ollama/llm/llm.go
Daniel Hiltgen d4cd695759 Add cgo implementation for llama.cpp
Run the server.cpp directly inside the Go runtime via cgo
while retaining the LLM Go abstractions.
2023-12-19 09:05:46 -08:00

82 lines
2 KiB
Go

package llm
import (
"context"
"fmt"
"log"
"os"
"runtime"
"github.com/pbnjay/memory"
"github.com/jmorganca/ollama/api"
"github.com/jmorganca/ollama/format"
)
type LLM interface {
Predict(context.Context, PredictOpts, func(PredictResult)) error
Embedding(context.Context, string) ([]float64, error)
Encode(context.Context, string) ([]int, error)
Decode(context.Context, []int) (string, error)
Close()
Ping(context.Context) error
}
func New(workDir, model string, adapters, projectors []string, opts api.Options) (LLM, error) {
if _, err := os.Stat(model); err != nil {
return nil, err
}
f, err := os.Open(model)
if err != nil {
return nil, err
}
defer f.Close()
ggml, err := DecodeGGML(f)
if err != nil {
return nil, err
}
if runtime.GOOS == "darwin" {
switch ggml.FileType() {
case "F32", "Q5_0", "Q5_1", "Q8_0":
if ggml.Name() != "gguf" && opts.NumGPU != 0 {
// GGML Q8_0 do not support Metal API and will
// cause the runner to segmentation fault so disable GPU
log.Printf("WARNING: GPU disabled for F32, Q5_0, Q5_1, and Q8_0")
opts.NumGPU = 0
}
}
var requiredMemory int64
var f16Multiplier int64 = 2
switch ggml.ModelType() {
case "3B", "7B":
requiredMemory = 8 * format.GigaByte
case "13B":
requiredMemory = 16 * format.GigaByte
case "30B", "34B", "40B":
requiredMemory = 32 * format.GigaByte
case "65B", "70B":
requiredMemory = 64 * format.GigaByte
case "180B":
requiredMemory = 128 * format.GigaByte
f16Multiplier = 4
}
systemMemory := int64(memory.TotalMemory())
if ggml.FileType() == "F16" && requiredMemory*f16Multiplier > systemMemory {
return nil, fmt.Errorf("F16 model requires at least %s of total memory", format.HumanBytes(requiredMemory))
} else if requiredMemory > systemMemory {
return nil, fmt.Errorf("model requires at least %s of total memory", format.HumanBytes(requiredMemory))
}
}
opts.NumGQA = 0
opts.RopeFrequencyBase = 0.0
opts.RopeFrequencyScale = 0.0
return newLlamaExtServer(model, adapters, projectors, ggml.NumLayers(), opts)
}