73 KiB
title | description |
---|---|
Traefik Let's Encrypt Documentation | Learn how to configure Traefik Proxy to use an ACME provider like Let's Encrypt for automatic certificate generation. Read the technical documentation. |
Let's Encrypt
Automatic HTTPS {: .subtitle }
You can configure Traefik to use an ACME provider (like Let's Encrypt) for automatic certificate generation.
!!! warning "Let's Encrypt and Rate Limiting" Note that Let's Encrypt API has rate limiting. These last up to one week, and cannot be overridden.
When running Traefik in a container this file should be persisted across restarts.
If Traefik requests new certificates each time it starts up, a crash-looping container can quickly reach Let's Encrypt's ratelimits.
To configure where certificates are stored, please take a look at the [storage](#storage) configuration.
Use Let's Encrypt staging server with the [`caServer`](#caserver) configuration option
when experimenting to avoid hitting this limit too fast.
Certificate Resolvers
Traefik requires you to define "Certificate Resolvers" in the static configuration, which are responsible for retrieving certificates from an ACME server.
Then, each "router" is configured to enable TLS,
and is associated to a certificate resolver through the tls.certresolver
configuration option.
Certificates are requested for domain names retrieved from the router's dynamic configuration.
You can read more about this retrieval mechanism in the following section: ACME Domain Definition.
!!! warning "Defining an ACME challenge type is a requirement for a certificate resolver to be functional."
!!! important "Defining a certificate resolver does not result in all routers automatically using it. Each router that is supposed to use the resolver must reference it."
??? note "Configuration Reference"
There are many available options for ACME.
For a quick glance at what's possible, browse the configuration reference:
```yaml tab="File (YAML)"
--8<-- "content/https/ref-acme.yaml"
```
```toml tab="File (TOML)"
--8<-- "content/https/ref-acme.toml"
```
```bash tab="CLI"
--8<-- "content/https/ref-acme.txt"
```
Domain Definition
Certificate resolvers request certificates for a set of the domain names inferred from routers, with the following logic:
-
If the router has a
tls.domains
option set, then the certificate resolver uses themain
(and optionallysans
) option oftls.domains
to know the domain names for this router. -
If no
tls.domains
option is set, then the certificate resolver uses the router's rule, by checking theHost()
matchers. Please note that multipleHost()
matchers can be used) for specifying multiple domain names for this router.
Please note that:
-
When multiple domain names are inferred from a given router, only one certificate is requested with the first domain name as the main domain, and the other domains as "SANs" (Subject Alternative Name).
-
As ACME V2 supports "wildcard domains", any router can provide a wildcard domain name, as "main" domain or as "SAN" domain.
Please check the configuration examples below for more details.
Configuration Examples
??? example "Enabling ACME"
```yaml tab="File (YAML)"
entryPoints:
web:
address: ":80"
websecure:
address: ":443"
certificatesResolvers:
myresolver:
acme:
email: your-email@example.com
storage: acme.json
httpChallenge:
# used during the challenge
entryPoint: web
```
```toml tab="File (TOML)"
[entryPoints]
[entryPoints.web]
address = ":80"
[entryPoints.websecure]
address = ":443"
[certificatesResolvers.myresolver.acme]
email = "your-email@example.com"
storage = "acme.json"
[certificatesResolvers.myresolver.acme.httpChallenge]
# used during the challenge
entryPoint = "web"
```
```bash tab="CLI"
--entryPoints.web.address=:80
--entryPoints.websecure.address=:443
# ...
--certificatesresolvers.myresolver.acme.email=your-email@example.com
--certificatesresolvers.myresolver.acme.storage=acme.json
# used during the challenge
--certificatesresolvers.myresolver.acme.httpchallenge.entrypoint=web
```
!!! important "Defining a certificate resolver does not result in all routers automatically using it. Each router that is supposed to use the resolver must reference it."
??? example "Single Domain from Router's Rule Example"
* A certificate for the domain `example.com` is requested:
--8<-- "content/https/include-acme-single-domain-example.md"
??? example "Multiple Domains from Router's Rule Example"
* A certificate for the domains `example.com` (main) and `blog.example.org`
is requested:
--8<-- "content/https/include-acme-multiple-domains-from-rule-example.md"
??? example "Multiple Domains from Router's tls.domain
Example"
* A certificate for the domains `example.com` (main) and `*.example.org` (SAN)
is requested:
--8<-- "content/https/include-acme-multiple-domains-example.md"
Automatic Renewals
Traefik automatically tracks the expiry date of ACME certificates it generates.
By default, Traefik manages 90 days certificates, and starts to renew certificates 30 days before their expiry.
When using a certificate resolver that issues certificates with custom durations,
one can configure the certificates' duration with the certificatesDuration
option.
!!! info "" Certificates that are no longer used may still be renewed, as Traefik does not currently check if the certificate is being used before renewing.
Using LetsEncrypt with Kubernetes
When using LetsEncrypt with kubernetes, there are some known caveats with both the ingress and crd providers.
!!! info "" If you intend to run multiple instances of Traefik with LetsEncrypt, please ensure you read the sections on those provider pages.
The Different ACME Challenges
!!! warning "Defining one ACME challenge is a requirement for a certificate resolver to be functional."
!!! important "Defining a certificate resolver does not result in all routers automatically using it. Each router that is supposed to use the resolver must reference it."
tlsChallenge
Use the TLS-ALPN-01
challenge to generate and renew ACME certificates by provisioning a TLS certificate.
As described on the Let's Encrypt community forum,
when using the TLS-ALPN-01
challenge, Traefik must be reachable by Let's Encrypt through port 443.
??? example "Configuring the tlsChallenge
"
```yaml tab="File (YAML)"
certificatesResolvers:
myresolver:
acme:
# ...
tlsChallenge: {}
```
```toml tab="File (TOML)"
[certificatesResolvers.myresolver.acme]
# ...
[certificatesResolvers.myresolver.acme.tlsChallenge]
```
```bash tab="CLI"
# ...
--certificatesresolvers.myresolver.acme.tlschallenge=true
```
httpChallenge
Use the HTTP-01
challenge to generate and renew ACME certificates by provisioning an HTTP resource under a well-known URI.
As described on the Let's Encrypt community forum,
when using the HTTP-01
challenge, certificatesresolvers.myresolver.acme.httpchallenge.entrypoint
must be reachable by Let's Encrypt through port 80.
??? example "Using an EntryPoint Called web for the httpChallenge
"
```yaml tab="File (YAML)"
entryPoints:
web:
address: ":80"
websecure:
address: ":443"
certificatesResolvers:
myresolver:
acme:
# ...
httpChallenge:
entryPoint: web
```
```toml tab="File (TOML)"
[entryPoints]
[entryPoints.web]
address = ":80"
[entryPoints.websecure]
address = ":443"
[certificatesResolvers.myresolver.acme]
# ...
[certificatesResolvers.myresolver.acme.httpChallenge]
entryPoint = "web"
```
```bash tab="CLI"
--entryPoints.web.address=:80
--entryPoints.websecure.address=:443
# ...
--certificatesresolvers.myresolver.acme.httpchallenge.entrypoint=web
```
!!! info ""
Redirection is fully compatible with the HTTP-01
challenge.
dnsChallenge
Use the DNS-01
challenge to generate and renew ACME certificates by provisioning a DNS record.
??? example "Configuring a dnsChallenge
with the DigitalOcean Provider"
```yaml tab="File (YAML)"
certificatesResolvers:
myresolver:
acme:
# ...
dnsChallenge:
provider: digitalocean
delayBeforeCheck: 0
# ...
```
```toml tab="File (TOML)"
[certificatesResolvers.myresolver.acme]
# ...
[certificatesResolvers.myresolver.acme.dnsChallenge]
provider = "digitalocean"
delayBeforeCheck = 0
# ...
```
```bash tab="CLI"
# ...
--certificatesresolvers.myresolver.acme.dnschallenge.provider=digitalocean
--certificatesresolvers.myresolver.acme.dnschallenge.delaybeforecheck=0
# ...
```
!!! warning "CNAME
support"
`CNAME` are supported (and sometimes even [encouraged](https://letsencrypt.org/2019/10/09/onboarding-your-customers-with-lets-encrypt-and-acme.html#the-advantages-of-a-cname)),
but there are a few cases where they can be [problematic](../../getting-started/faq/#why-does-lets-encrypt-wildcard-certificate-renewalgeneration-with-dns-challenge-fail).
If needed, `CNAME` support can be disabled with the following environment variable:
```bash
LEGO_DISABLE_CNAME_SUPPORT=true
```
!!! warning "Multiple DNS Challenge provider"
Multiple DNS challenge provider are not supported with Traefik, but you can use `CNAME` to handle that.
For example, if you have `example.org` (account foo) and `example.com` (account bar) you can create a CNAME on `example.org` called `_acme-challenge.example.org` pointing to `challenge.example.com`.
This way, you can obtain certificates for `example.org` with the `bar` account.
!!! important
A provider
is mandatory.
providers
Here is a list of supported providers
, that can automate the DNS verification,
along with the required environment variables and their wildcard & root domain support.
Do not hesitate to complete it.
Many lego environment variables can be overridden by their respective _FILE
counterpart, which should have a filepath to a file that contains the secret as its value.
For example, CF_API_EMAIL_FILE=/run/secrets/traefik_cf-api-email
could be used to provide a Cloudflare API email address as a Docker secret named traefik_cf-api-email
.
For complete details, refer to your provider's Additional configuration link.
Provider Name | Provider Code | Environment Variables | |
---|---|---|---|
ACME DNS | acme-dns |
ACME_DNS_API_BASE , ACME_DNS_STORAGE_PATH |
Additional configuration |
Alibaba Cloud | alidns |
ALICLOUD_ACCESS_KEY , ALICLOUD_SECRET_KEY , ALICLOUD_REGION_ID |
Additional configuration |
all-inkl | allinkl |
ALL_INKL_LOGIN , ALL_INKL_PASSWORD |
Additional configuration |
ArvanCloud | arvancloud |
ARVANCLOUD_API_KEY |
Additional configuration |
Auroradns | auroradns |
AURORA_USER_ID , AURORA_KEY , AURORA_ENDPOINT |
Additional configuration |
Autodns | autodns |
AUTODNS_API_USER , AUTODNS_API_PASSWORD |
Additional configuration |
Azure (DEPRECATED) | azure |
AZURE_CLIENT_ID , AZURE_CLIENT_SECRET , AZURE_SUBSCRIPTION_ID , AZURE_TENANT_ID , AZURE_RESOURCE_GROUP , [AZURE_METADATA_ENDPOINT] |
Additional configuration |
AzureDNS | azuredns |
AZURE_CLIENT_ID , AZURE_CLIENT_SECRET , AZURE_TENANT_ID , AZURE_SUBSCRIPTION_ID , AZURE_RESOURCE_GROUP , [AZURE_ENVIRONMENT] , [AZURE_PRIVATE_ZONE] , [AZURE_ZONE_NAME] |
Additional configuration |
Bindman | bindman |
BINDMAN_MANAGER_ADDRESS |
Additional configuration |
Blue Cat | bluecat |
BLUECAT_SERVER_URL , BLUECAT_USER_NAME , BLUECAT_PASSWORD , BLUECAT_CONFIG_NAME , BLUECAT_DNS_VIEW |
Additional configuration |
Brandit (DEPRECATED) | brandit |
BRANDIT_API_USERNAME , BRANDIT_API_KEY |
Additional configuration |
Bunny | bunny |
BUNNY_API_KEY |
Additional configuration |
Checkdomain | checkdomain |
CHECKDOMAIN_TOKEN , |
Additional configuration |
Civo | civo |
CIVO_TOKEN |
Additional configuration |
Cloud.ru | cloudru |
CLOUDRU_SERVICE_INSTANCE_ID , CLOUDRU_KEY_ID , CLOUDRU_SECRET |
Additional configuration |
CloudDNS | clouddns |
CLOUDDNS_CLIENT_ID , CLOUDDNS_EMAIL , CLOUDDNS_PASSWORD |
Additional configuration |
Cloudflare | cloudflare |
CF_API_EMAIL , CF_API_KEY 1 or CF_DNS_API_TOKEN , [CF_ZONE_API_TOKEN] |
Additional configuration |
ClouDNS | cloudns |
CLOUDNS_AUTH_ID , CLOUDNS_AUTH_PASSWORD |
Additional configuration |
CloudXNS (DEPRECATED) | cloudxns |
CLOUDXNS_API_KEY , CLOUDXNS_SECRET_KEY |
Additional configuration |
ConoHa | conoha |
CONOHA_TENANT_ID , CONOHA_API_USERNAME , CONOHA_API_PASSWORD |
Additional configuration |
Constellix | constellix |
CONSTELLIX_API_KEY , CONSTELLIX_SECRET_KEY |
Additional configuration |
Core-Networks | corenetworks |
CORENETWORKS_LOGIN , CORENETWORKS_PASSWORD |
Additional configuration |
CPanel and WHM | cpanel |
CPANEL_MODE , CPANEL_USERNAME , CPANEL_TOKEN , CPANEL_BASE_URL |
Additional configuration |
Derak Cloud | derak |
DERAK_API_KEY |
Additional configuration |
deSEC | desec |
DESEC_TOKEN |
Additional configuration |
DigitalOcean | digitalocean |
DO_AUTH_TOKEN |
Additional configuration |
DirectAdmin | directadmin |
DIRECTADMIN_API_URL , DIRECTADMIN_USERNAME , DIRECTADMIN_PASSWORD |
Additional configuration |
DNS Made Easy | dnsmadeeasy |
DNSMADEEASY_API_KEY , DNSMADEEASY_API_SECRET , DNSMADEEASY_SANDBOX |
Additional configuration |
dnsHome.de | dnsHomede |
DNSHOMEDE_CREDENTIALS |
Additional configuration |
DNSimple | dnsimple |
DNSIMPLE_OAUTH_TOKEN , DNSIMPLE_BASE_URL |
Additional configuration |
DNSPod | dnspod |
DNSPOD_API_KEY |
Additional configuration |
Domain Offensive (do.de) | dode |
DODE_TOKEN |
Additional configuration |
Domeneshop | domeneshop |
DOMENESHOP_API_TOKEN , DOMENESHOP_API_SECRET |
Additional configuration |
DreamHost | dreamhost |
DREAMHOST_API_KEY |
Additional configuration |
Duck DNS | duckdns |
DUCKDNS_TOKEN |
Additional configuration |
Dyn | dyn |
DYN_CUSTOMER_NAME , DYN_USER_NAME , DYN_PASSWORD |
Additional configuration |
Dynu | dynu |
DYNU_API_KEY |
Additional configuration |
EasyDNS | easydns |
EASYDNS_TOKEN , EASYDNS_KEY |
Additional configuration |
EdgeDNS | edgedns |
AKAMAI_CLIENT_TOKEN , AKAMAI_CLIENT_SECRET , AKAMAI_ACCESS_TOKEN |
Additional configuration |
Efficient IP | efficientip |
EFFICIENTIP_USERNAME , EFFICIENTIP_PASSWORD , EFFICIENTIP_HOSTNAME , EFFICIENTIP_DNS_NAME |
Additional configuration |
Epik | epik |
EPIK_SIGNATURE |
Additional configuration |
Exoscale | exoscale |
EXOSCALE_API_KEY , EXOSCALE_API_SECRET , EXOSCALE_ENDPOINT |
Additional configuration |
Fast DNS | fastdns |
AKAMAI_CLIENT_TOKEN , AKAMAI_CLIENT_SECRET , AKAMAI_ACCESS_TOKEN |
Additional configuration |
Freemyip.com | freemyip |
FREEMYIP_TOKEN |
Additional configuration |
G-Core | gcore |
GCORE_PERMANENT_API_TOKEN |
Additional configuration |
Gandi v5 | gandiv5 |
GANDIV5_PERSONAL_ACCESS_TOKEN |
Additional configuration |
Gandi | gandi |
GANDI_API_KEY |
Additional configuration |
Glesys | glesys |
GLESYS_API_USER , GLESYS_API_KEY , GLESYS_DOMAIN |
Additional configuration |
GoDaddy | godaddy |
GODADDY_API_KEY , GODADDY_API_SECRET |
Additional configuration |
Google Cloud DNS | gcloud |
GCE_PROJECT , Application Default Credentials 2 3, [GCE_SERVICE_ACCOUNT_FILE ] |
Additional configuration |
Google Domains | googledomains |
GOOGLE_DOMAINS_ACCESS_TOKEN |
Additional configuration |
Hetzner | hetzner |
HETZNER_API_KEY |
Additional configuration |
hosting.de | hostingde |
HOSTINGDE_API_KEY , HOSTINGDE_ZONE_NAME |
Additional configuration |
Hosttech | hosttech |
HOSTTECH_API_KEY |
Additional configuration |
http.net | httpnet |
HTTPNET_API_KEY |
Additional configuration |
Huawei Cloud | huaweicloud |
HUAWEICLOUD_ACCESS_KEY_ID , HUAWEICLOUD_SECRET_ACCESS_KEY , HUAWEICLOUD_REGION |
Additional configuration |
Hurricane Electric | hurricane |
HURRICANE_TOKENS 4 |
Additional configuration |
HyperOne | hyperone |
HYPERONE_PASSPORT_LOCATION , HYPERONE_LOCATION_ID |
Additional configuration |
IBM Cloud (SoftLayer) | ibmcloud |
SOFTLAYER_USERNAME , SOFTLAYER_API_KEY |
Additional configuration |
IIJ DNS Platform Service | iijdpf |
IIJ_DPF_API_TOKEN , IIJ_DPF_DPM_SERVICE_CODE |
Additional configuration |
IIJ | iij |
IIJ_API_ACCESS_KEY , IIJ_API_SECRET_KEY , IIJ_DO_SERVICE_CODE |
Additional configuration |
Infoblox | infoblox |
INFOBLOX_USERNAME , INFOBLOX_PASSWORD , INFOBLOX_HOST |
Additional configuration |
Infomaniak | infomaniak |
INFOMANIAK_ACCESS_TOKEN |
Additional configuration |
Internet.bs | internetbs |
INTERNET_BS_API_KEY , INTERNET_BS_PASSWORD |
Additional configuration |
INWX | inwx |
INWX_USERNAME , INWX_PASSWORD |
Additional configuration |
ionos | ionos |
IONOS_API_KEY |
Additional configuration |
IPv64 | ipv64 |
IPV64_API_KEY |
Additional configuration |
iwantmyname | iwantmyname |
IWANTMYNAME_USERNAME , IWANTMYNAME_PASSWORD |
Additional configuration |
Joker.com | joker |
JOKER_API_MODE with JOKER_API_KEY or JOKER_USERNAME , JOKER_PASSWORD |
Additional configuration |
Liara | liara |
LIARA_API_KEY |
Additional configuration |
Lightsail | lightsail |
AWS_ACCESS_KEY_ID , AWS_SECRET_ACCESS_KEY , DNS_ZONE |
Additional configuration |
Lima-City | limacity |
LIMACITY_API_KEY |
Additional configuration |
Linode v4 | linode |
LINODE_TOKEN |
Additional configuration |
Liquid Web | liquidweb |
LIQUID_WEB_PASSWORD , LIQUID_WEB_USERNAME , LIQUID_WEB_ZONE |
Additional configuration |
Loopia | loopia |
LOOPIA_API_PASSWORD , LOOPIA_API_USER |
Additional configuration |
LuaDNS | luadns |
LUADNS_API_USERNAME , LUADNS_API_TOKEN |
Additional configuration |
Mail-in-a-Box | mailinabox |
MAILINABOX_EMAIL , MAILINABOX_PASSWORD , MAILINABOX_BASE_URL |
Additional configuration |
Metaname | metaname |
METANAME_ACCOUNT_REFERENCE , METANAME_API_KEY |
Additional configuration |
mijn.host | mijnhost |
MIJNHOST_API_KEY |
Additional configuration |
Mittwald | mittwald |
MITTWALD_TOKEN |
Additional configuration |
MyDNS.jp | mydnsjp |
MYDNSJP_MASTER_ID , MYDNSJP_PASSWORD |
Additional configuration |
Mythic Beasts | mythicbeasts |
MYTHICBEASTS_USER_NAME , MYTHICBEASTS_PASSWORD |
Additional configuration |
name.com | namedotcom |
NAMECOM_USERNAME , NAMECOM_API_TOKEN , NAMECOM_SERVER |
Additional configuration |
Namecheap | namecheap |
NAMECHEAP_API_USER , NAMECHEAP_API_KEY |
Additional configuration |
Namesilo | namesilo |
NAMESILO_API_KEY |
Additional configuration |
NearlyFreeSpeech.NET | nearlyfreespeech |
NEARLYFREESPEECH_API_KEY , NEARLYFREESPEECH_LOGIN |
Additional configuration |
Netcup | netcup |
NETCUP_CUSTOMER_NUMBER , NETCUP_API_KEY , NETCUP_API_PASSWORD |
Additional configuration |
Netlify | netlify |
NETLIFY_TOKEN |
Additional configuration |
Nicmanager | nicmanager |
NICMANAGER_API_EMAIL , NICMANAGER_API_PASSWORD |
Additional configuration |
NIFCloud | nifcloud |
NIFCLOUD_ACCESS_KEY_ID , NIFCLOUD_SECRET_ACCESS_KEY |
Additional configuration |
Njalla | njalla |
NJALLA_TOKEN |
Additional configuration |
Nodion | nodion |
NODION_API_TOKEN |
Additional configuration |
NS1 | ns1 |
NS1_API_KEY |
Additional configuration |
Open Telekom Cloud | otc |
OTC_DOMAIN_NAME , OTC_USER_NAME , OTC_PASSWORD , OTC_PROJECT_NAME , OTC_IDENTITY_ENDPOINT |
Additional configuration |
Openstack Designate | designate |
OS_AUTH_URL , OS_USERNAME , OS_PASSWORD , OS_TENANT_NAME , OS_REGION_NAME |
Additional configuration |
Oracle Cloud | oraclecloud |
OCI_COMPARTMENT_OCID , OCI_PRIVKEY_FILE , OCI_PRIVKEY_PASS , OCI_PUBKEY_FINGERPRINT , OCI_REGION , OCI_TENANCY_OCID , OCI_USER_OCID |
Additional configuration |
OVH | ovh |
OVH_ENDPOINT , OVH_APPLICATION_KEY , OVH_APPLICATION_SECRET , OVH_CONSUMER_KEY , OVH_CLIENT_ID , OVH_CLIENT_SECRET |
Additional configuration |
Plesk | plesk |
PLESK_SERVER_BASE_URL , PLESK_USERNAME , PLESK_PASSWORD |
Additional configuration |
Porkbun | porkbun |
PORKBUN_SECRET_API_KEY , PORKBUN_API_KEY |
Additional configuration |
PowerDNS | pdns |
PDNS_API_KEY , PDNS_API_URL |
Additional configuration |
Rackspace | rackspace |
RACKSPACE_USER , RACKSPACE_API_KEY |
Additional configuration |
RcodeZero | rcodezero |
RCODEZERO_API_TOKEN |
Additional configuration |
reg.ru | regru |
REGRU_USERNAME , REGRU_PASSWORD |
Additional configuration |
Regfish | regfish |
regfish |
Additional configuration |
RFC2136 | rfc2136 |
RFC2136_TSIG_KEY , RFC2136_TSIG_SECRET , RFC2136_TSIG_ALGORITHM , RFC2136_NAMESERVER |
Additional configuration |
RimuHosting | rimuhosting |
RIMUHOSTING_API_KEY |
Additional configuration |
Route 53 | route53 |
AWS_ACCESS_KEY_ID , AWS_SECRET_ACCESS_KEY , [AWS_REGION] , [AWS_HOSTED_ZONE_ID] or a configured user/instance IAM profile. |
Additional configuration |
Sakura Cloud | sakuracloud |
SAKURACLOUD_ACCESS_TOKEN , SAKURACLOUD_ACCESS_TOKEN_SECRET |
Additional configuration |
Scaleway | scaleway |
SCW_API_TOKEN |
Additional configuration |
Selectel v2 | selectelv2 |
SELECTELV2_ACCOUNT_ID , SELECTELV2_PASSWORD , SELECTELV2_PROJECT_ID , SELECTELV2_USERNAME |
Additional configuration |
Selectel | selectel |
SELECTEL_API_TOKEN |
Additional configuration |
SelfHost.(de/eu) | selfhostde |
SELFHOSTDE_USERNAME , SELFHOSTDE_PASSWORD , SELFHOSTDE_RECORDS_MAPPING |
Additional configuration |
Servercow | servercow |
SERVERCOW_USERNAME , SERVERCOW_PASSWORD |
Additional configuration |
Shellrent | shellrent |
SHELLRENT_USERNAME , SHELLRENT_TOKEN |
Additional configuration |
Simply.com | simply |
SIMPLY_ACCOUNT_NAME , SIMPLY_API_KEY |
Additional configuration |
Sonic | sonic |
SONIC_USER_ID , SONIC_API_KEY |
Additional configuration |
Stackpath | stackpath |
STACKPATH_CLIENT_ID , STACKPATH_CLIENT_SECRET , STACKPATH_STACK_ID |
Additional configuration |
Technitium | technitium |
TECHNITIUM_SERVER_BASE_URL , TECHNITIUM_API_TOKEN |
Additional configuration |
Tencent Cloud DNS | tencentcloud |
TENCENTCLOUD_SECRET_ID , TENCENTCLOUD_SECRET_KEY |
Additional configuration |
Timeweb Cloud | timewebcloud |
TIMEWEBCLOUD_AUTH_TOKEN |
Additional configuration |
TransIP | transip |
TRANSIP_ACCOUNT_NAME , TRANSIP_PRIVATE_KEY_PATH |
Additional configuration |
UKFast SafeDNS | safedns |
SAFEDNS_AUTH_TOKEN |
Additional configuration |
Ultradns | ultradns |
ULTRADNS_USERNAME , ULTRADNS_PASSWORD |
Additional configuration |
Variomedia | variomedia |
VARIOMEDIA_API_TOKEN |
Additional configuration |
VegaDNS | vegadns |
SECRET_VEGADNS_KEY , SECRET_VEGADNS_SECRET , VEGADNS_URL |
Additional configuration |
Vercel | vercel |
VERCEL_API_TOKEN |
Additional configuration |
Versio | versio |
VERSIO_USERNAME , VERSIO_PASSWORD |
Additional configuration |
VinylDNS | vinyldns |
VINYLDNS_ACCESS_KEY , VINYLDNS_SECRET_KEY , VINYLDNS_HOST |
Additional configuration |
VK Cloud | vkcloud |
VK_CLOUD_PASSWORD , VK_CLOUD_PROJECT_ID , VK_CLOUD_USERNAME |
Additional configuration |
Volcano Engine | volcengine |
VOLC_ACCESSKEY , VOLC_SECRETKEY |
Additional configuration |
Vscale | vscale |
VSCALE_API_TOKEN |
Additional configuration |
VULTR | vultr |
VULTR_API_KEY |
Additional configuration |
Webnames | webnames |
WEBNAMES_API_KEY |
Additional configuration |
Websupport | websupport |
WEBSUPPORT_API_KEY , WEBSUPPORT_SECRET |
Additional configuration |
WEDOS | wedos |
WEDOS_USERNAME , WEDOS_WAPI_PASSWORD |
Additional configuration |
Yandex 360 | yandex360 |
YANDEX360_OAUTH_TOKEN , YANDEX360_ORG_ID |
Additional configuration |
Yandex Cloud | yandexcloud |
YANDEX_CLOUD_FOLDER_ID , YANDEX_CLOUD_IAM_TOKEN |
Additional configuration |
Yandex | yandex |
YANDEX_PDD_TOKEN |
Additional configuration |
Zone.ee | zoneee |
ZONEEE_API_USER , ZONEEE_API_KEY |
Additional configuration |
Zonomi | zonomi |
ZONOMI_API_KEY |
Additional configuration |
External Program | exec |
EXEC_PATH |
Additional configuration |
HTTP request | httpreq |
HTTPREQ_ENDPOINT , HTTPREQ_MODE , HTTPREQ_USERNAME , HTTPREQ_PASSWORD 5 |
Additional configuration |
manual | manual |
none, but you need to run Traefik interactively 6, turn on debug log to see instructions and press Enter. |
resolvers
Use custom DNS servers to resolve the FQDN authority.
certificatesResolvers:
myresolver:
acme:
# ...
dnsChallenge:
# ...
resolvers:
- "1.1.1.1:53"
- "8.8.8.8:53"
[certificatesResolvers.myresolver.acme]
# ...
[certificatesResolvers.myresolver.acme.dnsChallenge]
# ...
resolvers = ["1.1.1.1:53", "8.8.8.8:53"]
# ...
--certificatesresolvers.myresolver.acme.dnschallenge.resolvers=1.1.1.1:53,8.8.8.8:53
delayBeforeCheck
By default, the provider
verifies the TXT record before letting ACME verify.
You can delay this operation by specifying a delay (in seconds) with delayBeforeCheck
(value must be greater than zero).
This option is useful when internal networks block external DNS queries.
certificatesResolvers:
myresolver:
acme:
# ...
dnsChallenge:
# ...
delayBeforeCheck: 2s
[certificatesResolvers.myresolver.acme]
# ...
[certificatesResolvers.myresolver.acme.dnsChallenge]
# ...
delayBeforeCheck = "2s"
# ...
--certificatesresolvers.myresolver.acme.dnschallenge.delayBeforeCheck=2s
disablePropagationCheck
Not recommended
Disable the TXT records propagation checks before notifying ACME that the DNS challenge is ready.
certificatesResolvers:
myresolver:
acme:
# ...
dnsChallenge:
# ...
disablePropagationCheck: true
[certificatesResolvers.myresolver.acme]
# ...
[certificatesResolvers.myresolver.acme.dnsChallenge]
# ...
disablePropagationCheck = true
# ...
--certificatesresolvers.myresolver.acme.dnschallenge.disablePropagationCheck=true
Wildcard Domains
ACME V2 supports wildcard certificates.
As described in Let's Encrypt's post wildcard certificates can only be generated through a DNS-01
challenge.
External Account Binding
kid
: Key identifier from External CAhmacEncoded
: HMAC key from External CA, should be in Base64 URL Encoding without padding format
certificatesResolvers:
myresolver:
acme:
# ...
eab:
kid: abc-keyID-xyz
hmacEncoded: abc-hmac-xyz
[certificatesResolvers.myresolver.acme]
# ...
[certificatesResolvers.myresolver.acme.eab]
kid = "abc-keyID-xyz"
hmacEncoded = "abc-hmac-xyz"
# ...
--certificatesresolvers.myresolver.acme.eab.kid=abc-keyID-xyz
--certificatesresolvers.myresolver.acme.eab.hmacencoded=abc-hmac-xyz
More Configuration
caServer
Required, Default="https://acme-v02.api.letsencrypt.org/directory"
The CA server to use:
- Let's Encrypt production server: https://acme-v02.api.letsencrypt.org/directory
- Let's Encrypt staging server: https://acme-staging-v02.api.letsencrypt.org/directory
??? example "Using the Let's Encrypt staging server"
```yaml tab="File (YAML)"
certificatesResolvers:
myresolver:
acme:
# ...
caServer: https://acme-staging-v02.api.letsencrypt.org/directory
# ...
```
```toml tab="File (TOML)"
[certificatesResolvers.myresolver.acme]
# ...
caServer = "https://acme-staging-v02.api.letsencrypt.org/directory"
# ...
```
```bash tab="CLI"
# ...
--certificatesresolvers.myresolver.acme.caserver=https://acme-staging-v02.api.letsencrypt.org/directory
# ...
```
storage
Required, Default="acme.json"
The storage
option sets the location where your ACME certificates are saved to.
certificatesResolvers:
myresolver:
acme:
# ...
storage: acme.json
# ...
[certificatesResolvers.myresolver.acme]
# ...
storage = "acme.json"
# ...
# ...
--certificatesresolvers.myresolver.acme.storage=acme.json
# ...
ACME certificates are stored in a JSON file that needs to have a 600
file mode.
In Docker you can mount either the JSON file, or the folder containing it:
docker run -v "/my/host/acme.json:/acme.json" traefik
docker run -v "/my/host/acme:/etc/traefik/acme" traefik
!!! warning For concurrency reasons, this file cannot be shared across multiple instances of Traefik.
certificatesDuration
Optional, Default=2160
certificatesDuration
is used to calculate two durations:
Renew Period
: the period before the end of the certificate duration, during which the certificate should be renewed.Renew Interval
: the interval between renew attempts.
It defaults to 2160
(90 days) to follow Let's Encrypt certificates' duration.
Certificate Duration | Renew Period | Renew Interval |
---|---|---|
>= 1 year | 4 months | 1 week |
>= 90 days | 30 days | 1 day |
>= 30 days | 10 days | 12 hours |
>= 7 days | 1 day | 1 hour |
>= 24 hours | 6 hours | 10 min |
< 24 hours | 20 min | 1 min |
!!! warning "Traefik cannot manage certificates with a duration lower than 1 hour."
certificatesResolvers:
myresolver:
acme:
# ...
certificatesDuration: 72
# ...
[certificatesResolvers.myresolver.acme]
# ...
certificatesDuration=72
# ...
# ...
--certificatesresolvers.myresolver.acme.certificatesduration=72
# ...
preferredChain
Optional, Default=""
Preferred chain to use.
If the CA offers multiple certificate chains, prefer the chain with an issuer matching this Subject Common Name. If no match, the default offered chain will be used.
certificatesResolvers:
myresolver:
acme:
# ...
preferredChain: 'ISRG Root X1'
# ...
[certificatesResolvers.myresolver.acme]
# ...
preferredChain = "ISRG Root X1"
# ...
# ...
--certificatesresolvers.myresolver.acme.preferredChain=ISRG Root X1
# ...
keyType
Optional, Default="RSA4096"
KeyType used for generating certificate private key. Allow value 'EC256', 'EC384', 'RSA2048', 'RSA4096', 'RSA8192'.
certificatesResolvers:
myresolver:
acme:
# ...
keyType: 'RSA4096'
# ...
[certificatesResolvers.myresolver.acme]
# ...
keyType = "RSA4096"
# ...
# ...
--certificatesresolvers.myresolver.acme.keyType=RSA4096
# ...
caCertificates
Optional, Default=[]
The caCertificates
option specifies the paths to PEM encoded CA Certificates that can be used to authenticate an ACME server with an HTTPS certificate not issued by a CA in the system-wide trusted root list.
certificatesResolvers:
myresolver:
acme:
# ...
caCertificates:
- path/certificates1.pem
- path/certificates2.pem
# ...
[certificatesResolvers.myresolver.acme]
# ...
caCertificates = [ "path/certificates1.pem", "path/certificates2.pem" ]
# ...
# ...
--certificatesresolvers.myresolver.acme.caCertificates="path/certificates1.pem,path/certificates2.pem"
# ...
??? note "LEGO Environment Variable"
It can be defined globally by using the environment variable `LEGO_CA_CERTIFICATES`.
This environment variable is neither a fallback nor an override of the configuration option.
caSystemCertPool
Optional, Default=false
The caSystemCertPool
option defines if the certificates pool must use a copy of the system cert pool.
certificatesResolvers:
myresolver:
acme:
# ...
caSystemCertPool: true
# ...
[certificatesResolvers.myresolver.acme]
# ...
caSystemCertPool = true
# ...
# ...
--certificatesresolvers.myresolver.acme.caSystemCertPool=true
# ...
??? note "LEGO Environment Variable"
It can be defined globally by using the environment variable `LEGO_CA_SYSTEM_CERT_POOL`.
`LEGO_CA_SYSTEM_CERT_POOL` is ignored if `LEGO_CA_CERTIFICATES` is not set or empty.
This environment variable is neither a fallback nor an override of the configuration option.
caServerName
Optional, Default=""
The caServerName
option specifies the CA server name that can be used to authenticate an ACME server with an HTTPS certificate not issued by a CA in the system-wide trusted root list.
certificatesResolvers:
myresolver:
acme:
# ...
caServerName: "my-server"
# ...
[certificatesResolvers.myresolver.acme]
# ...
caServerName = "my-server"
# ...
# ...
--certificatesresolvers.myresolver.acme.caServerName="my-server"
# ...
??? note "LEGO Environment Variable"
It can be defined globally by using the environment variable `LEGO_CA_SERVER_NAME`.
`LEGO_CA_SERVER_NAME` is ignored if `LEGO_CA_CERTIFICATES` is not set or empty.
This environment variable is neither a fallback nor an override of the configuration option.
Fallback
If Let's Encrypt is not reachable, the following certificates will apply:
- Previously generated ACME certificates (before downtime)
- Expired ACME certificates
- Provided certificates
!!! important For new (sub)domains which need Let's Encrypt authentication, the default Traefik certificate will be used until Traefik is restarted.
{!traefik-for-business-applications.md!}
-
The
Global API Key
needs to be used, not theOrigin CA Key
. ↩︎ -
As explained in the LEGO hurricane configuration, each domain or wildcard (record name) needs a token. So each update of record name must be followed by an update of the
HURRICANE_TOKENS
variable, and a restart of Traefik. ↩︎ -
More information about the HTTP message format can be found here. ↩︎
-
docker stack
remark: there is no way to support terminal attached to container when deploying withdocker stack
, so you might need to run container withdocker run -it
to generate certificates usingmanual
provider. ↩︎