2023-03-24 15:47:17 -04:00
|
|
|
import os
|
2023-04-04 13:09:24 -04:00
|
|
|
import sys
|
2023-03-23 05:33:06 -04:00
|
|
|
import uuid
|
|
|
|
import time
|
2023-04-12 14:05:11 -04:00
|
|
|
import math
|
2023-03-23 05:33:06 -04:00
|
|
|
import multiprocessing
|
2023-04-03 20:12:14 -04:00
|
|
|
from typing import List, Optional, Union, Generator, Sequence, Iterator
|
2023-03-28 01:45:37 -04:00
|
|
|
from collections import deque
|
2023-03-23 05:33:06 -04:00
|
|
|
|
|
|
|
from . import llama_cpp
|
2023-04-01 13:01:27 -04:00
|
|
|
from .llama_types import *
|
2023-03-23 05:33:06 -04:00
|
|
|
|
2023-03-24 14:35:41 -04:00
|
|
|
|
2023-04-15 12:03:09 -04:00
|
|
|
class LlamaCache:
|
|
|
|
"""Cache for a llama.cpp model.
|
|
|
|
|
|
|
|
NOTE: This implementation currently only tells the Llama class to avoid reprocessing bytes and continue from the last
|
|
|
|
completion. It does not actually cache the results."""
|
|
|
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
2023-03-23 05:33:06 -04:00
|
|
|
class Llama:
|
2023-03-24 18:57:59 -04:00
|
|
|
"""High-level Python wrapper for a llama.cpp model."""
|
|
|
|
|
2023-03-23 05:33:06 -04:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
model_path: str,
|
2023-04-01 13:01:27 -04:00
|
|
|
# NOTE: These parameters are likely to change in the future.
|
2023-03-23 05:33:06 -04:00
|
|
|
n_ctx: int = 512,
|
|
|
|
n_parts: int = -1,
|
|
|
|
seed: int = 1337,
|
2023-04-14 22:21:19 -04:00
|
|
|
f16_kv: bool = True,
|
2023-03-23 05:33:06 -04:00
|
|
|
logits_all: bool = False,
|
|
|
|
vocab_only: bool = False,
|
2023-04-10 02:11:35 -04:00
|
|
|
use_mmap: bool = True,
|
2023-03-25 16:26:23 -04:00
|
|
|
use_mlock: bool = False,
|
|
|
|
embedding: bool = False,
|
2023-03-23 05:33:06 -04:00
|
|
|
n_threads: Optional[int] = None,
|
2023-04-01 13:01:27 -04:00
|
|
|
n_batch: int = 8,
|
|
|
|
last_n_tokens_size: int = 64,
|
2023-04-04 13:09:24 -04:00
|
|
|
verbose: bool = True,
|
2023-04-01 13:01:27 -04:00
|
|
|
):
|
2023-03-24 18:57:59 -04:00
|
|
|
"""Load a llama.cpp model from `model_path`.
|
|
|
|
|
|
|
|
Args:
|
2023-03-25 12:33:18 -04:00
|
|
|
model_path: Path to the model.
|
|
|
|
n_ctx: Maximum context size.
|
2023-03-24 18:57:59 -04:00
|
|
|
n_parts: Number of parts to split the model into. If -1, the number of parts is automatically determined.
|
2023-03-25 12:33:18 -04:00
|
|
|
seed: Random seed. 0 for random.
|
|
|
|
f16_kv: Use half-precision for key/value cache.
|
|
|
|
logits_all: Return logits for all tokens, not just the last token.
|
|
|
|
vocab_only: Only load the vocabulary no weights.
|
2023-04-10 02:11:35 -04:00
|
|
|
use_mmap: Use mmap if possible.
|
2023-03-25 16:26:23 -04:00
|
|
|
use_mlock: Force the system to keep the model in RAM.
|
|
|
|
embedding: Embedding mode only.
|
2023-03-24 18:57:59 -04:00
|
|
|
n_threads: Number of threads to use. If None, the number of threads is automatically determined.
|
2023-04-01 13:01:27 -04:00
|
|
|
n_batch: Maximum number of prompt tokens to batch together when calling llama_eval.
|
|
|
|
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
|
2023-04-04 13:09:24 -04:00
|
|
|
verbose: Print verbose output to stderr.
|
2023-03-24 18:57:59 -04:00
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: If the model path does not exist.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
A Llama instance.
|
|
|
|
"""
|
2023-04-04 13:09:24 -04:00
|
|
|
self.verbose = verbose
|
2023-03-23 05:33:06 -04:00
|
|
|
self.model_path = model_path
|
|
|
|
|
|
|
|
self.params = llama_cpp.llama_context_default_params()
|
|
|
|
self.params.n_ctx = n_ctx
|
|
|
|
self.params.n_parts = n_parts
|
|
|
|
self.params.seed = seed
|
|
|
|
self.params.f16_kv = f16_kv
|
|
|
|
self.params.logits_all = logits_all
|
|
|
|
self.params.vocab_only = vocab_only
|
2023-04-10 02:11:35 -04:00
|
|
|
self.params.use_mmap = use_mmap
|
2023-03-25 16:26:23 -04:00
|
|
|
self.params.use_mlock = use_mlock
|
|
|
|
self.params.embedding = embedding
|
2023-03-23 05:33:06 -04:00
|
|
|
|
2023-04-01 13:01:27 -04:00
|
|
|
self.last_n_tokens_size = last_n_tokens_size
|
2023-04-02 00:02:47 -04:00
|
|
|
self.last_n_tokens_data = deque(
|
|
|
|
[llama_cpp.llama_token(0)] * self.last_n_tokens_size,
|
|
|
|
maxlen=self.last_n_tokens_size,
|
|
|
|
)
|
|
|
|
self.tokens_consumed = 0
|
2023-04-14 23:33:00 -04:00
|
|
|
self.tokens: List[llama_cpp.llama_token] = []
|
2023-04-04 13:08:21 -04:00
|
|
|
self.n_batch = min(n_ctx, n_batch)
|
2023-04-12 14:05:11 -04:00
|
|
|
self.n_tokens = 0
|
|
|
|
self.n_past = 0
|
|
|
|
self.all_logits: List[List[float]] = [] # TODO: Use an array instead of a list.
|
2023-03-23 05:33:06 -04:00
|
|
|
|
2023-04-15 12:03:09 -04:00
|
|
|
### HACK: This is a hack to work around the fact that the llama.cpp API does not yet support
|
|
|
|
### saving and restoring state, this allows us to continue a completion if the last
|
|
|
|
### completion_bytes is a prefix to the prompt passed in. However this is actually incorrect
|
|
|
|
### because it does not take into account stop tokens which have been processed by the model.
|
|
|
|
self._completion_bytes: List[bytes] = []
|
|
|
|
self._cache: Optional[LlamaCache] = None
|
|
|
|
###
|
|
|
|
|
2023-04-08 19:54:04 -04:00
|
|
|
self.n_threads = n_threads or max(multiprocessing.cpu_count() // 2, 1)
|
2023-03-23 05:33:06 -04:00
|
|
|
|
2023-03-24 15:47:17 -04:00
|
|
|
if not os.path.exists(model_path):
|
|
|
|
raise ValueError(f"Model path does not exist: {model_path}")
|
|
|
|
|
2023-03-23 05:33:06 -04:00
|
|
|
self.ctx = llama_cpp.llama_init_from_file(
|
|
|
|
self.model_path.encode("utf-8"), self.params
|
|
|
|
)
|
|
|
|
|
2023-04-04 13:09:24 -04:00
|
|
|
if self.verbose:
|
|
|
|
print(llama_cpp.llama_print_system_info().decode("utf-8"), file=sys.stderr)
|
|
|
|
|
2023-04-01 13:01:27 -04:00
|
|
|
def tokenize(self, text: bytes) -> List[llama_cpp.llama_token]:
|
2023-03-28 01:45:37 -04:00
|
|
|
"""Tokenize a string.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
text: The utf-8 encoded string to tokenize.
|
|
|
|
|
2023-04-01 13:01:27 -04:00
|
|
|
Raises:
|
|
|
|
RuntimeError: If the tokenization failed.
|
|
|
|
|
2023-03-28 01:45:37 -04:00
|
|
|
Returns:
|
|
|
|
A list of tokens.
|
|
|
|
"""
|
2023-04-01 13:01:27 -04:00
|
|
|
assert self.ctx is not None
|
2023-03-28 01:45:37 -04:00
|
|
|
n_ctx = llama_cpp.llama_n_ctx(self.ctx)
|
2023-04-01 13:01:27 -04:00
|
|
|
tokens = (llama_cpp.llama_token * int(n_ctx))()
|
2023-03-28 01:45:37 -04:00
|
|
|
n_tokens = llama_cpp.llama_tokenize(
|
|
|
|
self.ctx,
|
|
|
|
text,
|
|
|
|
tokens,
|
|
|
|
n_ctx,
|
2023-04-01 13:01:27 -04:00
|
|
|
llama_cpp.c_bool(True),
|
2023-03-28 01:45:37 -04:00
|
|
|
)
|
2023-04-01 13:01:27 -04:00
|
|
|
if int(n_tokens) < 0:
|
2023-03-28 04:03:57 -04:00
|
|
|
raise RuntimeError(f'Failed to tokenize: text="{text}" n_tokens={n_tokens}')
|
2023-03-28 01:45:37 -04:00
|
|
|
return list(tokens[:n_tokens])
|
|
|
|
|
2023-04-01 13:01:27 -04:00
|
|
|
def detokenize(self, tokens: List[llama_cpp.llama_token]) -> bytes:
|
2023-03-28 01:45:37 -04:00
|
|
|
"""Detokenize a list of tokens.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
tokens: The list of tokens to detokenize.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
The detokenized string.
|
|
|
|
"""
|
2023-04-01 13:01:27 -04:00
|
|
|
assert self.ctx is not None
|
2023-03-28 01:45:37 -04:00
|
|
|
output = b""
|
|
|
|
for token in tokens:
|
|
|
|
output += llama_cpp.llama_token_to_str(self.ctx, token)
|
|
|
|
return output
|
|
|
|
|
2023-04-15 12:03:09 -04:00
|
|
|
def set_cache(self, cache: Optional[LlamaCache]):
|
|
|
|
"""Set the cache.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
cache: The cache to set.
|
|
|
|
"""
|
|
|
|
self._cache = cache
|
|
|
|
|
2023-04-02 00:02:47 -04:00
|
|
|
def reset(self):
|
|
|
|
"""Reset the model state."""
|
|
|
|
self.last_n_tokens_data.extend(
|
|
|
|
[llama_cpp.llama_token(0)] * self.last_n_tokens_size
|
|
|
|
)
|
|
|
|
self.tokens_consumed = 0
|
2023-04-14 23:33:00 -04:00
|
|
|
self.tokens.clear()
|
2023-04-12 14:05:11 -04:00
|
|
|
self.n_tokens = 0
|
|
|
|
self.n_past = 0
|
2023-04-14 23:33:18 -04:00
|
|
|
self.all_logits.clear()
|
2023-04-02 00:02:47 -04:00
|
|
|
|
|
|
|
def eval(self, tokens: Sequence[llama_cpp.llama_token]):
|
|
|
|
"""Evaluate a list of tokens.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
tokens: The list of tokens to evaluate.
|
|
|
|
"""
|
|
|
|
assert self.ctx is not None
|
|
|
|
n_ctx = int(llama_cpp.llama_n_ctx(self.ctx))
|
|
|
|
for i in range(0, len(tokens), self.n_batch):
|
|
|
|
batch = tokens[i : min(len(tokens), i + self.n_batch)]
|
2023-04-12 14:05:11 -04:00
|
|
|
self.n_past = min(n_ctx - len(batch), self.tokens_consumed)
|
|
|
|
self.n_tokens = len(batch)
|
2023-04-02 00:02:47 -04:00
|
|
|
return_code = llama_cpp.llama_eval(
|
|
|
|
ctx=self.ctx,
|
|
|
|
tokens=(llama_cpp.llama_token * len(batch))(*batch),
|
2023-04-12 14:05:11 -04:00
|
|
|
n_tokens=llama_cpp.c_int(self.n_tokens),
|
|
|
|
n_past=llama_cpp.c_int(self.n_past),
|
2023-04-02 00:02:47 -04:00
|
|
|
n_threads=llama_cpp.c_int(self.n_threads),
|
|
|
|
)
|
|
|
|
if int(return_code) != 0:
|
|
|
|
raise RuntimeError(f"llama_eval returned {return_code}")
|
2023-04-14 23:33:00 -04:00
|
|
|
self.tokens.extend(batch)
|
2023-04-02 00:02:47 -04:00
|
|
|
self.last_n_tokens_data.extend(batch)
|
|
|
|
self.tokens_consumed += len(batch)
|
2023-04-12 14:05:11 -04:00
|
|
|
if self.params.logits_all:
|
|
|
|
self.all_logits.extend(self._logits())
|
|
|
|
|
|
|
|
def _logits(self) -> List[List[float]]:
|
|
|
|
"""Return the logits from the last call to llama_eval."""
|
|
|
|
assert self.ctx is not None
|
|
|
|
n_vocab = llama_cpp.llama_n_vocab(self.ctx)
|
|
|
|
cols = int(n_vocab)
|
|
|
|
rows = self.n_tokens if self.params.logits_all else 1
|
|
|
|
logits_view = llama_cpp.llama_get_logits(self.ctx)
|
|
|
|
logits = [[logits_view[i * cols + j] for j in range(cols)] for i in range(rows)]
|
|
|
|
return logits
|
2023-04-02 00:02:47 -04:00
|
|
|
|
|
|
|
def sample(
|
|
|
|
self,
|
|
|
|
top_k: int,
|
|
|
|
top_p: float,
|
|
|
|
temp: float,
|
|
|
|
repeat_penalty: float,
|
|
|
|
):
|
|
|
|
"""Sample a token from the model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
top_k: The top-k sampling parameter.
|
|
|
|
top_p: The top-p sampling parameter.
|
|
|
|
temp: The temperature parameter.
|
|
|
|
repeat_penalty: The repeat penalty parameter.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
The sampled token.
|
|
|
|
"""
|
|
|
|
assert self.ctx is not None
|
|
|
|
return llama_cpp.llama_sample_top_p_top_k(
|
|
|
|
ctx=self.ctx,
|
|
|
|
last_n_tokens_data=(llama_cpp.llama_token * self.last_n_tokens_size)(
|
|
|
|
*self.last_n_tokens_data
|
|
|
|
),
|
|
|
|
last_n_tokens_size=llama_cpp.c_int(self.last_n_tokens_size),
|
|
|
|
top_k=llama_cpp.c_int(top_k),
|
|
|
|
top_p=llama_cpp.c_float(top_p),
|
|
|
|
temp=llama_cpp.c_float(temp),
|
|
|
|
repeat_penalty=llama_cpp.c_float(repeat_penalty),
|
|
|
|
)
|
|
|
|
|
2023-04-01 13:01:27 -04:00
|
|
|
def generate(
|
|
|
|
self,
|
|
|
|
tokens: Sequence[llama_cpp.llama_token],
|
|
|
|
top_k: int,
|
|
|
|
top_p: float,
|
|
|
|
temp: float,
|
|
|
|
repeat_penalty: float,
|
2023-04-13 00:28:00 -04:00
|
|
|
reset: bool = True,
|
2023-04-01 13:01:27 -04:00
|
|
|
) -> Generator[
|
|
|
|
llama_cpp.llama_token, Optional[Sequence[llama_cpp.llama_token]], None
|
|
|
|
]:
|
2023-04-02 00:02:47 -04:00
|
|
|
"""Create a generator of tokens from a prompt.
|
2023-04-01 17:36:30 -04:00
|
|
|
|
2023-04-01 17:39:35 -04:00
|
|
|
Examples:
|
|
|
|
>>> llama = Llama("models/ggml-7b.bin")
|
|
|
|
>>> tokens = llama.tokenize(b"Hello, world!")
|
|
|
|
>>> for token in llama.generate(tokens, top_k=40, top_p=0.95, temp=1.0, repeat_penalty=1.1):
|
|
|
|
... print(llama.detokenize([token]))
|
2023-04-01 17:36:30 -04:00
|
|
|
|
|
|
|
Args:
|
|
|
|
tokens: The prompt tokens.
|
|
|
|
top_k: The top-k sampling parameter.
|
|
|
|
top_p: The top-p sampling parameter.
|
|
|
|
temp: The temperature parameter.
|
|
|
|
repeat_penalty: The repeat penalty parameter.
|
2023-04-13 00:28:00 -04:00
|
|
|
reset: Whether to reset the model state.
|
2023-04-01 17:36:30 -04:00
|
|
|
|
|
|
|
Yields:
|
|
|
|
The generated tokens.
|
|
|
|
"""
|
2023-04-01 13:01:27 -04:00
|
|
|
assert self.ctx is not None
|
2023-04-15 12:03:09 -04:00
|
|
|
### HACK
|
|
|
|
if (
|
|
|
|
reset
|
|
|
|
and self._cache
|
|
|
|
and len(self.tokens) > 0
|
|
|
|
and self.tokens == tokens[: len(self.tokens)]
|
|
|
|
):
|
|
|
|
if self.verbose:
|
|
|
|
print("generate cache hit", file=sys.stderr)
|
|
|
|
reset = False
|
|
|
|
###
|
2023-04-13 00:28:00 -04:00
|
|
|
if reset:
|
|
|
|
self.reset()
|
2023-04-01 13:01:27 -04:00
|
|
|
while True:
|
2023-04-02 00:02:47 -04:00
|
|
|
self.eval(tokens)
|
|
|
|
token = self.sample(
|
|
|
|
top_k=top_k,
|
|
|
|
top_p=top_p,
|
|
|
|
temp=temp,
|
|
|
|
repeat_penalty=repeat_penalty,
|
2023-04-01 13:01:27 -04:00
|
|
|
)
|
|
|
|
tokens_or_none = yield token
|
|
|
|
tokens = [token]
|
|
|
|
if tokens_or_none is not None:
|
|
|
|
tokens.extend(tokens_or_none)
|
|
|
|
|
|
|
|
def create_embedding(self, input: str) -> Embedding:
|
2023-03-28 04:59:54 -04:00
|
|
|
"""Embed a string.
|
|
|
|
|
|
|
|
Args:
|
2023-04-01 13:01:27 -04:00
|
|
|
input: The utf-8 encoded string to embed.
|
2023-03-28 04:59:54 -04:00
|
|
|
|
|
|
|
Returns:
|
2023-04-01 13:01:27 -04:00
|
|
|
An embedding object.
|
2023-03-28 04:59:54 -04:00
|
|
|
"""
|
2023-04-01 13:01:27 -04:00
|
|
|
assert self.ctx is not None
|
2023-04-04 13:09:24 -04:00
|
|
|
|
2023-04-05 03:25:37 -04:00
|
|
|
if self.params.embedding == False:
|
|
|
|
raise RuntimeError(
|
|
|
|
"Llama model must be created with embedding=True to call this method"
|
|
|
|
)
|
|
|
|
|
2023-04-04 13:09:24 -04:00
|
|
|
if self.verbose:
|
|
|
|
llama_cpp.llama_reset_timings(self.ctx)
|
|
|
|
|
2023-04-01 13:01:27 -04:00
|
|
|
tokens = self.tokenize(input.encode("utf-8"))
|
2023-04-02 00:02:47 -04:00
|
|
|
self.reset()
|
|
|
|
self.eval(tokens)
|
2023-04-01 13:01:27 -04:00
|
|
|
n_tokens = len(tokens)
|
|
|
|
embedding = llama_cpp.llama_get_embeddings(self.ctx)[
|
|
|
|
: llama_cpp.llama_n_embd(self.ctx)
|
|
|
|
]
|
2023-04-04 13:09:24 -04:00
|
|
|
|
|
|
|
if self.verbose:
|
|
|
|
llama_cpp.llama_print_timings(self.ctx)
|
|
|
|
|
2023-04-01 13:01:27 -04:00
|
|
|
return {
|
|
|
|
"object": "list",
|
|
|
|
"data": [
|
|
|
|
{
|
|
|
|
"object": "embedding",
|
|
|
|
"embedding": embedding,
|
|
|
|
"index": 0,
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"model": self.model_path,
|
|
|
|
"usage": {
|
|
|
|
"prompt_tokens": n_tokens,
|
|
|
|
"total_tokens": n_tokens,
|
|
|
|
},
|
|
|
|
}
|
2023-03-28 02:42:22 -04:00
|
|
|
|
2023-04-03 18:46:19 -04:00
|
|
|
def embed(self, input: str) -> List[float]:
|
|
|
|
"""Embed a string.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
input: The utf-8 encoded string to embed.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
A list of embeddings
|
|
|
|
"""
|
|
|
|
return list(map(float, self.create_embedding(input)["data"][0]["embedding"]))
|
|
|
|
|
2023-04-01 13:01:27 -04:00
|
|
|
def _create_completion(
|
2023-03-23 05:33:06 -04:00
|
|
|
self,
|
|
|
|
prompt: str,
|
|
|
|
suffix: Optional[str] = None,
|
|
|
|
max_tokens: int = 16,
|
|
|
|
temperature: float = 0.8,
|
|
|
|
top_p: float = 0.95,
|
2023-03-23 15:51:05 -04:00
|
|
|
logprobs: Optional[int] = None,
|
2023-03-23 05:33:06 -04:00
|
|
|
echo: bool = False,
|
2023-04-14 09:59:08 -04:00
|
|
|
stop: Optional[List[str]] = [],
|
2023-03-23 05:33:06 -04:00
|
|
|
repeat_penalty: float = 1.1,
|
|
|
|
top_k: int = 40,
|
2023-03-28 04:03:57 -04:00
|
|
|
stream: bool = False,
|
2023-04-12 14:06:22 -04:00
|
|
|
) -> Union[Iterator[Completion], Iterator[CompletionChunk]]:
|
2023-04-01 13:01:27 -04:00
|
|
|
assert self.ctx is not None
|
2023-04-15 11:39:21 -04:00
|
|
|
completion_id: str = f"cmpl-{str(uuid.uuid4())}"
|
|
|
|
created: int = int(time.time())
|
2023-04-01 13:01:27 -04:00
|
|
|
completion_tokens: List[llama_cpp.llama_token] = []
|
|
|
|
# Add blank space to start of prompt to match OG llama tokenizer
|
2023-04-15 11:39:21 -04:00
|
|
|
prompt_tokens: List[llama_cpp.llama_token] = self.tokenize(
|
|
|
|
b" " + prompt.encode("utf-8")
|
|
|
|
)
|
|
|
|
text: bytes = b""
|
|
|
|
returned_characters: int = 0
|
2023-04-15 00:08:04 -04:00
|
|
|
stop = stop if stop is not None else []
|
2023-03-23 05:33:06 -04:00
|
|
|
|
2023-04-04 13:09:24 -04:00
|
|
|
if self.verbose:
|
|
|
|
llama_cpp.llama_reset_timings(self.ctx)
|
|
|
|
|
2023-04-01 13:01:27 -04:00
|
|
|
if len(prompt_tokens) + max_tokens > int(llama_cpp.llama_n_ctx(self.ctx)):
|
2023-03-23 05:33:06 -04:00
|
|
|
raise ValueError(
|
2023-03-24 14:58:10 -04:00
|
|
|
f"Requested tokens exceed context window of {llama_cpp.llama_n_ctx(self.ctx)}"
|
2023-03-23 05:33:06 -04:00
|
|
|
)
|
|
|
|
|
2023-04-01 13:01:27 -04:00
|
|
|
if stop != []:
|
2023-04-02 03:59:19 -04:00
|
|
|
stop_sequences = [s.encode("utf-8") for s in stop]
|
2023-04-01 13:01:27 -04:00
|
|
|
else:
|
2023-04-02 03:59:19 -04:00
|
|
|
stop_sequences = []
|
2023-03-24 14:33:38 -04:00
|
|
|
|
2023-04-12 14:05:11 -04:00
|
|
|
if logprobs is not None and self.params.logits_all is False:
|
|
|
|
raise ValueError(
|
|
|
|
"logprobs is not supported for models created with logits_all=False"
|
|
|
|
)
|
|
|
|
|
2023-04-15 12:03:09 -04:00
|
|
|
### HACK
|
|
|
|
reset: bool = True
|
|
|
|
_prompt: bytes = prompt.encode("utf-8")
|
|
|
|
_completion: bytes = b"".join(self._completion_bytes)
|
|
|
|
if len(_completion) and self._cache and _prompt.startswith(_completion):
|
|
|
|
if self.verbose:
|
|
|
|
print("completion cache hit", file=sys.stderr)
|
|
|
|
reset = False
|
|
|
|
_prompt = _prompt[len(_completion) :]
|
|
|
|
prompt_tokens = self.tokenize(b" " + _prompt)
|
|
|
|
self._completion_bytes.append(_prompt)
|
|
|
|
else:
|
|
|
|
self._completion_bytes = [prompt.encode("utf-8")]
|
|
|
|
###
|
|
|
|
|
2023-04-12 14:05:11 -04:00
|
|
|
finish_reason = "length"
|
2023-04-14 09:59:33 -04:00
|
|
|
for token in self.generate(
|
|
|
|
prompt_tokens,
|
|
|
|
top_k=top_k,
|
|
|
|
top_p=top_p,
|
|
|
|
temp=temperature,
|
|
|
|
repeat_penalty=repeat_penalty,
|
2023-04-15 12:03:09 -04:00
|
|
|
reset=reset,
|
2023-04-14 09:59:33 -04:00
|
|
|
):
|
2023-03-23 05:33:06 -04:00
|
|
|
if token == llama_cpp.llama_token_eos():
|
2023-04-02 03:59:19 -04:00
|
|
|
text = self.detokenize(completion_tokens)
|
2023-03-23 05:33:06 -04:00
|
|
|
finish_reason = "stop"
|
|
|
|
break
|
2023-03-28 01:45:37 -04:00
|
|
|
completion_tokens.append(token)
|
2023-03-23 05:33:06 -04:00
|
|
|
|
2023-04-02 03:59:19 -04:00
|
|
|
all_text = self.detokenize(completion_tokens)
|
|
|
|
any_stop = [s for s in stop_sequences if s in all_text]
|
2023-03-23 05:33:06 -04:00
|
|
|
if len(any_stop) > 0:
|
|
|
|
first_stop = any_stop[0]
|
2023-04-02 03:59:19 -04:00
|
|
|
text = all_text[: all_text.index(first_stop)]
|
2023-03-23 05:33:06 -04:00
|
|
|
finish_reason = "stop"
|
|
|
|
break
|
|
|
|
|
2023-03-28 04:03:57 -04:00
|
|
|
if stream:
|
2023-04-02 03:59:19 -04:00
|
|
|
start = returned_characters
|
2023-03-28 04:03:57 -04:00
|
|
|
longest = 0
|
2023-04-02 03:59:19 -04:00
|
|
|
# We want to avoid yielding any characters from
|
|
|
|
# the generated text if they are part of a stop
|
|
|
|
# sequence.
|
|
|
|
for s in stop_sequences:
|
2023-03-28 04:03:57 -04:00
|
|
|
for i in range(len(s), 0, -1):
|
2023-04-02 03:59:19 -04:00
|
|
|
if all_text.endswith(s[:i]):
|
2023-03-28 04:03:57 -04:00
|
|
|
if i > longest:
|
|
|
|
longest = i
|
|
|
|
break
|
2023-04-02 03:59:19 -04:00
|
|
|
text = all_text[: len(all_text) - longest]
|
|
|
|
returned_characters += len(text[start:])
|
2023-04-15 12:03:09 -04:00
|
|
|
### HACK
|
|
|
|
self._completion_bytes.append(text[start:])
|
|
|
|
###
|
2023-03-28 04:03:57 -04:00
|
|
|
yield {
|
|
|
|
"id": completion_id,
|
|
|
|
"object": "text_completion",
|
|
|
|
"created": created,
|
|
|
|
"model": self.model_path,
|
|
|
|
"choices": [
|
|
|
|
{
|
2023-04-03 18:46:19 -04:00
|
|
|
"text": text[start:].decode("utf-8"),
|
2023-03-28 04:03:57 -04:00
|
|
|
"index": 0,
|
|
|
|
"logprobs": None,
|
|
|
|
"finish_reason": None,
|
|
|
|
}
|
|
|
|
],
|
|
|
|
}
|
2023-04-12 14:05:11 -04:00
|
|
|
|
2023-04-02 03:59:19 -04:00
|
|
|
if len(completion_tokens) >= max_tokens:
|
|
|
|
text = self.detokenize(completion_tokens)
|
|
|
|
finish_reason = "length"
|
|
|
|
break
|
2023-03-23 05:33:06 -04:00
|
|
|
|
2023-03-28 04:03:57 -04:00
|
|
|
if stream:
|
2023-04-15 12:03:09 -04:00
|
|
|
### HACK
|
|
|
|
self._completion_bytes.append(text[returned_characters:])
|
|
|
|
###
|
2023-03-28 04:03:57 -04:00
|
|
|
yield {
|
|
|
|
"id": completion_id,
|
|
|
|
"object": "text_completion",
|
|
|
|
"created": created,
|
|
|
|
"model": self.model_path,
|
|
|
|
"choices": [
|
|
|
|
{
|
2023-04-02 03:59:19 -04:00
|
|
|
"text": text[returned_characters:].decode("utf-8"),
|
2023-03-28 04:03:57 -04:00
|
|
|
"index": 0,
|
|
|
|
"logprobs": None,
|
|
|
|
"finish_reason": finish_reason,
|
|
|
|
}
|
|
|
|
],
|
|
|
|
}
|
|
|
|
return
|
|
|
|
|
2023-04-15 12:03:09 -04:00
|
|
|
### HACK
|
|
|
|
self._completion_bytes.append(text)
|
|
|
|
###
|
|
|
|
text_str = text.decode("utf-8")
|
2023-03-23 16:25:13 -04:00
|
|
|
|
2023-03-23 05:33:06 -04:00
|
|
|
if echo:
|
2023-04-15 12:03:09 -04:00
|
|
|
text_str = prompt + text_str
|
2023-03-23 05:33:06 -04:00
|
|
|
|
|
|
|
if suffix is not None:
|
2023-04-15 12:03:09 -04:00
|
|
|
text_str = text_str + suffix
|
2023-03-23 05:33:06 -04:00
|
|
|
|
2023-04-12 14:05:11 -04:00
|
|
|
logprobs_or_none: Optional[CompletionLogprobs] = None
|
2023-03-23 15:51:05 -04:00
|
|
|
if logprobs is not None:
|
2023-04-14 09:59:33 -04:00
|
|
|
text_offset = 0
|
|
|
|
text_offsets: List[int] = []
|
|
|
|
token_logprobs: List[float] = []
|
|
|
|
tokens: List[str] = []
|
|
|
|
top_logprobs: List[Dict[str, float]] = []
|
|
|
|
|
|
|
|
all_tokens = prompt_tokens + completion_tokens
|
|
|
|
all_token_strs = [
|
|
|
|
self.detokenize([token]).decode("utf-8") for token in all_tokens
|
|
|
|
]
|
|
|
|
all_logprobs = [
|
|
|
|
[Llama.logit_to_logprob(logit) for logit in row]
|
|
|
|
for row in self.all_logits
|
|
|
|
]
|
|
|
|
for token, token_str, logprobs_token in zip(
|
|
|
|
all_tokens, all_token_strs, all_logprobs
|
|
|
|
):
|
|
|
|
text_offsets.append(text_offset)
|
|
|
|
text_offset += len(token_str)
|
|
|
|
tokens.append(token_str)
|
|
|
|
sorted_logprobs = list(
|
|
|
|
sorted(
|
|
|
|
zip(logprobs_token, range(len(logprobs_token))), reverse=True
|
|
|
|
)
|
|
|
|
)
|
|
|
|
token_logprobs.append(sorted_logprobs[int(token)][0])
|
|
|
|
top_logprob = {
|
|
|
|
self.detokenize([llama_cpp.llama_token(i)]).decode("utf-8"): logprob
|
|
|
|
for logprob, i in sorted_logprobs[:logprobs]
|
|
|
|
}
|
|
|
|
top_logprob.update({token_str: sorted_logprobs[int(token)][0]})
|
|
|
|
top_logprobs.append(top_logprob)
|
2023-04-12 14:05:11 -04:00
|
|
|
logprobs_or_none = {
|
|
|
|
"tokens": tokens,
|
|
|
|
"text_offset": text_offsets,
|
|
|
|
"token_logprobs": token_logprobs,
|
|
|
|
"top_logprobs": top_logprobs,
|
|
|
|
}
|
2023-03-23 15:51:05 -04:00
|
|
|
|
2023-04-04 13:09:24 -04:00
|
|
|
if self.verbose:
|
|
|
|
llama_cpp.llama_print_timings(self.ctx)
|
|
|
|
|
2023-03-28 04:03:57 -04:00
|
|
|
yield {
|
2023-03-28 02:42:22 -04:00
|
|
|
"id": completion_id,
|
2023-03-23 05:33:06 -04:00
|
|
|
"object": "text_completion",
|
2023-03-28 02:42:22 -04:00
|
|
|
"created": created,
|
2023-03-24 04:04:29 -04:00
|
|
|
"model": self.model_path,
|
2023-03-23 05:33:06 -04:00
|
|
|
"choices": [
|
|
|
|
{
|
2023-04-15 12:03:09 -04:00
|
|
|
"text": text_str,
|
2023-03-23 05:33:06 -04:00
|
|
|
"index": 0,
|
2023-04-12 14:05:11 -04:00
|
|
|
"logprobs": logprobs_or_none,
|
2023-03-23 05:33:06 -04:00
|
|
|
"finish_reason": finish_reason,
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"usage": {
|
2023-03-28 01:45:37 -04:00
|
|
|
"prompt_tokens": len(prompt_tokens),
|
|
|
|
"completion_tokens": len(completion_tokens),
|
|
|
|
"total_tokens": len(prompt_tokens) + len(completion_tokens),
|
2023-03-23 05:33:06 -04:00
|
|
|
},
|
|
|
|
}
|
|
|
|
|
2023-04-01 13:01:27 -04:00
|
|
|
def create_completion(
|
|
|
|
self,
|
|
|
|
prompt: str,
|
|
|
|
suffix: Optional[str] = None,
|
|
|
|
max_tokens: int = 128,
|
|
|
|
temperature: float = 0.8,
|
|
|
|
top_p: float = 0.95,
|
|
|
|
logprobs: Optional[int] = None,
|
|
|
|
echo: bool = False,
|
2023-04-14 09:59:08 -04:00
|
|
|
stop: Optional[List[str]] = [],
|
2023-04-01 13:01:27 -04:00
|
|
|
repeat_penalty: float = 1.1,
|
|
|
|
top_k: int = 40,
|
|
|
|
stream: bool = False,
|
2023-04-03 20:12:14 -04:00
|
|
|
) -> Union[Completion, Iterator[CompletionChunk]]:
|
2023-04-01 13:01:27 -04:00
|
|
|
"""Generate text from a prompt.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prompt: The prompt to generate text from.
|
|
|
|
suffix: A suffix to append to the generated text. If None, no suffix is appended.
|
|
|
|
max_tokens: The maximum number of tokens to generate.
|
|
|
|
temperature: The temperature to use for sampling.
|
|
|
|
top_p: The top-p value to use for sampling.
|
|
|
|
logprobs: The number of logprobs to return. If None, no logprobs are returned.
|
|
|
|
echo: Whether to echo the prompt.
|
|
|
|
stop: A list of strings to stop generation when encountered.
|
|
|
|
repeat_penalty: The penalty to apply to repeated tokens.
|
|
|
|
top_k: The top-k value to use for sampling.
|
|
|
|
stream: Whether to stream the results.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: If the requested tokens exceed the context window.
|
|
|
|
RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Response object containing the generated text.
|
|
|
|
"""
|
|
|
|
completion_or_chunks = self._create_completion(
|
|
|
|
prompt=prompt,
|
|
|
|
suffix=suffix,
|
|
|
|
max_tokens=max_tokens,
|
|
|
|
temperature=temperature,
|
|
|
|
top_p=top_p,
|
|
|
|
logprobs=logprobs,
|
|
|
|
echo=echo,
|
|
|
|
stop=stop,
|
|
|
|
repeat_penalty=repeat_penalty,
|
|
|
|
top_k=top_k,
|
|
|
|
stream=stream,
|
|
|
|
)
|
|
|
|
if stream:
|
2023-04-03 20:12:14 -04:00
|
|
|
chunks: Iterator[CompletionChunk] = completion_or_chunks
|
2023-04-01 13:01:27 -04:00
|
|
|
return chunks
|
|
|
|
completion: Completion = next(completion_or_chunks) # type: ignore
|
|
|
|
return completion
|
|
|
|
|
2023-03-28 04:03:57 -04:00
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
prompt: str,
|
|
|
|
suffix: Optional[str] = None,
|
2023-04-01 13:01:27 -04:00
|
|
|
max_tokens: int = 128,
|
2023-03-28 04:03:57 -04:00
|
|
|
temperature: float = 0.8,
|
|
|
|
top_p: float = 0.95,
|
|
|
|
logprobs: Optional[int] = None,
|
|
|
|
echo: bool = False,
|
2023-04-14 09:59:08 -04:00
|
|
|
stop: Optional[List[str]] = [],
|
2023-03-28 04:03:57 -04:00
|
|
|
repeat_penalty: float = 1.1,
|
|
|
|
top_k: int = 40,
|
|
|
|
stream: bool = False,
|
2023-04-03 20:26:08 -04:00
|
|
|
) -> Union[Completion, Iterator[CompletionChunk]]:
|
2023-03-28 04:03:57 -04:00
|
|
|
"""Generate text from a prompt.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prompt: The prompt to generate text from.
|
|
|
|
suffix: A suffix to append to the generated text. If None, no suffix is appended.
|
|
|
|
max_tokens: The maximum number of tokens to generate.
|
|
|
|
temperature: The temperature to use for sampling.
|
|
|
|
top_p: The top-p value to use for sampling.
|
|
|
|
logprobs: The number of logprobs to return. If None, no logprobs are returned.
|
|
|
|
echo: Whether to echo the prompt.
|
|
|
|
stop: A list of strings to stop generation when encountered.
|
|
|
|
repeat_penalty: The penalty to apply to repeated tokens.
|
|
|
|
top_k: The top-k value to use for sampling.
|
|
|
|
stream: Whether to stream the results.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: If the requested tokens exceed the context window.
|
|
|
|
RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Response object containing the generated text.
|
|
|
|
"""
|
2023-04-01 13:01:27 -04:00
|
|
|
return self.create_completion(
|
2023-03-28 04:03:57 -04:00
|
|
|
prompt=prompt,
|
|
|
|
suffix=suffix,
|
|
|
|
max_tokens=max_tokens,
|
|
|
|
temperature=temperature,
|
|
|
|
top_p=top_p,
|
|
|
|
logprobs=logprobs,
|
|
|
|
echo=echo,
|
|
|
|
stop=stop,
|
|
|
|
repeat_penalty=repeat_penalty,
|
|
|
|
top_k=top_k,
|
|
|
|
stream=stream,
|
|
|
|
)
|
|
|
|
|
2023-04-03 20:12:44 -04:00
|
|
|
def _convert_text_completion_to_chat(
|
|
|
|
self, completion: Completion
|
|
|
|
) -> ChatCompletion:
|
|
|
|
return {
|
|
|
|
"id": "chat" + completion["id"],
|
|
|
|
"object": "chat.completion",
|
|
|
|
"created": completion["created"],
|
|
|
|
"model": completion["model"],
|
|
|
|
"choices": [
|
|
|
|
{
|
|
|
|
"index": 0,
|
|
|
|
"message": {
|
|
|
|
"role": "assistant",
|
|
|
|
"content": completion["choices"][0]["text"],
|
|
|
|
},
|
|
|
|
"finish_reason": completion["choices"][0]["finish_reason"],
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"usage": completion["usage"],
|
|
|
|
}
|
|
|
|
|
|
|
|
def _convert_text_completion_chunks_to_chat(
|
|
|
|
self,
|
|
|
|
chunks: Iterator[CompletionChunk],
|
|
|
|
) -> Iterator[ChatCompletionChunk]:
|
|
|
|
for i, chunk in enumerate(chunks):
|
|
|
|
if i == 0:
|
|
|
|
yield {
|
|
|
|
"id": "chat" + chunk["id"],
|
|
|
|
"model": chunk["model"],
|
|
|
|
"created": chunk["created"],
|
|
|
|
"object": "chat.completion.chunk",
|
|
|
|
"choices": [
|
|
|
|
{
|
|
|
|
"index": 0,
|
|
|
|
"delta": {
|
|
|
|
"role": "assistant",
|
|
|
|
},
|
|
|
|
"finish_reason": None,
|
|
|
|
}
|
|
|
|
],
|
|
|
|
}
|
|
|
|
yield {
|
|
|
|
"id": "chat" + chunk["id"],
|
|
|
|
"model": chunk["model"],
|
|
|
|
"created": chunk["created"],
|
|
|
|
"object": "chat.completion.chunk",
|
|
|
|
"choices": [
|
|
|
|
{
|
|
|
|
"index": 0,
|
|
|
|
"delta": {
|
|
|
|
"content": chunk["choices"][0]["text"],
|
|
|
|
},
|
|
|
|
"finish_reason": chunk["choices"][0]["finish_reason"],
|
|
|
|
}
|
|
|
|
],
|
|
|
|
}
|
|
|
|
|
|
|
|
def create_chat_completion(
|
|
|
|
self,
|
|
|
|
messages: List[ChatCompletionMessage],
|
2023-04-15 11:58:43 -04:00
|
|
|
temperature: float = 0.2,
|
2023-04-03 20:12:44 -04:00
|
|
|
top_p: float = 0.95,
|
|
|
|
top_k: int = 40,
|
|
|
|
stream: bool = False,
|
2023-04-14 09:59:08 -04:00
|
|
|
stop: Optional[List[str]] = [],
|
2023-04-15 11:58:43 -04:00
|
|
|
max_tokens: int = 256,
|
2023-04-03 20:12:44 -04:00
|
|
|
repeat_penalty: float = 1.1,
|
|
|
|
) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]:
|
2023-04-03 20:24:20 -04:00
|
|
|
"""Generate a chat completion from a list of messages.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
messages: A list of messages to generate a response for.
|
|
|
|
temperature: The temperature to use for sampling.
|
|
|
|
top_p: The top-p value to use for sampling.
|
|
|
|
top_k: The top-k value to use for sampling.
|
|
|
|
stream: Whether to stream the results.
|
|
|
|
stop: A list of strings to stop generation when encountered.
|
|
|
|
max_tokens: The maximum number of tokens to generate.
|
|
|
|
repeat_penalty: The penalty to apply to repeated tokens.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Generated chat completion or a stream of chat completion chunks.
|
|
|
|
"""
|
2023-04-15 11:39:52 -04:00
|
|
|
stop = stop if stop is not None else []
|
2023-04-15 11:58:19 -04:00
|
|
|
chat_history = "".join(
|
|
|
|
f'### {"Human" if message["role"] == "user" else "Assistant"}:{message["content"]}'
|
2023-04-03 20:12:44 -04:00
|
|
|
for message in messages
|
|
|
|
)
|
2023-04-15 11:58:19 -04:00
|
|
|
PROMPT = chat_history + "### Assistant:"
|
2023-04-15 12:02:48 -04:00
|
|
|
PROMPT_STOP = ["### Assistant:", "### Human:"]
|
2023-04-03 20:12:44 -04:00
|
|
|
completion_or_chunks = self(
|
|
|
|
prompt=PROMPT,
|
|
|
|
stop=PROMPT_STOP + stop,
|
|
|
|
temperature=temperature,
|
|
|
|
top_p=top_p,
|
|
|
|
top_k=top_k,
|
|
|
|
stream=stream,
|
|
|
|
max_tokens=max_tokens,
|
|
|
|
repeat_penalty=repeat_penalty,
|
|
|
|
)
|
|
|
|
if stream:
|
|
|
|
chunks: Iterator[CompletionChunk] = completion_or_chunks # type: ignore
|
|
|
|
return self._convert_text_completion_chunks_to_chat(chunks)
|
|
|
|
else:
|
|
|
|
completion: Completion = completion_or_chunks # type: ignore
|
|
|
|
return self._convert_text_completion_to_chat(completion)
|
|
|
|
|
2023-03-23 05:33:06 -04:00
|
|
|
def __del__(self):
|
2023-04-01 13:01:27 -04:00
|
|
|
if self.ctx is not None:
|
|
|
|
llama_cpp.llama_free(self.ctx)
|
|
|
|
self.ctx = None
|
2023-04-01 17:29:30 -04:00
|
|
|
|
2023-04-05 06:52:17 -04:00
|
|
|
def __getstate__(self):
|
|
|
|
return dict(
|
|
|
|
verbose=self.verbose,
|
|
|
|
model_path=self.model_path,
|
|
|
|
n_ctx=self.params.n_ctx,
|
|
|
|
n_parts=self.params.n_parts,
|
|
|
|
seed=self.params.seed,
|
|
|
|
f16_kv=self.params.f16_kv,
|
|
|
|
logits_all=self.params.logits_all,
|
|
|
|
vocab_only=self.params.vocab_only,
|
2023-04-10 02:11:35 -04:00
|
|
|
use_mmap=self.params.use_mmap,
|
2023-04-05 06:52:17 -04:00
|
|
|
use_mlock=self.params.use_mlock,
|
|
|
|
embedding=self.params.embedding,
|
|
|
|
last_n_tokens_size=self.last_n_tokens_size,
|
|
|
|
n_batch=self.n_batch,
|
|
|
|
n_threads=self.n_threads,
|
|
|
|
)
|
|
|
|
|
|
|
|
def __setstate__(self, state):
|
|
|
|
self.__init__(
|
|
|
|
model_path=state["model_path"],
|
|
|
|
n_ctx=state["n_ctx"],
|
|
|
|
n_parts=state["n_parts"],
|
|
|
|
seed=state["seed"],
|
|
|
|
f16_kv=state["f16_kv"],
|
|
|
|
logits_all=state["logits_all"],
|
|
|
|
vocab_only=state["vocab_only"],
|
2023-04-10 02:11:35 -04:00
|
|
|
use_mmap=state["use_mmap"],
|
2023-04-05 06:52:17 -04:00
|
|
|
use_mlock=state["use_mlock"],
|
|
|
|
embedding=state["embedding"],
|
|
|
|
n_threads=state["n_threads"],
|
|
|
|
n_batch=state["n_batch"],
|
|
|
|
last_n_tokens_size=state["last_n_tokens_size"],
|
|
|
|
verbose=state["verbose"],
|
|
|
|
)
|
|
|
|
|
2023-04-01 17:29:30 -04:00
|
|
|
@staticmethod
|
|
|
|
def token_eos() -> llama_cpp.llama_token:
|
|
|
|
"""Return the end-of-sequence token."""
|
|
|
|
return llama_cpp.llama_token_eos()
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def token_bos() -> llama_cpp.llama_token:
|
|
|
|
"""Return the beginning-of-sequence token."""
|
|
|
|
return llama_cpp.llama_token_bos()
|
2023-04-12 14:05:11 -04:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def logit_to_logprob(x: float) -> float:
|
|
|
|
return math.log(1.0 + math.exp(x))
|