logprobs is not None and self.params.logits_all is False:
raise ValueError(
"logprobs is not supported for models created with logits_all=False"
)
if self.cache and prompt_tokens in self.cache:
2023-04-15 12:03:09 -04:00
if self.verbose:
2023-05-03 10:28:10 -04:00
print("Llama._create_completion: cache hit", file=sys.stderr)
self.load_state(self.cache[prompt_tokens])
2023-04-15 12:03:09 -04:00
finish_reason = "length"
2023-04-28 12:50:30 +02:00
multibyte_fix = 0
2023-04-14 09:59:33 -04:00
for token in self.generate(
prompt_tokens,
top_k=top_k,
top_p=top_p,
temp=temperature,
repeat_penalty=repeat_penalty,
):
2023-03-23 05:33:06 -04:00
if token == llama_cpp.llama_token_eos():
text = self.detokenize(completion_tokens)
2023-03-23 05:33:06 -04:00
finish_reason = "stop"
break
if self.cache and len(completion_tokens) == 0:
if prompt_tokens not in self.cache:
if self.verbose:
2023-05-03 10:28:10 -04:00
print("Llama._create_completion: cache miss", file=sys.stderr)
self.cache[prompt_tokens] = self.save_state()
completion_tokens.append(token)
2023-03-23 05:33:06 -04:00
all_text = self.detokenize(completion_tokens)
# Contains multi-byte UTF8
2023-05-01 14:47:55 -04:00
for k, char in enumerate(all_text[-3:]):
k = 3 - k
2023-05-01 14:47:55 -04:00
for num, pattern in [(2, 192), (3, 224), (4, 240)]:
# Bitwise AND check
2023-05-01 14:47:55 -04:00
if num > k and pattern & char == pattern:
multibyte_fix = num - k
2023-04-28 12:50:30 +02:00
# Stop incomplete bytes from passing
2023-05-01 14:47:55 -04:00
if multibyte_fix > 0:
2023-04-28 12:50:30 +02:00
multibyte_fix -= 1
continue
any_stop = [s for s in stop_sequences if s in all_text]
2023-03-23 05:33:06 -04:00
if len(any_stop) > 0:
first_stop = any_stop[0]
text = all_text[: all_text.index(first_stop)]
2023-03-23 05:33:06 -04:00
finish_reason = "stop"
break
if stream:
start = returned_characters
longest = 0
# We want to avoid yielding any characters from
# the generated text if they are part of a stop
# sequence.
for s in stop_sequences:
for i in range(len(s), 0, -1):
if all_text.endswith(s[:i]):
if i > longest:
longest = i
break
text = all_text[: len(all_text) - longest]
returned_characters += len(text[start:])
yield {
"id": completion_id,
"object": "text_completion",
"created": created,
"model": self.model_path,
"choices": [
{
2023-04-26 14:37:06 +02:00
"text": text[start:].decode("utf-8", errors="ignore"),
"index": 0,
"logprobs": None,
"finish_reason": None,
}
],
}
if len(completion_tokens) >= max_tokens:
text = self.detokenize(completion_tokens)
finish_reason = "length"
break
2023-03-23 05:33:06 -04:00
if stream:
yield {
"id": completion_id,
"object": "text_completion",
"created": created,
"model": self.model_path,
"choices": [
{
2023-05-01 14:47:55 -04:00
"text": text[returned_characters:].decode(
"utf-8", errors="ignore"
),
"index": 0,
"logprobs": None,
"finish_reason": finish_reason,
}
],
}
return
2023-04-26 14:37:06 +02:00
text_str = text.decode("utf-8", errors="ignore")
2023-03-23 05:33:06 -04:00
if echo:
2023-04-15 12:03:09 -04:00
text_str = prompt + text_str
2023-03-23 05:33:06 -04:00
if suffix is not None:
2023-04-15 12:03:09 -04:00
text_str = text_str + suffix
2023-03-23 05:33:06 -04:00
logprobs_or_none: Optional[CompletionLogprobs] = None
2023-03-23 15:51:05 -04:00
if logprobs is not None:
2023-04-14 09:59:33 -04:00
text_offset = 0
text_offsets: List[int] = []
token_logprobs: List[float] = []
tokens: List[str] = []
top_logprobs: List[Dict[str, float]] = []
all_tokens = prompt_tokens + completion_tokens
all_token_strs = [
2023-05-01 14:47:55 -04:00
self.detokenize([token]).decode("utf-8", errors="ignore")
for token in all_tokens
2023-04-14 09:59:33 -04:00
]
2023-05-04 12:18:40 -04:00
all_logprobs = [Llama.logits_to_logprobs(list(map(float, row))) for row in self.eval_logits]
2023-04-14 09:59:33 -04:00
for token, token_str, logprobs_token in zip(
all_tokens, all_token_strs, all_logprobs
):
text_offsets.append(text_offset)
text_offset += len(token_str)
tokens.append(token_str)
sorted_logprobs = list(
sorted(
zip(logprobs_token, range(len(logprobs_token))), reverse=True
)
)
token_logprobs.append(sorted_logprobs[int(token)][0])
top_logprob = {
2023-05-01 14:47:55 -04:00
self.detokenize([llama_cpp.llama_token(i)]).decode(
"utf-8", errors="ignore"
): logprob
2023-04-14 09:59:33 -04:00
for logprob, i in sorted_logprobs[:logprobs]
}
top_logprob.update({token_str: sorted_logprobs[int(token)][0]})
top_logprobs.append(top_logprob)
logprobs_or_none = {
"tokens": tokens,
"text_offset": text_offsets,
"token_logprobs": token_logprobs,
"top_logprobs": top_logprobs,
}
2023-03-23 15:51:05 -04:00
2023-04-04 13:09:24 -04:00
if self.verbose:
llama_cpp.llama_print_timings(self.ctx)
yield {
2023-03-28 02:42:22 -04:00
"id": completion_id,
2023-03-23 05:33:06 -04:00
"object": "text_completion",
2023-03-28 02:42:22 -04:00
"created": created,
2023-03-24 04:04:29 -04:00
"model": self.model_path,
2023-03-23 05:33:06 -04:00
"choices": [
{
2023-04-15 12:03:09 -04:00
"text": text_str,
2023-03-23 05:33:06 -04:00
"index": 0,
"logprobs": logprobs_or_none,
2023-03-23 05:33:06 -04:00
"finish_reason": finish_reason,
}
],
"usage": {
"prompt_tokens": len(prompt_tokens),
"completion_tokens": len(completion_tokens),
"total_tokens": len(prompt_tokens) + len(completion_tokens),
2023-03-23 05:33:06 -04:00
},
}
2023-04-01 13:01:27 -04:00
def create_completion(
self,
prompt: str,
suffix: Optional[str] = None,
max_tokens: int = 128,
temperature: float = 0.8,
top_p: float = 0.95,
logprobs: Optional[int] = None,
echo: bool = False,
2023-04-14 09:59:08 -04:00
stop: Optional[List[str]] = [],
2023-04-01 13:01:27 -04:00
repeat_penalty: float = 1.1,
top_k: int = 40,
stream: bool = False,
) -> Union[Completion, Iterator[CompletionChunk]]:
2023-04-01 13:01:27 -04:00
"""Generate text from a prompt.
Args:
prompt: The prompt to generate text from.
suffix: A suffix to append to the generated text. If None, no suffix is appended.
max_tokens: The maximum number of tokens to generate.
temperature: The temperature to use for sampling.
top_p: The top-p value to use for sampling.
logprobs: The number of logprobs to return. If None, no logprobs are returned.
echo: Whether to echo the prompt.
stop: A list of strings to stop generation when encountered.
repeat_penalty: The penalty to apply to repeated tokens.
top_k: The top-k value to use for sampling.
stream: Whether to stream the results.
Raises:
ValueError: If the requested tokens exceed the context window.
RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.
Returns:
Response object containing the generated text.
"""
completion_or_chunks = self._create_completion(
prompt=prompt,
suffix=suffix,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
logprobs=logprobs,
echo=echo,
stop=stop,
repeat_penalty=repeat_penalty,
top_k=top_k,
stream=stream,
)
if stream:
chunks: Iterator[CompletionChunk] = completion_or_chunks
2023-04-01 13:01:27 -04:00
return chunks
completion: Completion = next(completion_or_chunks) # type: ignore
return completion
def __call__(
self,
prompt: str,
suffix: Optional[str] = None,
2023-04-01 13:01:27 -04:00
max_tokens: int = 128,
temperature: float = 0.8,
top_p: float = 0.95,
logprobs: Optional[int] = None,
echo: bool = False,
2023-04-14 09:59:08 -04:00
stop: Optional[List[str]] = [],
repeat_penalty: float = 1.1,
top_k: int = 40,
stream: bool = False,
) -> Union[Completion, Iterator[CompletionChunk]]:
"""Generate text from a prompt.
Args:
prompt: The prompt to generate text from.
suffix: A suffix to append to the generated text. If None, no suffix is appended.
max_tokens: The maximum number of tokens to generate.
temperature: The temperature to use for sampling.
top_p: The top-p value to use for sampling.
logprobs: The number of logprobs to return. If None, no logprobs are returned.
echo: Whether to echo the prompt.
stop: A list of strings to stop generation when encountered.
repeat_penalty: The penalty to apply to repeated tokens.
top_k: The top-k value to use for sampling.
stream: Whether to stream the results.
Raises:
ValueError: If the requested tokens exceed the context window.
RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.
Returns:
Response object containing the generated text.
"""
2023-04-01 13:01:27 -04:00
return self.create_completion(
prompt=prompt,
suffix=suffix,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
logprobs=logprobs,
echo=echo,
stop=stop,
repeat_penalty=repeat_penalty,
top_k=top_k,
stream=stream,
)
2023-04-03 20:12:44 -04:00
def _convert_text_completion_to_chat(
self, completion: Completion
) -> ChatCompletion:
return {
"id": "chat" + completion["id"],
"object": "chat.completion",
"created": completion["created"],
"model": completion["model"],
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": completion["choices"][0]["text"],
},
"finish_reason": completion["choices"][0]["finish_reason"],
}
],
"usage": completion["usage"],
}
def _convert_text_completion_chunks_to_chat(
self,
chunks: Iterator[CompletionChunk],
) -> Iterator[ChatCompletionChunk]:
for i, chunk in enumerate(chunks):
if i == 0:
yield {
"id": "chat" + chunk["id"],
"model": chunk["model"],
"created": chunk["created"],
"object": "chat.completion.chunk",
"choices": [
{
"index": 0,
"delta": {
"role": "assistant",
},
"finish_reason": None,
}
],
}
yield {
"id": "chat" + chunk["id"],
"model": chunk["model"],
"created": chunk["created"],
"object": "chat.completion.chunk",
"choices": [
{
"index": 0,
"delta": {
"content": chunk["choices"][0]["text"],
},
"finish_reason": chunk["choices"][0]["finish_reason"],
}
],
}
def create_chat_completion(
self,
messages: List[ChatCompletionMessage],
2023-04-15 11:58:43 -04:00
temperature: float = 0.2,
2023-04-03 20:12:44 -04:00
top_p: float = 0.95,
top_k: int = 40,
stream: bool = False,
2023-04-14 09:59:08 -04:00
stop: Optional[List[str]] = [],
2023-04-15 11:58:43 -04:00
max_tokens: int = 256,
2023-04-03 20:12:44 -04:00
repeat_penalty: float = 1.1,
) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]:
"""Generate a chat completion from a list of messages.
Args:
messages: A list of messages to generate a response for.
temperature: The temperature to use for sampling.
top_p: The top-p value to use for sampling.
top_k: The top-k value to use for sampling.
stream: Whether to stream the results.
stop: A list of strings to stop generation when encountered.
max_tokens: The maximum number of tokens to generate.
repeat_penalty: The penalty to apply to repeated tokens.
Returns:
Generated chat completion or a stream of chat completion chunks.
"""
2023-04-15 11:39:52 -04:00
stop = stop if stop is not None else []
2023-04-15 11:58:19 -04:00
chat_history = "".join(
f'### {"Human" if message["role"] == "user" else "Assistant"}:{message["content"]}'
2023-04-03 20:12:44 -04:00
for message in messages
)
2023-04-15 11:58:19 -04:00
PROMPT = chat_history + "### Assistant:"
2023-04-15 12:02:48 -04:00
PROMPT_STOP = ["### Assistant:", "### Human:"]
2023-04-03 20:12:44 -04:00
completion_or_chunks = self(
prompt=PROMPT,
stop=PROMPT_STOP + stop,
temperature=temperature,
top_p=top_p,
top_k=top_k,
stream=stream,
max_tokens=max_tokens,
repeat_penalty=repeat_penalty,
)
if stream:
chunks: Iterator[CompletionChunk] = completion_or_chunks # type: ignore
return self._convert_text_completion_chunks_to_chat(chunks)
else:
completion: Completion = completion_or_chunks # type: ignore
return self._convert_text_completion_to_chat(completion)
2023-03-23 05:33:06 -04:00
def __del__(self):
2023-04-01 13:01:27 -04:00
if self.ctx is not None:
llama_cpp.llama_free(self.ctx)
self.ctx = None
def __getstate__(self):
return dict(
verbose=self.verbose,
model_path=self.model_path,
n_ctx=self.params.n_ctx,
n_parts=self.params.n_parts,
seed=self.params.seed,
f16_kv=self.params.f16_kv,
logits_all=self.params.logits_all,
vocab_only=self.params.vocab_only,
2023-04-10 02:11:35 -04:00
use_mmap=self.params.use_mmap,
use_mlock=self.params.use_mlock,
embedding=self.params.embedding,
last_n_tokens_size=self.last_n_tokens_size,
n_batch=self.n_batch,
n_threads=self.n_threads,
lora_base=self.lora_base,
2023-04-18 01:43:44 -04:00
lora_path=self.lora_path,
)
def __setstate__(self, state):
self.__init__(
model_path=state["model_path"],
n_ctx=state["n_ctx"],
n_parts=state["n_parts"],
seed=state["seed"],
f16_kv=state["f16_kv"],
logits_all=state["logits_all"],
vocab_only=state["vocab_only"],
2023-04-10 02:11:35 -04:00
use_mmap=state["use_mmap"],
use_mlock=state["use_mlock"],
embedding=state["embedding"],
n_threads=state["n_threads"],
n_batch=state["n_batch"],
last_n_tokens_size=state["last_n_tokens_size"],
lora_base=state["lora_base"],
2023-04-18 01:43:44 -04:00
lora_path=state["lora_path"],
verbose=state["verbose"],
)
def save_state(self) -> LlamaState:
assert self.ctx is not None
state_size = llama_cpp.llama_get_state_size(self.ctx)
llama_state = (llama_cpp.c_uint8 * int(state_size))()
2023-05-03 09:33:50 -04:00
n_bytes = llama_cpp.llama_copy_state_data(self.ctx, llama_state)
if int(n_bytes) > int(state_size):
raise RuntimeError("Failed to copy llama state data")
2023-05-03 09:33:50 -04:00
llama_state_compact = (llama_cpp.c_uint8 * int(n_bytes))()
llama_cpp.ctypes.memmove(llama_state_compact, llama_state, int(n_bytes))
2023-05-03 10:28:10 -04:00
if self.verbose:
print(f"Llama.save_state: saving {n_bytes} bytes of llama state", file=sys.stderr)
return LlamaState(
eval_tokens=self.eval_tokens.copy(),
eval_logits=self.eval_logits.copy(),
2023-05-03 09:33:50 -04:00
llama_state=llama_state_compact,
llama_state_size=n_bytes,
)
def load_state(self, state: LlamaState) -> None:
assert self.ctx is not None
self.eval_tokens = state.eval_tokens.copy()
self.eval_logits = state.eval_logits.copy()
2023-05-03 09:33:50 -04:00
state_size = state.llama_state_size
if llama_cpp.llama_set_state_data(self.ctx, state.llama_state) != state_size:
raise RuntimeError("Failed to set llama state data")
@staticmethod
def token_eos() -> llama_cpp.llama_token:
"""Return the end-of-sequence token."""
return llama_cpp.llama_token_eos()
@staticmethod
def token_bos() -> llama_cpp.llama_token:
"""Return the beginning-of-sequence token."""
return llama_cpp.llama_token_bos()
@staticmethod
2023-05-04 12:18:40 -04:00
def logits_to_logprobs(logits: List[float]) -> List[float]:
2023-05-01 17:45:08 -04:00
exps = [math.exp(float(x)) for x in logits]
sum_exps = sum(exps)
2023-05-04 12:18:40 -04:00
return [math.log(x / sum_exps) for x in exps]