ollama/llm/memory.go
Patrick Devine c7cb0f0602
image processing for llama3.2 (#6963)
Co-authored-by: jmorganca <jmorganca@gmail.com>
Co-authored-by: Michael Yang <mxyng@pm.me>
Co-authored-by: Jesse Gross <jesse@ollama.com>
2024-10-18 16:12:35 -07:00

442 lines
13 KiB
Go

package llm
import (
"fmt"
"log/slog"
"os"
"strconv"
"strings"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/discover"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
)
// This algorithm looks for a complete fit to determine if we need to unload other models
func PredictServerFit(allGpus discover.GpuInfoList, ggml *GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
// Split up the GPUs by type and try them
var estimatedVRAM uint64
for _, gpus := range allGpus.ByLibrary() {
var layerCount int
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
if opts.NumGPU < 0 {
if layerCount > 0 && layerCount >= int(ggml.KV().BlockCount()+1) {
return true, estimatedVRAM
}
} else {
if layerCount > 0 && layerCount >= opts.NumGPU {
return true, estimatedVRAM
}
}
}
return false, estimatedVRAM
}
type MemoryEstimate struct {
// How many layers we predict we can load
Layers int
// The size of the graph which occupies the main GPU
Graph uint64
// How much VRAM will be allocated given the number of layers we predict
VRAMSize uint64
// The total size of the model if loaded into VRAM. If all layers are loaded, VRAMSize == TotalSize
TotalSize uint64
// For multi-GPU scenarios, this provides the tensor split parameter
TensorSplit string
// For multi-GPU scenarios, this is the size in bytes per GPU
GPUSizes []uint64
// internal fields for logging purposes
inferenceLibrary string
layersRequested int
layersModel int
availableList []string
kv uint64
allocationsList []string
memoryWeights uint64
memoryLayerOutput uint64
graphFullOffload uint64
graphPartialOffload uint64
projectorWeights, projectorGraph uint64
}
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
// The GPUs provided must all be the same Library
func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string, opts api.Options) MemoryEstimate {
// Graph size for a partial offload, applies to all GPUs
var graphPartialOffload uint64
// Graph size when all layers are offloaded, applies to all GPUs
var graphFullOffload uint64
// Final graph offload once we know full or partial
var graphOffload uint64
// Projectors loaded into GPU0 only
var projectorWeights uint64
var projectorGraph uint64
// Conditional output size on GPU 0
var memoryLayerOutput uint64
// The sizes of a layer
var layerSize uint64
// The sum of all the layer sizes (just for logging)
var memoryWeights uint64
// True if all the layers are loaded
var fullyLoaded bool
// Overflow that didn't fit into the GPU
var overflow uint64
overhead := envconfig.GpuOverhead()
availableList := make([]string, len(gpus))
for i, gpu := range gpus {
availableList[i] = format.HumanBytes2(gpu.FreeMemory)
}
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", availableList)
for _, projector := range projectors {
weight, graph := projectorMemoryRequirements(projector)
projectorWeights += weight
projectorGraph += graph
// multimodal models require at least 2048 context
opts.NumCtx = max(opts.NumCtx, 2048)
}
layers := ggml.Tensors().Layers()
// add one layer worth of memory as a buffer
if blk0, ok := layers["blk.0"]; ok {
layerSize = blk0.size()
} else {
slog.Warn("model missing blk.0 layer size")
}
// fp16 k,v = sizeof(float16) * n_ctx * n_layer * (n_embd_head_k + n_embd_head_v) * n_head_kv
var kv uint64 = 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * (ggml.KV().EmbeddingHeadCountK() + ggml.KV().EmbeddingHeadCountV()) * ggml.KV().HeadCountKV()
// KV is proportional to the number of layers
layerSize += kv / ggml.KV().BlockCount()
graphPartialOffload, graphFullOffload = ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
if graphPartialOffload == 0 {
graphPartialOffload = ggml.KV().GQA() * kv / 6
}
if graphFullOffload == 0 {
graphFullOffload = graphPartialOffload
}
// on metal there's no partial offload overhead
if gpus[0].Library == "metal" {
graphPartialOffload = graphFullOffload
} else if len(gpus) > 1 {
// multigpu should always use the partial graph size
graphFullOffload = graphPartialOffload
}
if layer, ok := layers["output_norm"]; ok {
memoryLayerOutput += layer.size()
}
if layer, ok := layers["output"]; ok {
memoryLayerOutput += layer.size()
} else if layer, ok := layers["token_embd"]; ok {
memoryLayerOutput += layer.size()
}
// Output layer handled at the end if we have space
gpuZeroOverhead := projectorWeights + projectorGraph
// Reduce set of GPUs to only those that have sufficient space to fit overhead and at least one layer
var layerCount int
layerCounts := make([]int, len(gpus))
gpuAllocations := make([]uint64, len(gpus))
type gs struct {
i int
g *discover.GpuInfo
}
gpusWithSpace := []gs{}
for i := range gpus {
var gzo uint64
if len(gpusWithSpace) == 0 {
gzo = gpuZeroOverhead
}
// Only include GPUs that can fit the graph, gpu minimum, the layer buffer and at least more layer
if (gpus[i].FreeMemory - overhead) < gzo+max(graphPartialOffload, graphFullOffload)+gpus[i].MinimumMemory+2*layerSize {
slog.Debug("gpu has too little memory to allocate any layers",
"id", gpus[i].ID,
"library", gpus[i].Library,
"variant", gpus[i].Variant,
"compute", gpus[i].Compute,
"driver", fmt.Sprintf("%d.%d", gpus[i].DriverMajor, gpus[i].DriverMinor),
"name", gpus[i].Name,
"total", format.HumanBytes2(gpus[i].TotalMemory),
"available", format.HumanBytes2(gpus[i].FreeMemory),
"minimum_memory", gpus[i].MinimumMemory,
"layer_size", format.HumanBytes2(layerSize),
"gpu_zer_overhead", format.HumanBytes2(gzo),
"partial_offload", format.HumanBytes2(graphPartialOffload),
"full_offload", format.HumanBytes2(graphFullOffload),
)
continue
}
gpusWithSpace = append(gpusWithSpace, gs{i, &gpus[i]})
gpuAllocations[i] += gpus[i].MinimumMemory + layerSize // We hold off on graph until we know partial vs. full
}
var gpuZeroID int
if len(gpusWithSpace) > 0 {
gpuZeroID = gpusWithSpace[0].i
gpuAllocations[gpuZeroID] += gpuZeroOverhead
}
// For all the layers, find where they can fit on the GPU(s)
for i := range int(ggml.KV().BlockCount()) {
// Some models have inconsistent layer sizes
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
layerSize = blk.size()
layerSize += kv / ggml.KV().BlockCount()
}
memoryWeights += layerSize
if opts.NumGPU >= 0 && layerCount >= opts.NumGPU {
// Stop allocating on GPU(s) once we hit the users target NumGPU
continue
}
// distribute the layers across the GPU(s) that have space
for j := len(gpusWithSpace); j > 0; j-- {
g := gpusWithSpace[i%j]
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
if (g.g.FreeMemory - overhead) > used+layerSize {
gpuAllocations[g.i] += layerSize
layerCounts[g.i]++
layerCount++
break
} else {
gpusWithSpace = append(gpusWithSpace[:i%j], gpusWithSpace[i%j+1:]...)
}
}
}
if layerCount >= int(ggml.KV().BlockCount()) {
fullyLoaded = true
} else {
for i := layerCount; i < int(ggml.KV().BlockCount()); i++ {
overflow += layerSize
}
}
// Determine if we need to consider output then find where it fits
if memoryLayerOutput > 0 && (opts.NumGPU < 0 || layerCount < opts.NumGPU) {
for j := len(gpusWithSpace); j > 0; j-- {
g := gpusWithSpace[layerCount%j]
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
if (g.g.FreeMemory - overhead) > used+memoryLayerOutput {
gpuAllocations[g.i] += memoryLayerOutput
layerCounts[g.i]++
layerCount++
break
}
}
if layerCount < int(ggml.KV().BlockCount())+1 {
fullyLoaded = false
overflow += memoryLayerOutput
}
}
// Add the applicable (full or partial) graph allocations
for i := range gpus {
if layerCounts[i] <= 0 {
continue
}
if fullyLoaded {
gpuAllocations[i] += graphFullOffload
} else {
gpuAllocations[i] += graphPartialOffload
}
}
if fullyLoaded {
graphOffload = graphFullOffload
} else {
graphOffload = graphPartialOffload
}
// Summaries for the log
var memoryRequiredPartial, memoryRequiredTotal uint64
for i := range gpuAllocations {
memoryRequiredPartial += gpuAllocations[i]
}
memoryRequiredTotal = memoryRequiredPartial + overflow
tensorSplit := ""
if len(gpus) > 1 {
splits := make([]string, len(gpus))
for i, count := range layerCounts {
splits[i] = strconv.Itoa(count)
}
tensorSplit = strings.Join(splits, ",")
}
allocationsList := []string{}
for _, a := range gpuAllocations {
allocationsList = append(allocationsList, format.HumanBytes2(a))
}
estimate := MemoryEstimate{
TotalSize: memoryRequiredTotal,
Layers: 0,
Graph: 0,
VRAMSize: 0,
GPUSizes: []uint64{},
inferenceLibrary: gpus[0].Library,
layersRequested: opts.NumGPU,
layersModel: int(ggml.KV().BlockCount()) + 1,
availableList: availableList,
kv: kv,
allocationsList: allocationsList,
memoryWeights: memoryWeights,
memoryLayerOutput: memoryLayerOutput,
graphFullOffload: graphFullOffload,
graphPartialOffload: graphPartialOffload,
projectorWeights: projectorWeights,
projectorGraph: projectorGraph,
}
if gpus[0].Library == "cpu" {
return estimate
}
if layerCount == 0 {
slog.Debug("insufficient VRAM to load any model layers")
return estimate
}
estimate.Layers = layerCount
estimate.Graph = graphOffload
estimate.VRAMSize = memoryRequiredPartial
estimate.TotalSize = memoryRequiredTotal
estimate.TensorSplit = tensorSplit
estimate.GPUSizes = gpuAllocations
return estimate
}
func (m MemoryEstimate) log() {
overhead := envconfig.GpuOverhead()
log := slog.With()
if m.projectorWeights > 0 {
log = log.With(
slog.Group(
"projector",
"weights", format.HumanBytes2(m.projectorWeights),
"graph", format.HumanBytes2(m.projectorGraph),
),
)
}
log.Info(
"offload to "+m.inferenceLibrary,
slog.Group(
"layers",
// requested number of layers to offload
"requested", m.layersRequested,
// The number of layers the model has (including output)
"model", m.layersModel,
// estimated number of layers that can be offloaded
"offload", m.Layers,
// multi-gpu split for tensors
"split", m.TensorSplit,
),
slog.Group(
"memory",
// memory available by GPU for offloading
"available", m.availableList,
"gpu_overhead", format.HumanBytes2(overhead),
slog.Group(
"required",
// memory required for full offloading
"full", format.HumanBytes2(m.TotalSize),
// memory required to offload layers.estimate layers
"partial", format.HumanBytes2(m.VRAMSize),
// memory of KV cache
"kv", format.HumanBytes2(m.kv),
// Allocations across the GPUs
"allocations", m.allocationsList,
),
slog.Group(
"weights",
// memory of the weights
"total", format.HumanBytes2(m.memoryWeights),
// memory of repeating layers
"repeating", format.HumanBytes2(m.memoryWeights-m.memoryLayerOutput),
// memory of non-repeating layers
"nonrepeating", format.HumanBytes2(m.memoryLayerOutput),
),
slog.Group(
"graph",
// memory of graph when fully offloaded
"full", format.HumanBytes2(m.graphFullOffload),
// memory of graph when not fully offloaded
"partial", format.HumanBytes2(m.graphPartialOffload),
),
),
)
}
func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
file, err := os.Open(filename)
if err != nil {
return 0, 0
}
defer file.Close()
ggml, _, err := DecodeGGML(file, 0)
if err != nil {
return 0, 0
}
for _, layer := range ggml.Tensors().Layers() {
weights += layer.size()
}
switch arch := ggml.KV().Architecture(); arch {
case "mllama":
kv := func(n string) uint64 {
if v, ok := ggml.KV()[arch+".vision."+n].(uint32); ok {
return uint64(v)
}
return 0
}
imageSize := kv("image_size")
maxNumTiles := kv("max_num_tiles")
embeddingLength := kv("embedding_length")
headCount := kv("attention.head_count")
numPatches := (imageSize / kv("patch_size")) * (imageSize / kv("patch_size"))
if _, ok := ggml.Tensors().Layers()["v"]["class_embd"]; ok {
numPatches++
}
numPaddedPatches := numPatches + 8 - (numPatches%8)%8
graphSize = 4 * (8 +
imageSize*imageSize*kv("num_channels")*maxNumTiles +
embeddingLength*numPatches*maxNumTiles +
9*embeddingLength*numPaddedPatches*maxNumTiles +
numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
}
return weights, graphSize
}