image processing for llama3.2 (#6963)
Co-authored-by: jmorganca <jmorganca@gmail.com> Co-authored-by: Michael Yang <mxyng@pm.me> Co-authored-by: Jesse Gross <jesse@ollama.com>
This commit is contained in:
parent
bf4018b9ec
commit
c7cb0f0602
35 changed files with 3851 additions and 203 deletions
|
@ -21,7 +21,6 @@ import (
|
|||
"path/filepath"
|
||||
"regexp"
|
||||
"runtime"
|
||||
"slices"
|
||||
"strconv"
|
||||
"strings"
|
||||
"sync/atomic"
|
||||
|
@ -453,7 +452,7 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
|||
return err
|
||||
}
|
||||
|
||||
opts.MultiModal = slices.Contains(info.Details.Families, "clip")
|
||||
opts.MultiModal = len(info.ProjectorInfo) != 0
|
||||
opts.ParentModel = info.Details.ParentModel
|
||||
|
||||
if interactive {
|
||||
|
|
|
@ -494,28 +494,22 @@ func buildModelfile(opts runOptions) string {
|
|||
}
|
||||
|
||||
func normalizeFilePath(fp string) string {
|
||||
// Define a map of escaped characters and their replacements
|
||||
replacements := map[string]string{
|
||||
"\\ ": " ", // Escaped space
|
||||
"\\(": "(", // Escaped left parenthesis
|
||||
"\\)": ")", // Escaped right parenthesis
|
||||
"\\[": "[", // Escaped left square bracket
|
||||
"\\]": "]", // Escaped right square bracket
|
||||
"\\{": "{", // Escaped left curly brace
|
||||
"\\}": "}", // Escaped right curly brace
|
||||
"\\$": "$", // Escaped dollar sign
|
||||
"\\&": "&", // Escaped ampersand
|
||||
"\\;": ";", // Escaped semicolon
|
||||
"\\'": "'", // Escaped single quote
|
||||
"\\\\": "\\", // Escaped backslash
|
||||
"\\*": "*", // Escaped asterisk
|
||||
"\\?": "?", // Escaped question mark
|
||||
}
|
||||
|
||||
for escaped, actual := range replacements {
|
||||
fp = strings.ReplaceAll(fp, escaped, actual)
|
||||
}
|
||||
return fp
|
||||
return strings.NewReplacer(
|
||||
"\\ ", " ", // Escaped space
|
||||
"\\(", "(", // Escaped left parenthesis
|
||||
"\\)", ")", // Escaped right parenthesis
|
||||
"\\[", "[", // Escaped left square bracket
|
||||
"\\]", "]", // Escaped right square bracket
|
||||
"\\{", "{", // Escaped left curly brace
|
||||
"\\}", "}", // Escaped right curly brace
|
||||
"\\$", "$", // Escaped dollar sign
|
||||
"\\&", "&", // Escaped ampersand
|
||||
"\\;", ";", // Escaped semicolon
|
||||
"\\'", "'", // Escaped single quote
|
||||
"\\\\", "\\", // Escaped backslash
|
||||
"\\*", "*", // Escaped asterisk
|
||||
"\\?", "?", // Escaped question mark
|
||||
).Replace(fp)
|
||||
}
|
||||
|
||||
func extractFileNames(input string) []string {
|
||||
|
@ -535,10 +529,9 @@ func extractFileData(input string) (string, []api.ImageData, error) {
|
|||
for _, fp := range filePaths {
|
||||
nfp := normalizeFilePath(fp)
|
||||
data, err := getImageData(nfp)
|
||||
if err != nil {
|
||||
if os.IsNotExist(err) {
|
||||
continue
|
||||
}
|
||||
if errors.Is(err, os.ErrNotExist) {
|
||||
continue
|
||||
} else if err != nil {
|
||||
fmt.Fprintf(os.Stderr, "Couldn't process image: %q\n", err)
|
||||
return "", imgs, err
|
||||
}
|
||||
|
@ -546,7 +539,7 @@ func extractFileData(input string) (string, []api.ImageData, error) {
|
|||
input = strings.ReplaceAll(input, fp, "")
|
||||
imgs = append(imgs, data)
|
||||
}
|
||||
return input, imgs, nil
|
||||
return strings.TrimSpace(input), imgs, nil
|
||||
}
|
||||
|
||||
func getImageData(filePath string) ([]byte, error) {
|
||||
|
|
|
@ -29,7 +29,7 @@ type tensorData struct {
|
|||
Shape []int `json:"shape"`
|
||||
}
|
||||
|
||||
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
|
||||
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
|
||||
t.Helper()
|
||||
|
||||
f, err := os.CreateTemp(t.TempDir(), "f16")
|
||||
|
@ -60,7 +60,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
|
|||
return r, m.KV(), m.Tensors()
|
||||
}
|
||||
|
||||
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors llm.Tensors) map[string]string {
|
||||
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors *llm.Tensors) map[string]string {
|
||||
actual := make(map[string]string)
|
||||
for k, v := range kv {
|
||||
if s, ok := v.(json.Marshaler); !ok {
|
||||
|
|
1
go.mod
1
go.mod
|
@ -22,6 +22,7 @@ require (
|
|||
github.com/mattn/go-runewidth v0.0.14
|
||||
github.com/nlpodyssey/gopickle v0.3.0
|
||||
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
|
||||
golang.org/x/image v0.14.0
|
||||
)
|
||||
|
||||
require (
|
||||
|
|
2
go.sum
2
go.sum
|
@ -230,6 +230,8 @@ golang.org/x/image v0.0.0-20200430140353-33d19683fad8/go.mod h1:FeLwcggjj3mMvU+o
|
|||
golang.org/x/image v0.0.0-20200618115811-c13761719519/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
|
||||
golang.org/x/image v0.0.0-20201208152932-35266b937fa6/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
|
||||
golang.org/x/image v0.0.0-20210216034530-4410531fe030/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
|
||||
golang.org/x/image v0.14.0 h1:tNgSxAFe3jC4uYqvZdTr84SZoM1KfwdC9SKIFrLjFn4=
|
||||
golang.org/x/image v0.14.0/go.mod h1:HUYqC05R2ZcZ3ejNQsIHQDQiwWM4JBqmm6MKANTp4LE=
|
||||
golang.org/x/lint v0.0.0-20181026193005-c67002cb31c3/go.mod h1:UVdnD1Gm6xHRNCYTkRU2/jEulfH38KcIWyp/GAMgvoE=
|
||||
golang.org/x/lint v0.0.0-20190227174305-5b3e6a55c961/go.mod h1:wehouNa3lNwaWXcvxsM5YxQ5yQlVC4a0KAMCusXpPoU=
|
||||
golang.org/x/lint v0.0.0-20190313153728-d0100b6bd8b3/go.mod h1:6SW0HCj/g11FgYtHlgUYUwCkIfeOF89ocIRzGO/8vkc=
|
||||
|
|
4
llama/ggml-cuda.cu
vendored
4
llama/ggml-cuda.cu
vendored
|
@ -2296,6 +2296,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
|||
case GGML_OP_PAD:
|
||||
ggml_cuda_op_pad(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_UNPAD:
|
||||
ggml_cuda_op_unpad(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ARANGE:
|
||||
ggml_cuda_op_arange(ctx, dst);
|
||||
break;
|
||||
|
@ -3018,6 +3021,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|||
case GGML_OP_GROUP_NORM:
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_UNPAD:
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
|
|
46
llama/ggml-cuda/pad.cu
vendored
46
llama/ggml-cuda/pad.cu
vendored
|
@ -73,3 +73,49 @@ void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
|
||||
}
|
||||
|
||||
static __global__ void unpad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
|
||||
// blockIdx.z: idx of ne2*ne3, aka ne02*ne03
|
||||
// blockIdx.y: idx of ne1
|
||||
// blockIDx.x: idx of ne0 / BLOCK_SIZE
|
||||
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (nidx >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// operation
|
||||
int offset_dst =
|
||||
nidx +
|
||||
blockIdx.y * ne0 +
|
||||
blockIdx.z * ne0 * gridDim.y;
|
||||
if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
|
||||
int offset_src =
|
||||
nidx +
|
||||
blockIdx.y * ne00 +
|
||||
blockIdx.z * ne00 * ne01;
|
||||
dst[offset_dst] = x[offset_src];
|
||||
}
|
||||
}
|
||||
|
||||
static void unpad_f32_cuda(const float * x, float * dst,
|
||||
const int ne00, const int ne01, const int ne02, const int ne03,
|
||||
const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
|
||||
int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
|
||||
dim3 gridDim(num_blocks, ne1, ne2*ne3);
|
||||
unpad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
||||
|
||||
unpad_f32_cuda(src0_d, dst_d,
|
||||
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
|
||||
}
|
||||
|
|
1
llama/ggml-cuda/pad.cuh
vendored
1
llama/ggml-cuda/pad.cuh
vendored
|
@ -29,3 +29,4 @@
|
|||
#define CUDA_PAD_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
|
45
llama/ggml-metal.metal
vendored
45
llama/ggml-metal.metal
vendored
|
@ -2055,6 +2055,51 @@ kernel void kernel_pad_f32(
|
|||
}
|
||||
}
|
||||
|
||||
kernel void kernel_unpad_f32(
|
||||
device const char * src0,
|
||||
device char * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & ne03,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant uint64_t & nb03,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant int64_t & ne2,
|
||||
constant int64_t & ne3,
|
||||
constant uint64_t & nb0,
|
||||
constant uint64_t & nb1,
|
||||
constant uint64_t & nb2,
|
||||
constant uint64_t & nb3,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
|
||||
const int64_t i3 = tgpig.z;
|
||||
const int64_t i2 = tgpig.y;
|
||||
const int64_t i1 = tgpig.x;
|
||||
|
||||
const int64_t i03 = i3;
|
||||
const int64_t i02 = i2;
|
||||
const int64_t i01 = i1;
|
||||
|
||||
device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
|
||||
device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
|
||||
|
||||
if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
||||
if (i0 < ne00) {
|
||||
dst_ptr[i0] = src0_ptr[i0];
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_arange_f32(
|
||||
device char * dst,
|
||||
constant int64_t & ne0,
|
||||
|
|
33
llama/ggml-metal_darwin_arm64.m
vendored
33
llama/ggml-metal_darwin_arm64.m
vendored
|
@ -219,6 +219,7 @@ enum ggml_metal_kernel_type {
|
|||
GGML_METAL_KERNEL_TYPE_IM2COL_F32,
|
||||
GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_PAD_F32,
|
||||
GGML_METAL_KERNEL_TYPE_UNPAD_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ARANGE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
|
||||
|
@ -715,6 +716,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(void) {
|
|||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UNPAD_F32, unpad_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
|
||||
|
@ -872,6 +874,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_context * ctx
|
|||
return false;
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_UNPAD:
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_ARGSORT:
|
||||
|
@ -2681,6 +2684,36 @@ static void ggml_metal_encode_node(
|
|||
|
||||
const int nth = MIN(1024, ne0);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_UNPAD:
|
||||
{
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UNPAD_F32].pipeline;
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
||||
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
||||
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
||||
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
|
||||
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
|
||||
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
|
||||
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
|
||||
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
|
||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
|
||||
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
|
||||
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
|
||||
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
|
||||
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
|
||||
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
|
||||
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
|
||||
|
||||
const int nth = MIN(1024, ne0);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_ARANGE:
|
||||
|
|
93
llama/ggml.c
vendored
93
llama/ggml.c
vendored
|
@ -3023,6 +3023,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
|||
"POOL_2D_BACK",
|
||||
"UPSCALE",
|
||||
"PAD",
|
||||
"UNPAD",
|
||||
"ARANGE",
|
||||
"TIMESTEP_EMBEDDING",
|
||||
"ARGSORT",
|
||||
|
@ -3056,7 +3057,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
|||
"OPT_STEP_ADAMW",
|
||||
};
|
||||
|
||||
static_assert(GGML_OP_COUNT == 80, "GGML_OP_COUNT != 80");
|
||||
static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
|
||||
|
||||
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"none",
|
||||
|
@ -3117,6 +3118,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
|||
"pool_2d_back(x)",
|
||||
"upscale(x)",
|
||||
"pad(x)",
|
||||
"unpad(x)",
|
||||
"arange(start, stop, step)",
|
||||
"timestep_embedding(timesteps, dim, max_period)",
|
||||
"argsort(x)",
|
||||
|
@ -3150,7 +3152,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
|||
"adamw(x)",
|
||||
};
|
||||
|
||||
static_assert(GGML_OP_COUNT == 80, "GGML_OP_COUNT != 80");
|
||||
static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
|
||||
|
||||
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
|
||||
|
||||
|
@ -6981,6 +6983,32 @@ struct ggml_tensor * ggml_pad(
|
|||
return result;
|
||||
}
|
||||
|
||||
// ggml_unpad
|
||||
|
||||
struct ggml_tensor * ggml_unpad(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int p0, int p1, int p2, int p3) {
|
||||
bool is_node = false;
|
||||
|
||||
if (a->grad) {
|
||||
GGML_ABORT("fatal error"); // TODO: implement backward
|
||||
is_node = true;
|
||||
}
|
||||
|
||||
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
|
||||
a->ne[0] - p0,
|
||||
a->ne[1] - p1,
|
||||
a->ne[2] - p2,
|
||||
a->ne[3] - p3);
|
||||
|
||||
result->op = GGML_OP_UNPAD;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// ggml_arange
|
||||
|
||||
struct ggml_tensor * ggml_arange(
|
||||
|
@ -15338,6 +15366,58 @@ static void ggml_compute_forward_pad(
|
|||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_unpad_f32(
|
||||
const struct ggml_compute_params *params,
|
||||
struct ggml_tensor *dst) {
|
||||
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||||
GGML_ASSERT( dst->nb[0] == sizeof(float));
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
float * dst_ptr = (float *) dst->data;
|
||||
|
||||
// TODO: optimize
|
||||
|
||||
for (int64_t i2 = 0; i2 < ne2; ++i2) {
|
||||
for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
|
||||
for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
||||
for (int64_t i3 = 0; i3 < ne3; ++i3) {
|
||||
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
|
||||
|
||||
const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
|
||||
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||
dst_ptr[dst_idx] = *src_ptr;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_unpad(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_unpad_f32(params, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_arange
|
||||
|
||||
|
@ -17320,6 +17400,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
|||
{
|
||||
ggml_compute_forward_pad(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_UNPAD:
|
||||
{
|
||||
ggml_compute_forward_unpad(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_ARANGE:
|
||||
{
|
||||
ggml_compute_forward_arange(params, tensor);
|
||||
|
@ -18395,6 +18479,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
|||
{
|
||||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||||
}
|
||||
case GGML_OP_UNPAD:
|
||||
{
|
||||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||||
}
|
||||
case GGML_OP_ARANGE:
|
||||
{
|
||||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||||
|
@ -19191,6 +19279,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
|||
} break;
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_UNPAD:
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_ARGSORT:
|
||||
|
|
10
llama/ggml.h
vendored
10
llama/ggml.h
vendored
|
@ -532,6 +532,7 @@ extern "C" {
|
|||
GGML_OP_POOL_2D_BACK,
|
||||
GGML_OP_UPSCALE, // nearest interpolate
|
||||
GGML_OP_PAD,
|
||||
GGML_OP_UNPAD,
|
||||
GGML_OP_ARANGE,
|
||||
GGML_OP_TIMESTEP_EMBEDDING,
|
||||
GGML_OP_ARGSORT,
|
||||
|
@ -1790,6 +1791,15 @@ extern "C" {
|
|||
int p2,
|
||||
int p3);
|
||||
|
||||
// unpad each dimension: [x, ..., x, y, ..., y] -> [x, ..., x]
|
||||
GGML_API struct ggml_tensor * ggml_unpad(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int p0,
|
||||
int p1,
|
||||
int p2,
|
||||
int p3);
|
||||
|
||||
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
|
||||
// timesteps: [N,]
|
||||
// return: [N, dim]
|
||||
|
|
456
llama/llama.cpp
vendored
456
llama/llama.cpp
vendored
|
@ -195,6 +195,7 @@ static std::string format(const char * fmt, ...) {
|
|||
|
||||
enum llm_arch {
|
||||
LLM_ARCH_LLAMA,
|
||||
LLM_ARCH_MLLAMA,
|
||||
LLM_ARCH_FALCON,
|
||||
LLM_ARCH_BAICHUAN,
|
||||
LLM_ARCH_GROK,
|
||||
|
@ -249,6 +250,7 @@ enum llm_arch {
|
|||
|
||||
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_LLAMA, "llama" },
|
||||
{ LLM_ARCH_MLLAMA, "mllama" },
|
||||
{ LLM_ARCH_FALCON, "falcon" },
|
||||
{ LLM_ARCH_GROK, "grok" },
|
||||
{ LLM_ARCH_GPT2, "gpt2" },
|
||||
|
@ -356,6 +358,7 @@ enum llm_kv {
|
|||
LLM_KV_ATTENTION_SLIDING_WINDOW,
|
||||
LLM_KV_ATTENTION_SCALE,
|
||||
LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
|
||||
LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS,
|
||||
|
||||
LLM_KV_ROPE_DIMENSION_COUNT,
|
||||
LLM_KV_ROPE_FREQ_BASE,
|
||||
|
@ -465,6 +468,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
|||
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
||||
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
||||
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection.%d" },
|
||||
{ LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers" },
|
||||
|
||||
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
|
||||
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
|
||||
|
@ -639,6 +643,14 @@ enum llm_tensor {
|
|||
LLM_TENSOR_CLS,
|
||||
LLM_TENSOR_CLS_OUT,
|
||||
LLM_TENSOR_BSKCN_TV,
|
||||
LLM_TENSOR_CROSS_ATTN_K_NORM,
|
||||
LLM_TENSOR_CROSS_ATTN_K_PROJ,
|
||||
LLM_TENSOR_CROSS_ATTN_O_PROJ,
|
||||
LLM_TENSOR_CROSS_ATTN_Q_NORM,
|
||||
LLM_TENSOR_CROSS_ATTN_Q_PROJ,
|
||||
LLM_TENSOR_CROSS_ATTN_V_PROJ,
|
||||
LLM_TENSOR_CROSS_ATTN_ATTN_GATE,
|
||||
LLM_TENSOR_CROSS_ATTN_MLP_GATE,
|
||||
};
|
||||
|
||||
static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
|
||||
|
@ -668,6 +680,40 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
|||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_MLLAMA,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
|
||||
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_K_NORM, "blk.%d.cross_attn_k_norm" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_K_PROJ, "blk.%d.cross_attn_k_proj" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_O_PROJ, "blk.%d.cross_attn_o_proj" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_Q_NORM, "blk.%d.cross_attn_q_norm" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_Q_PROJ, "blk.%d.cross_attn_q_proj" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_V_PROJ, "blk.%d.cross_attn_v_proj" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_ATTN_GATE, "blk.%d.cross_attn_attn_gate" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_MLP_GATE, "blk.%d.cross_attn_mlp_gate" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_BAICHUAN,
|
||||
{
|
||||
|
@ -2416,6 +2462,7 @@ enum e_model {
|
|||
MODEL_40B,
|
||||
MODEL_65B,
|
||||
MODEL_70B,
|
||||
MODEL_90B,
|
||||
MODEL_236B,
|
||||
MODEL_314B,
|
||||
MODEL_SMALL,
|
||||
|
@ -2460,6 +2507,7 @@ struct llama_hparams {
|
|||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
||||
|
||||
std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr;
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> cross_attn_layers;
|
||||
|
||||
uint32_t n_layer_dense_lead = 0;
|
||||
uint32_t n_lora_q = 0;
|
||||
|
@ -2528,10 +2576,11 @@ struct llama_hparams {
|
|||
if (this->n_expert != other.n_expert) return true;
|
||||
if (this->n_expert_used != other.n_expert_used) return true;
|
||||
|
||||
if (this->n_head_arr != other.n_head_arr) return true;
|
||||
if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
|
||||
if (this->n_ff_arr != other.n_ff_arr) return true;
|
||||
if (this->n_bskcn_arr != other.n_bskcn_arr) return true;
|
||||
if (this->n_head_arr != other.n_head_arr) return true;
|
||||
if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
|
||||
if (this->n_ff_arr != other.n_ff_arr) return true;
|
||||
if (this->n_bskcn_arr != other.n_bskcn_arr) return true;
|
||||
if (this->cross_attn_layers != other.cross_attn_layers) return true;
|
||||
|
||||
if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true;
|
||||
if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
|
||||
|
@ -2649,6 +2698,10 @@ struct llama_hparams {
|
|||
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
bool cross_attention_layer(uint32_t il) const {
|
||||
return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
|
||||
}
|
||||
};
|
||||
|
||||
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|
||||
|
@ -2832,6 +2885,16 @@ struct llama_layer {
|
|||
struct ggml_tensor * ffn_down_scale;
|
||||
|
||||
struct ggml_tensor * bskcn_tv;
|
||||
|
||||
// cross attention
|
||||
struct ggml_tensor * cross_attn_k_norm;
|
||||
struct ggml_tensor * cross_attn_k_proj;
|
||||
struct ggml_tensor * cross_attn_o_proj;
|
||||
struct ggml_tensor * cross_attn_q_norm;
|
||||
struct ggml_tensor * cross_attn_q_proj;
|
||||
struct ggml_tensor * cross_attn_v_proj;
|
||||
struct ggml_tensor * cross_attn_attn_gate;
|
||||
struct ggml_tensor * cross_attn_mlp_gate;
|
||||
};
|
||||
|
||||
// very similar to llama_batch,
|
||||
|
@ -3478,6 +3541,12 @@ struct llama_context {
|
|||
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
|
||||
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
|
||||
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
|
||||
|
||||
// TODO (jmorganca): this should most likely be passed in as part of a batch
|
||||
// and not set on the context for all batches.
|
||||
float * cross_attn_state = nullptr;
|
||||
bool cross_attn_state_first_pass = true;
|
||||
struct ggml_tensor * inp_cross_attn_state; // F32 [4, n_embd, 1061]
|
||||
};
|
||||
|
||||
struct llama_lora_weight {
|
||||
|
@ -3712,6 +3781,18 @@ static bool llama_kv_cache_init(
|
|||
cache.v_l.reserve(n_layer);
|
||||
|
||||
for (int i = 0; i < (int) n_layer; i++) {
|
||||
// for cross attention layers
|
||||
if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layer(i)) {
|
||||
struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
|
||||
ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
|
||||
ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
|
||||
ggml_format_name(k, "cache_k_l%d", i);
|
||||
ggml_format_name(v, "cache_v_l%d", i);
|
||||
cache.k_l.push_back(k);
|
||||
cache.v_l.push_back(v);
|
||||
continue;
|
||||
}
|
||||
|
||||
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
|
||||
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
|
||||
|
||||
|
@ -5486,12 +5567,14 @@ static void llm_load_hparams(
|
|||
}
|
||||
|
||||
// zero-out the per-layer hparams
|
||||
std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
|
||||
std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
|
||||
std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
|
||||
std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
|
||||
std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
|
||||
std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
|
||||
std::fill(hparams.cross_attn_layers.begin(), hparams.cross_attn_layers.end(), -1);
|
||||
|
||||
ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer);
|
||||
ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer);
|
||||
ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer);
|
||||
ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer);
|
||||
ml.get_arr(LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, hparams.cross_attn_layers, false);
|
||||
|
||||
// n_head_kv is optional, default to n_head
|
||||
hparams.n_head_kv_arr = hparams.n_head_arr;
|
||||
|
@ -5540,7 +5623,7 @@ static void llm_load_hparams(
|
|||
|
||||
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
|
||||
|
||||
if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
|
||||
if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_MLLAMA || model.arch == LLM_ARCH_FALCON) {
|
||||
if (hparams.n_rot != hparams.n_embd_head_k) {
|
||||
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
|
||||
}
|
||||
|
@ -5580,6 +5663,16 @@ static void llm_load_hparams(
|
|||
}
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_MLLAMA:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 40: model.type = e_model::MODEL_11B; break;
|
||||
case 100: model.type = e_model::MODEL_90B; break;
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_MINICPM:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
@ -7275,6 +7368,55 @@ static bool llm_load_tensors(
|
|||
layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head_qk_rope/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_MLLAMA:
|
||||
{
|
||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab+8});
|
||||
|
||||
// output
|
||||
{
|
||||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
|
||||
// if output is NULL, init from the input tok embed
|
||||
if (model.output == NULL) {
|
||||
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||||
|
||||
auto & layer = model.layers[i];
|
||||
|
||||
if (hparams.cross_attention_layer(i)) {
|
||||
layer.cross_attn_k_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_NORM, "weight", i), {128});
|
||||
layer.cross_attn_k_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_PROJ, "weight", i), {n_embd, 1024});
|
||||
layer.cross_attn_o_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_O_PROJ, "weight", i), {n_embd, n_embd});
|
||||
layer.cross_attn_q_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_Q_NORM, "weight", i), {128});
|
||||
layer.cross_attn_q_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_Q_PROJ, "weight", i), {n_embd, n_embd});
|
||||
layer.cross_attn_v_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_V_PROJ, "weight", i), {n_embd, 1024});
|
||||
layer.cross_attn_attn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_ATTN_GATE, i), {1});
|
||||
layer.cross_attn_mlp_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_MLP_GATE, i), {1});
|
||||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
} else {
|
||||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
|
||||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
||||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
|
||||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_GROK:
|
||||
{
|
||||
if (n_expert == 0) {
|
||||
|
@ -9119,7 +9261,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
|
|||
|
||||
if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
|
||||
model.hparams.n_vocab != model.vocab.id_to_token.size()) {
|
||||
throw std::runtime_error("vocab size mismatch");
|
||||
LLAMA_LOG_WARN("%s: vocab mismatch %u !- %zu ...\n", __func__, model.hparams.n_vocab, model.vocab.id_to_token.size());
|
||||
}
|
||||
|
||||
if (params.vocab_only) {
|
||||
|
@ -9204,7 +9346,7 @@ static struct ggml_tensor * llm_build_inp_embd(
|
|||
|
||||
inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
|
||||
} else {
|
||||
lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
|
||||
lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
|
||||
inpL = lctx.inp_embd;
|
||||
ggml_set_input(lctx.inp_embd);
|
||||
}
|
||||
|
@ -9219,6 +9361,22 @@ static struct ggml_tensor * llm_build_inp_embd(
|
|||
return inpL;
|
||||
}
|
||||
|
||||
static struct ggml_tensor * llm_build_inp_cross_attn_state(
|
||||
struct ggml_context * ctx,
|
||||
struct llama_context & lctx,
|
||||
const llama_hparams & hparams,
|
||||
const llm_build_cb & cb) {
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
|
||||
struct ggml_tensor * inpCAS;
|
||||
lctx.inp_cross_attn_state = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd, 1601, 4);
|
||||
cb(lctx.inp_cross_attn_state, "inp_cross_attn_state", -1);
|
||||
ggml_set_input(lctx.inp_cross_attn_state);
|
||||
inpCAS = lctx.inp_cross_attn_state;
|
||||
|
||||
return inpCAS;
|
||||
}
|
||||
|
||||
static void llm_build_kv_store(
|
||||
struct ggml_context * ctx,
|
||||
const llama_hparams & hparams,
|
||||
|
@ -10193,6 +10351,7 @@ struct llm_build_context {
|
|||
lctx.inp_pos_bucket = nullptr;
|
||||
lctx.inp_embd_enc = nullptr;
|
||||
lctx.inp_KQ_mask_cross = nullptr;
|
||||
lctx.inp_cross_attn_state = nullptr;
|
||||
}
|
||||
|
||||
void free() {
|
||||
|
@ -10780,6 +10939,253 @@ struct llm_build_context {
|
|||
LLM_NORM_RMS, cb, -1);
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||||
cb(cur, "result_output", -1);
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_mllama() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
struct ggml_tensor * inpCAS;
|
||||
|
||||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||
inpCAS = llm_build_inp_cross_attn_state(ctx0, lctx, hparams, cb);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
if (hparams.cross_attention_layer(il)) {
|
||||
if (!lctx.cross_attn_state) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// cross attention layer
|
||||
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_q_proj, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Qcur = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
// TODO: is this required?
|
||||
Qcur = ggml_cont(ctx0, Qcur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].cross_attn_q_norm, NULL, LLM_NORM_RMS, cb, il);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
struct ggml_tensor * Kcur;
|
||||
if (lctx.cross_attn_state_first_pass) {
|
||||
Kcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_k_proj, inpCAS);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, 6404);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
Kcur = ggml_permute(ctx0, Kcur, 0, 2, 1, 3);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
// TODO: is this required?
|
||||
Kcur = ggml_cont(ctx0, Kcur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].cross_attn_k_norm, NULL, LLM_NORM_RMS, cb, il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, kv_self.k_l[il]));
|
||||
} else {
|
||||
Kcur = ggml_view_tensor(ctx0, kv_self.k_l[il]);
|
||||
cb(Kcur, "Kcur (view)", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * Vcur;
|
||||
if (lctx.cross_attn_state_first_pass) {
|
||||
Vcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_v_proj, inpCAS);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, 6404);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Vcur = ggml_permute(ctx0, Vcur, 0, 2, 1, 3);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, kv_self.v_l[il]));
|
||||
} else {
|
||||
Vcur = ggml_view_tensor(ctx0, kv_self.v_l[il]);
|
||||
cb(Vcur, "Vcur (view)", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * kq = ggml_mul_mat(ctx0, Kcur, Qcur);
|
||||
cb(kq, "kq", il);
|
||||
|
||||
kq = ggml_scale_inplace(ctx0, kq, 1.0f/sqrtf(float(n_embd_head)));
|
||||
cb(kq, "kq_scaled", il);
|
||||
|
||||
// TODO: apply causal masks
|
||||
struct ggml_tensor * kq_soft_max = ggml_soft_max_inplace(ctx0, kq);
|
||||
cb(kq_soft_max, "kq_soft_max", il);
|
||||
|
||||
Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, Vcur));
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
struct ggml_tensor * kqv = ggml_mul_mat(ctx0, Vcur, kq_soft_max);
|
||||
cb(kqv, "kqv", il);
|
||||
|
||||
struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
|
||||
cb(kqv_merged, "kqv_merged", il);
|
||||
|
||||
cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens);
|
||||
cb(cur, "kqv_merged_cont", il);
|
||||
|
||||
cur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_o_proj, cur);
|
||||
cb(cur, "cur", il);
|
||||
|
||||
// TODO: do this in place once?
|
||||
cur = ggml_mul(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_attn_gate));
|
||||
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
||||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
// TODO: do this inplace once?
|
||||
cur = ggml_add_inplace(ctx0, ggml_mul_inplace(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_mlp_gate)), ffn_inp);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
} else {
|
||||
// self attention layer
|
||||
|
||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
struct ggml_tensor * rope_factors = build_rope_factors(il);
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
if (model.layers[il].bq) {
|
||||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
cb(Qcur, "Qcur", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
if (model.layers[il].bk) {
|
||||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
cb(Kcur, "Kcur", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
if (model.layers[il].bv) {
|
||||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
cb(Vcur, "Vcur", il);
|
||||
}
|
||||
|
||||
Qcur = ggml_rope_ext(
|
||||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Kcur = ggml_rope_ext(
|
||||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
|
||||
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
n_tokens = n_outputs;
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
||||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = llm_build_norm(ctx0, cur, hparams,
|
||||
model.output_norm, NULL,
|
||||
LLM_NORM_RMS, cb, -1);
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
// lm_head
|
||||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||||
cb(cur, "result_output", -1);
|
||||
|
@ -16527,6 +16933,10 @@ static struct ggml_cgraph * llama_build_graph(
|
|||
{
|
||||
result = llm.build_llama();
|
||||
} break;
|
||||
case LLM_ARCH_MLLAMA:
|
||||
{
|
||||
result = llm.build_mllama();
|
||||
} break;
|
||||
case LLM_ARCH_BAICHUAN:
|
||||
{
|
||||
result = llm.build_baichuan();
|
||||
|
@ -16799,6 +17209,14 @@ static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
|
|||
ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
|
||||
}
|
||||
|
||||
// TODO (jmorganca): this might copy a lot of data on every request of a
|
||||
// single generation even though it doesn't change, so we should
|
||||
// find a way to not set this more than one time per image
|
||||
if (lctx.inp_cross_attn_state &&
|
||||
lctx.inp_cross_attn_state->buffer) {
|
||||
ggml_backend_tensor_set(lctx.inp_cross_attn_state, lctx.cross_attn_state, 0, hparams.n_embd * 1601 * 4 * ggml_element_size(lctx.inp_cross_attn_state));
|
||||
}
|
||||
|
||||
if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
|
||||
GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
|
||||
const int64_t n_tokens = batch.n_tokens;
|
||||
|
@ -17481,6 +17899,10 @@ static int llama_decode_internal(
|
|||
|
||||
llama_set_inputs(lctx, ubatch);
|
||||
|
||||
// TODO: replace with something better to find out if its
|
||||
// our first actual pass
|
||||
lctx.cross_attn_state_first_pass = false;
|
||||
|
||||
llama_graph_compute(lctx, gf, n_threads, threadpool);
|
||||
|
||||
// update the kv ring buffer
|
||||
|
@ -18674,7 +19096,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
if (llama_model_has_encoder(&model)) {
|
||||
n_attn_layer *= 3;
|
||||
}
|
||||
GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
|
||||
if (qs.n_attention_wv != n_attn_layer) {
|
||||
LLAMA_LOG_WARN("%s: n_attention_wv is unexpected, expected: %d, found: %d\n", __func__, n_attn_layer, qs.n_attention_wv);
|
||||
}
|
||||
}
|
||||
|
||||
size_t total_size_org = 0;
|
||||
|
@ -19770,6 +20194,11 @@ struct llama_context * llama_new_context_with_model(
|
|||
return ctx;
|
||||
}
|
||||
|
||||
void llama_set_cross_attn_state(struct llama_context * ctx, float * cross_attn_state) {
|
||||
ctx->cross_attn_state_first_pass = true;
|
||||
ctx->cross_attn_state = cross_attn_state;
|
||||
}
|
||||
|
||||
void llama_free(struct llama_context * ctx) {
|
||||
delete ctx;
|
||||
}
|
||||
|
@ -19840,6 +20269,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|||
|
||||
// use what we call a normal RoPE, operating on pairs of consecutive head values
|
||||
case LLM_ARCH_LLAMA:
|
||||
case LLM_ARCH_MLLAMA:
|
||||
case LLM_ARCH_BAICHUAN:
|
||||
case LLM_ARCH_STARCODER:
|
||||
case LLM_ARCH_PLAMO:
|
||||
|
|
|
@ -60,7 +60,9 @@ package llama
|
|||
#include <stdlib.h>
|
||||
#include "llama.h"
|
||||
#include "clip.h"
|
||||
#include "ggml.h"
|
||||
#include "llava.h"
|
||||
#include "mllama.h"
|
||||
#include "sampling_ext.h"
|
||||
|
||||
bool llamaProgressCallback(float progress, void *user_data);
|
||||
|
@ -410,18 +412,60 @@ func Quantize(infile, outfile string, ftype uint32) error {
|
|||
|
||||
// llava
|
||||
type ClipContext struct {
|
||||
c *C.struct_clip_ctx
|
||||
c *C.struct_clip_ctx
|
||||
m *C.struct_mllama_ctx
|
||||
IsMllama bool
|
||||
embedPin runtime.Pinner
|
||||
pinned bool
|
||||
}
|
||||
|
||||
func NewClipContext(modelPath string) *ClipContext {
|
||||
func getVisionArch(mp *C.char) (string, error) {
|
||||
gguf_ctx := C.gguf_init_from_file(mp, C.struct_gguf_init_params{no_alloc: true, ctx: (**C.struct_ggml_context)(C.NULL)})
|
||||
if gguf_ctx == nil {
|
||||
return "", errors.New("unable to load vision projector")
|
||||
}
|
||||
defer C.gguf_free(gguf_ctx)
|
||||
|
||||
arch_index := C.gguf_find_key(gguf_ctx, C.CString("general.architecture"))
|
||||
if int(arch_index) < 0 {
|
||||
return "", errors.New("unknown vision model architecture")
|
||||
}
|
||||
|
||||
arch := C.gguf_get_val_str(gguf_ctx, arch_index)
|
||||
|
||||
return C.GoString(arch), nil
|
||||
}
|
||||
|
||||
func NewClipContext(modelPath string) (*ClipContext, error) {
|
||||
mp := C.CString(modelPath)
|
||||
defer C.free(unsafe.Pointer(mp))
|
||||
cc := C.clip_model_load(mp, 1)
|
||||
return &ClipContext{c: cc}
|
||||
|
||||
arch, err := getVisionArch(mp)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var cc ClipContext
|
||||
if arch == "clip" {
|
||||
cc.c = C.clip_model_load(mp, 1)
|
||||
} else if arch == "mllama" {
|
||||
cc.m = C.mllama_model_load(mp, 1)
|
||||
cc.IsMllama = true
|
||||
} else {
|
||||
return nil, fmt.Errorf("unknown vision model architecture: %s", arch)
|
||||
}
|
||||
|
||||
// XXX: check embedding size?
|
||||
return &cc, nil
|
||||
}
|
||||
|
||||
func (c *ClipContext) Free() {
|
||||
C.clip_free(c.c)
|
||||
if c.c != nil {
|
||||
C.clip_free(c.c)
|
||||
}
|
||||
if c.m != nil {
|
||||
C.mllama_free(c.m)
|
||||
}
|
||||
}
|
||||
|
||||
func NewLlavaImageEmbed(llamaContext *Context, clipContext *ClipContext, data []byte) [][]float32 {
|
||||
|
@ -445,6 +489,48 @@ func NewLlavaImageEmbed(llamaContext *Context, clipContext *ClipContext, data []
|
|||
return embed
|
||||
}
|
||||
|
||||
func NewMllamaImageEmbed(llamaContext *Context, clipContext *ClipContext, data []byte, aspectRatioId int) [][]float32 {
|
||||
img := C.mllama_image_init()
|
||||
defer C.mllama_image_free(img)
|
||||
|
||||
C.mllama_image_load_from_data(unsafe.Pointer(&data[0]), C.int(len(data)), 560, 560, 3, 4, C.int(aspectRatioId), img)
|
||||
|
||||
numTokens := int(C.mllama_n_positions(clipContext.m) * C.mllama_n_tiles(clipContext.m))
|
||||
numEmbed := llamaContext.Model().NEmbd()
|
||||
|
||||
rows := make([]float32, numEmbed*numTokens)
|
||||
C.mllama_image_encode(clipContext.m, C.int(llamaContext.numThreads), img, (*C.float)(unsafe.Pointer(&rows[0])))
|
||||
|
||||
embed := make([][]float32, numTokens)
|
||||
for i := range embed {
|
||||
embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
|
||||
}
|
||||
|
||||
return embed
|
||||
}
|
||||
|
||||
// This really needs to be set on a batch instead
|
||||
func MllamaSetCrossAttn(llamaContext *Context, clipContext *ClipContext, embed [][]float32) {
|
||||
if embed != nil {
|
||||
if clipContext.pinned {
|
||||
panic("Cross attention state already pinned")
|
||||
}
|
||||
|
||||
embedData := &embed[0][0]
|
||||
clipContext.embedPin.Pin(embedData)
|
||||
clipContext.pinned = true
|
||||
|
||||
C.llama_set_cross_attn_state(llamaContext.c, (*C.float)(unsafe.Pointer(embedData)))
|
||||
} else {
|
||||
C.llama_set_cross_attn_state(llamaContext.c, (*C.float)(C.NULL))
|
||||
|
||||
if clipContext.pinned {
|
||||
clipContext.embedPin.Unpin()
|
||||
clipContext.pinned = false
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// sampling
|
||||
// TODO: this is a temporary wrapper to allow calling C++ code from CGo
|
||||
type SamplingContext struct {
|
||||
|
|
4
llama/llama.h
vendored
4
llama/llama.h
vendored
|
@ -449,6 +449,10 @@ extern "C" {
|
|||
struct llama_model * model,
|
||||
struct llama_context_params params);
|
||||
|
||||
// TODO (jmorganca): this should most likely be passed in as part of a batch
|
||||
// and not set on the context for all batches.
|
||||
LLAMA_API void llama_set_cross_attn_state(struct llama_context * ctx, float * cross_attn_state);
|
||||
|
||||
// Frees all allocated memory
|
||||
LLAMA_API void llama_free(struct llama_context * ctx);
|
||||
|
||||
|
|
900
llama/mllama.cpp
vendored
Normal file
900
llama/mllama.cpp
vendored
Normal file
|
@ -0,0 +1,900 @@
|
|||
// NOTE: This is modified from clip.cpp for Mllama only
|
||||
#include "mllama.h"
|
||||
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
#include "ggml-cuda.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
#include "ggml-metal.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CANN
|
||||
#include "ggml-cann.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_VULKAN
|
||||
#include "ggml-vulkan.h"
|
||||
#endif
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdarg>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <stdexcept>
|
||||
#include <vector>
|
||||
|
||||
#define REQUIRE(x) \
|
||||
do { \
|
||||
if (!(x)) { \
|
||||
throw std::runtime_error("REQUIRE failed: " #x); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define LOG(fmt, ...) fprintf(stderr, "%s: " fmt "\n", __func__, ##__VA_ARGS__)
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#if __GLIBCXX__
|
||||
#include <cstdio>
|
||||
#include <ext/stdio_filebuf.h>
|
||||
#include <fcntl.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
struct mllama_image {
|
||||
int width;
|
||||
int height;
|
||||
|
||||
int num_channels = 3;
|
||||
int num_tiles = 4;
|
||||
|
||||
int aspect_ratio_id;
|
||||
|
||||
std::vector<float> data;
|
||||
};
|
||||
|
||||
static std::string format(const char *fmt, ...) {
|
||||
va_list args;
|
||||
va_start(args, fmt);
|
||||
std::vector<char> b(128);
|
||||
int n = vsnprintf(b.data(), b.size(), fmt, args);
|
||||
REQUIRE(n >= 0 && n < b.size());
|
||||
va_end(args);
|
||||
return std::string(b.data(), b.size());
|
||||
}
|
||||
|
||||
//
|
||||
// utilities to get data from a gguf file
|
||||
//
|
||||
|
||||
static int get_key_index(const gguf_context *ctx, const char *key) {
|
||||
int key_index = gguf_find_key(ctx, key);
|
||||
REQUIRE(key_index != -1);
|
||||
return key_index;
|
||||
}
|
||||
|
||||
static std::vector<uint32_t> get_u32_array(const gguf_context *ctx, const std::string &key) {
|
||||
const int i = get_key_index(ctx, key.c_str());
|
||||
const int n = gguf_get_arr_n(ctx, i);
|
||||
const uint32_t *data = (uint32_t *)gguf_get_arr_data(ctx, i);
|
||||
|
||||
std::vector<uint32_t> s(n);
|
||||
for (size_t j = 0; j < s.size(); j++) {
|
||||
s[j] = data[j];
|
||||
}
|
||||
|
||||
return s;
|
||||
}
|
||||
|
||||
static uint32_t get_u32(const gguf_context *ctx, const std::string &key) {
|
||||
return gguf_get_val_u32(ctx, get_key_index(ctx, key.c_str()));
|
||||
}
|
||||
|
||||
static float get_f32(const gguf_context *ctx, const std::string &key) {
|
||||
return gguf_get_val_f32(ctx, get_key_index(ctx, key.c_str()));
|
||||
}
|
||||
|
||||
static std::string get_ftype(int ftype) {
|
||||
return ggml_type_name(static_cast<ggml_type>(ftype));
|
||||
}
|
||||
|
||||
//
|
||||
// mllama layers
|
||||
//
|
||||
|
||||
struct mllama_hparams {
|
||||
uint32_t image_size;
|
||||
uint32_t patch_size;
|
||||
uint32_t hidden_size;
|
||||
uint32_t n_intermediate;
|
||||
uint32_t projection_dim;
|
||||
uint32_t n_head;
|
||||
uint32_t n_layer;
|
||||
uint32_t n_global_layer;
|
||||
uint32_t n_tiles;
|
||||
|
||||
float eps;
|
||||
|
||||
std::vector<bool> intermediate_layers;
|
||||
};
|
||||
|
||||
struct mllama_layer {
|
||||
// attention
|
||||
struct ggml_tensor *k_w;
|
||||
struct ggml_tensor *k_b;
|
||||
struct ggml_tensor *q_w;
|
||||
struct ggml_tensor *q_b;
|
||||
struct ggml_tensor *v_w;
|
||||
struct ggml_tensor *v_b;
|
||||
|
||||
struct ggml_tensor *o_w;
|
||||
struct ggml_tensor *o_b;
|
||||
|
||||
struct ggml_tensor *attn_gate;
|
||||
|
||||
// layernorm 1
|
||||
struct ggml_tensor *ln_1_w;
|
||||
struct ggml_tensor *ln_1_b;
|
||||
|
||||
// ff
|
||||
struct ggml_tensor *ff_i_w;
|
||||
struct ggml_tensor *ff_i_b;
|
||||
|
||||
struct ggml_tensor *ff_o_w;
|
||||
struct ggml_tensor *ff_o_b;
|
||||
|
||||
struct ggml_tensor *ff_gate;
|
||||
|
||||
// layernorm 2
|
||||
struct ggml_tensor *ln_2_w;
|
||||
struct ggml_tensor *ln_2_b;
|
||||
};
|
||||
|
||||
struct mllama_vision_model {
|
||||
struct mllama_hparams hparams;
|
||||
|
||||
// embeddings
|
||||
struct ggml_tensor *class_embedding;
|
||||
struct ggml_tensor *patch_embeddings;
|
||||
struct ggml_tensor *position_embeddings;
|
||||
struct ggml_tensor *position_embeddings_gate;
|
||||
struct ggml_tensor *tile_position_embeddings;
|
||||
struct ggml_tensor *tile_position_embeddings_gate;
|
||||
struct ggml_tensor *pre_tile_position_embeddings;
|
||||
struct ggml_tensor *pre_tile_position_embeddings_gate;
|
||||
struct ggml_tensor *post_tile_position_embeddings;
|
||||
struct ggml_tensor *post_tile_position_embeddings_gate;
|
||||
|
||||
struct ggml_tensor *pre_ln_w;
|
||||
struct ggml_tensor *pre_ln_b;
|
||||
|
||||
std::vector<mllama_layer> layers;
|
||||
std::vector<mllama_layer> global_layers;
|
||||
|
||||
struct ggml_tensor *post_ln_w;
|
||||
struct ggml_tensor *post_ln_b;
|
||||
|
||||
struct ggml_tensor *mm_0_w;
|
||||
struct ggml_tensor *mm_0_b;
|
||||
};
|
||||
|
||||
struct mllama_ctx {
|
||||
struct mllama_vision_model vision_model;
|
||||
|
||||
uint32_t ftype = 1;
|
||||
|
||||
struct gguf_context *ctx_gguf;
|
||||
struct ggml_context *ctx_data;
|
||||
|
||||
std::vector<uint8_t> buf_compute_meta;
|
||||
|
||||
// memory buffers to evaluate the model
|
||||
ggml_backend_buffer_t params_buffer = nullptr;
|
||||
|
||||
ggml_backend_t backend = nullptr;
|
||||
ggml_gallocr_t compute_alloc = nullptr;
|
||||
};
|
||||
|
||||
static ggml_tensor *mllama_image_build_encoder_layer(
|
||||
struct ggml_context *ctx0, const size_t il, const struct mllama_layer &layer, struct ggml_tensor *embeddings,
|
||||
const float eps, const int hidden_size, const int batch_size, const int n_head, const int d_head) {
|
||||
struct ggml_tensor *cur = embeddings;
|
||||
|
||||
{
|
||||
// layernorm1
|
||||
cur = ggml_norm(ctx0, cur, eps);
|
||||
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.ln_1_w), layer.ln_1_b);
|
||||
ggml_set_name(cur, format("%d pre layernorm", il).c_str());
|
||||
}
|
||||
|
||||
{
|
||||
// self-attention
|
||||
struct ggml_tensor *Q = ggml_mul_mat(ctx0, layer.q_w, cur);
|
||||
if (layer.q_b != nullptr) {
|
||||
Q = ggml_add(ctx0, Q, layer.q_b);
|
||||
}
|
||||
|
||||
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, Q->ne[1], batch_size);
|
||||
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
|
||||
ggml_set_name(Q, format("%d query", il).c_str());
|
||||
|
||||
struct ggml_tensor *K = ggml_mul_mat(ctx0, layer.k_w, cur);
|
||||
if (layer.k_b != nullptr) {
|
||||
K = ggml_add(ctx0, K, layer.k_b);
|
||||
}
|
||||
|
||||
K = ggml_reshape_4d(ctx0, K, d_head, n_head, K->ne[1], batch_size);
|
||||
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
|
||||
ggml_set_name(K, format("%d key", il).c_str());
|
||||
|
||||
struct ggml_tensor *V = ggml_mul_mat(ctx0, layer.v_w, cur);
|
||||
if (layer.v_b != nullptr) {
|
||||
V = ggml_add(ctx0, V, layer.v_b);
|
||||
}
|
||||
|
||||
V = ggml_reshape_4d(ctx0, V, d_head, n_head, V->ne[1], batch_size);
|
||||
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
|
||||
ggml_set_name(V, format("%d value", il).c_str());
|
||||
|
||||
struct ggml_tensor *KQ = ggml_mul_mat(ctx0, K, Q);
|
||||
KQ = ggml_scale_inplace(ctx0, KQ, 1.0f / sqrtf((float)d_head));
|
||||
KQ = ggml_soft_max_inplace(ctx0, KQ);
|
||||
ggml_set_name(KQ, format("%d KQ", il).c_str());
|
||||
|
||||
struct ggml_tensor *KQV = ggml_mul_mat(ctx0, V, KQ);
|
||||
KQV = ggml_reshape_4d(ctx0, KQV, d_head, KQV->ne[1], n_head, batch_size);
|
||||
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||
KQV = ggml_cont_3d(ctx0, KQV, hidden_size, KQV->ne[2], batch_size);
|
||||
ggml_set_name(KQV, format("%d KQV", il).c_str());
|
||||
|
||||
cur = ggml_mul_mat(ctx0, layer.o_w, KQV);
|
||||
if (layer.o_b != nullptr) {
|
||||
cur = ggml_add(ctx0, cur, layer.o_b);
|
||||
}
|
||||
ggml_set_name(cur, format("%d self attention", il).c_str());
|
||||
|
||||
if (layer.attn_gate != nullptr) {
|
||||
cur = ggml_mul_inplace(ctx0, cur, layer.attn_gate);
|
||||
ggml_set_name(cur, format("%d self attention gate", il).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
cur = ggml_add(ctx0, cur, embeddings);
|
||||
ggml_set_name(cur, format("%d residual", il).c_str());
|
||||
|
||||
embeddings = cur;
|
||||
|
||||
{
|
||||
// layernorm2
|
||||
cur = ggml_norm(ctx0, cur, eps);
|
||||
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.ln_2_w), layer.ln_2_b);
|
||||
ggml_set_name(cur, format("%d post layernorm", il).c_str());
|
||||
}
|
||||
|
||||
{
|
||||
// feed forward
|
||||
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, layer.ff_i_w, cur), layer.ff_i_b);
|
||||
cur = ggml_gelu_inplace(ctx0, cur);
|
||||
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, layer.ff_o_w, cur), layer.ff_o_b);
|
||||
ggml_set_name(cur, format("%d feed forward", il).c_str());
|
||||
|
||||
if (layer.ff_gate != nullptr) {
|
||||
cur = ggml_mul_inplace(ctx0, cur, layer.ff_gate);
|
||||
ggml_set_name(cur, format("%d feed forward gate", il).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
// residual 2
|
||||
cur = ggml_add(ctx0, cur, embeddings);
|
||||
ggml_set_name(cur, format("%d residual", il).c_str());
|
||||
|
||||
embeddings = cur;
|
||||
|
||||
return embeddings;
|
||||
}
|
||||
|
||||
static ggml_cgraph *mllama_image_build_graph(mllama_ctx *ctx, const mllama_image_batch *imgs) {
|
||||
const auto &model = ctx->vision_model;
|
||||
const auto &hparams = model.hparams;
|
||||
|
||||
const int image_size = hparams.image_size;
|
||||
const int image_size_width = image_size;
|
||||
const int image_size_height = image_size;
|
||||
|
||||
const int patch_size = hparams.patch_size;
|
||||
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
|
||||
const int num_positions = num_patches + (model.class_embedding == nullptr ? 0 : 1);
|
||||
const int hidden_size = hparams.hidden_size;
|
||||
const int n_head = hparams.n_head;
|
||||
const int d_head = hidden_size / n_head;
|
||||
|
||||
const int batch_size = imgs->size;
|
||||
REQUIRE(batch_size == 1);
|
||||
|
||||
int num_tiles = 4;
|
||||
int num_channels = 3;
|
||||
if (imgs->data != nullptr) {
|
||||
num_tiles = imgs->data[0].num_tiles > 0 ? imgs->data[0].num_tiles : num_tiles;
|
||||
num_channels = imgs->data[0].num_channels > 0 ? imgs->data[0].num_channels : num_channels;
|
||||
}
|
||||
|
||||
struct ggml_init_params params = {
|
||||
ctx->buf_compute_meta.size(), // mem_size
|
||||
ctx->buf_compute_meta.data(), // mem_buffer
|
||||
true, // no_alloc
|
||||
};
|
||||
|
||||
struct ggml_context *ctx0 = ggml_init(params);
|
||||
struct ggml_cgraph *gf = ggml_new_graph(ctx0);
|
||||
|
||||
struct ggml_tensor *inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, num_channels, num_tiles);
|
||||
ggml_set_name(inp_raw, "inp_raw");
|
||||
ggml_set_input(inp_raw);
|
||||
|
||||
struct ggml_tensor *inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
|
||||
|
||||
inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, num_tiles);
|
||||
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
|
||||
|
||||
struct ggml_tensor *aspect_ratios = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, imgs->size);
|
||||
ggml_set_name(aspect_ratios, "aspect_ratios");
|
||||
ggml_set_input(aspect_ratios);
|
||||
|
||||
if (model.pre_tile_position_embeddings != nullptr) {
|
||||
struct ggml_tensor *pre_tile_position_embeddings = ggml_get_rows(ctx0, model.pre_tile_position_embeddings, aspect_ratios);
|
||||
ggml_set_name(pre_tile_position_embeddings, "pre_tile_position_embeddings");
|
||||
|
||||
pre_tile_position_embeddings = ggml_reshape_3d(ctx0, pre_tile_position_embeddings, hidden_size, 1, num_tiles);
|
||||
if (model.pre_tile_position_embeddings_gate != nullptr) {
|
||||
pre_tile_position_embeddings = ggml_mul_inplace(ctx0, pre_tile_position_embeddings, model.pre_tile_position_embeddings_gate);
|
||||
}
|
||||
|
||||
inp = ggml_add(ctx0, inp, pre_tile_position_embeddings);
|
||||
}
|
||||
|
||||
struct ggml_tensor *embeddings = inp;
|
||||
|
||||
if (model.class_embedding != nullptr) {
|
||||
// concat class_embeddings and patch_embeddings
|
||||
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, num_tiles);
|
||||
ggml_set_name(embeddings, "embeddings");
|
||||
ggml_set_input(embeddings);
|
||||
for (int i = 0; i < num_tiles; ++i) {
|
||||
// repeat class embeddings for each tile
|
||||
embeddings = ggml_acc_inplace(ctx0, embeddings, model.class_embedding, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], i * embeddings->nb[2]);
|
||||
}
|
||||
|
||||
embeddings = ggml_acc_inplace(ctx0, embeddings, inp, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
|
||||
}
|
||||
|
||||
struct ggml_tensor *positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
|
||||
ggml_set_name(positions, "positions");
|
||||
ggml_set_input(positions);
|
||||
|
||||
struct ggml_tensor *position_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
|
||||
if (model.position_embeddings_gate != nullptr) {
|
||||
position_embd = ggml_mul_inplace(ctx0, position_embd, model.position_embeddings_gate);
|
||||
}
|
||||
|
||||
embeddings = ggml_add(ctx0, embeddings, position_embd);
|
||||
|
||||
if (model.tile_position_embeddings != nullptr) {
|
||||
struct ggml_tensor *tile_position_embeddings = ggml_get_rows(ctx0, model.tile_position_embeddings, aspect_ratios);
|
||||
ggml_set_name(tile_position_embeddings, "tile_position_embeddings");
|
||||
|
||||
tile_position_embeddings = ggml_reshape_3d(ctx0, tile_position_embeddings, hidden_size, num_positions, num_tiles);
|
||||
if (model.tile_position_embeddings_gate != nullptr) {
|
||||
tile_position_embeddings = ggml_mul_inplace(ctx0, tile_position_embeddings, model.tile_position_embeddings_gate);
|
||||
}
|
||||
|
||||
embeddings = ggml_add(ctx0, embeddings, tile_position_embeddings);
|
||||
}
|
||||
|
||||
// pre-layernorm
|
||||
if (model.pre_ln_w != nullptr) {
|
||||
embeddings = ggml_mul(ctx0, ggml_norm(ctx0, embeddings, hparams.eps), model.pre_ln_w);
|
||||
if (model.pre_ln_b != nullptr) {
|
||||
embeddings = ggml_add(ctx0, embeddings, model.pre_ln_b);
|
||||
}
|
||||
|
||||
ggml_set_name(embeddings, "pre layernorm");
|
||||
}
|
||||
|
||||
const int num_padding_patches = 8 - (embeddings->ne[1] % 8) % 8;
|
||||
|
||||
embeddings = ggml_pad(ctx0, embeddings, 0, num_padding_patches, 0, 0);
|
||||
embeddings = ggml_view_3d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1] * embeddings->ne[2], batch_size, embeddings->nb[1], embeddings->nb[2] * embeddings->ne[3], 0);
|
||||
|
||||
std::vector<struct ggml_tensor *> intermediate_embeddings;
|
||||
|
||||
// encoder
|
||||
for (size_t il = 0; il < model.layers.size(); il++) {
|
||||
if (hparams.intermediate_layers[il]) {
|
||||
intermediate_embeddings.push_back(embeddings);
|
||||
}
|
||||
|
||||
embeddings = mllama_image_build_encoder_layer(
|
||||
ctx0, il, model.layers[il], embeddings,
|
||||
hparams.eps, hidden_size, batch_size, n_head, d_head);
|
||||
}
|
||||
|
||||
// post-layernorm
|
||||
if (model.post_ln_w != nullptr) {
|
||||
embeddings = ggml_mul(ctx0, ggml_norm(ctx0, embeddings, hparams.eps), model.post_ln_w);
|
||||
if (model.post_ln_b != nullptr) {
|
||||
embeddings = ggml_add(ctx0, embeddings, model.post_ln_b);
|
||||
}
|
||||
|
||||
ggml_set_name(embeddings, "post layernorm");
|
||||
}
|
||||
|
||||
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_positions + num_padding_patches, num_tiles);
|
||||
|
||||
if (model.post_tile_position_embeddings != nullptr) {
|
||||
struct ggml_tensor *post_tile_position_embeddings = ggml_get_rows(ctx0, model.post_tile_position_embeddings, aspect_ratios);
|
||||
ggml_set_name(post_tile_position_embeddings, "post_tile_position_embeddings");
|
||||
|
||||
post_tile_position_embeddings = ggml_reshape_3d(ctx0, post_tile_position_embeddings, hidden_size, 1, num_tiles);
|
||||
if (model.post_tile_position_embeddings_gate != nullptr) {
|
||||
post_tile_position_embeddings = ggml_mul(ctx0, post_tile_position_embeddings, model.post_tile_position_embeddings_gate);
|
||||
}
|
||||
|
||||
embeddings = ggml_add(ctx0, embeddings, post_tile_position_embeddings);
|
||||
}
|
||||
|
||||
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_tiles * (num_positions + num_padding_patches), 1);
|
||||
|
||||
// global encoder
|
||||
for (size_t il = 0; il < model.global_layers.size(); il++) {
|
||||
embeddings = mllama_image_build_encoder_layer(
|
||||
ctx0, il, model.global_layers[il], embeddings,
|
||||
hparams.eps, hidden_size, batch_size, n_head, d_head);
|
||||
}
|
||||
|
||||
struct ggml_tensor *stacked_embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 0, hidden_size, (num_positions + num_padding_patches) * num_tiles);
|
||||
for (size_t i = 0; i < intermediate_embeddings.size(); ++i) {
|
||||
stacked_embeddings = ggml_concat(ctx0, stacked_embeddings, ggml_reshape_3d(ctx0, intermediate_embeddings[i], 1, intermediate_embeddings[i]->ne[0], intermediate_embeddings[i]->ne[1]), 0);
|
||||
}
|
||||
|
||||
stacked_embeddings = ggml_reshape_4d(ctx0, stacked_embeddings, intermediate_embeddings.size() * hidden_size, num_positions + num_padding_patches, num_tiles, batch_size);
|
||||
stacked_embeddings = ggml_unpad(ctx0, stacked_embeddings, 0, num_padding_patches, 0, 0);
|
||||
|
||||
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_positions + num_padding_patches, num_tiles);
|
||||
embeddings = ggml_unpad(ctx0, embeddings, 0, num_padding_patches, 0, 0);
|
||||
embeddings = ggml_concat(ctx0, embeddings, stacked_embeddings, 0);
|
||||
|
||||
// mllama projector
|
||||
embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_0_w, embeddings), model.mm_0_b);
|
||||
ggml_set_name(embeddings, "multi modal projector");
|
||||
|
||||
// build the graph
|
||||
ggml_build_forward_expand(gf, embeddings);
|
||||
|
||||
ggml_free(ctx0);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
static struct ggml_tensor *mllama_tensor_load(struct ggml_context *ctx, const char *name, const bool optional) {
|
||||
struct ggml_tensor *cur = ggml_get_tensor(ctx, name);
|
||||
REQUIRE(cur != nullptr || optional);
|
||||
return cur;
|
||||
}
|
||||
|
||||
static std::vector<struct mllama_layer> mllama_layers_load(struct ggml_context *ctx, const char *prefix, const int n) {
|
||||
std::vector<struct mllama_layer> layers(n);
|
||||
for (size_t i = 0; i < layers.size(); i++) {
|
||||
auto &layer = layers[i];
|
||||
layer.ln_1_w = mllama_tensor_load(ctx, format("%s.blk.%d.ln1.weight", prefix, i).c_str(), false);
|
||||
layer.ln_1_b = mllama_tensor_load(ctx, format("%s.blk.%d.ln1.bias", prefix, i).c_str(), false);
|
||||
layer.ln_2_w = mllama_tensor_load(ctx, format("%s.blk.%d.ln2.weight", prefix, i).c_str(), false);
|
||||
layer.ln_2_b = mllama_tensor_load(ctx, format("%s.blk.%d.ln2.bias", prefix, i).c_str(), false);
|
||||
|
||||
layer.k_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_k.weight", prefix, i).c_str(), false);
|
||||
layer.k_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_k.bias", prefix, i).c_str(), true);
|
||||
layer.q_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_q.weight", prefix, i).c_str(), false);
|
||||
layer.q_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_q.bias", prefix, i).c_str(), true);
|
||||
layer.v_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_v.weight", prefix, i).c_str(), false);
|
||||
layer.v_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_v.bias", prefix, i).c_str(), true);
|
||||
layer.o_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_out.weight", prefix, i).c_str(), false);
|
||||
layer.o_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_out.bias", prefix, i).c_str(), true);
|
||||
|
||||
layer.ff_i_w = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_down.weight", prefix, i).c_str(), false);
|
||||
layer.ff_i_b = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_down.bias", prefix, i).c_str(), false);
|
||||
layer.ff_o_w = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_up.weight", prefix, i).c_str(), false);
|
||||
layer.ff_o_b = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_up.bias", prefix, i).c_str(), false);
|
||||
|
||||
layer.attn_gate = mllama_tensor_load(ctx, format("%s.blk.%d.attn_gate", prefix, i).c_str(), true);
|
||||
layer.ff_gate = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_gate", prefix, i).c_str(), true);
|
||||
}
|
||||
|
||||
return layers;
|
||||
}
|
||||
|
||||
// read and create ggml_context containing the tensors and their data
|
||||
struct mllama_ctx *mllama_model_load(const char *fname, const int verbosity = 1) {
|
||||
struct ggml_context *meta = nullptr;
|
||||
|
||||
struct gguf_init_params params = {
|
||||
true, // no_alloc
|
||||
&meta, // ctx
|
||||
};
|
||||
|
||||
struct gguf_context *ctx = gguf_init_from_file(fname, params);
|
||||
REQUIRE(ctx != nullptr);
|
||||
|
||||
if (verbosity >= 1) {
|
||||
const int n_tensors = gguf_get_n_tensors(ctx);
|
||||
const int n_kv = gguf_get_n_kv(ctx);
|
||||
const std::string ftype = get_ftype(get_u32(ctx, "general.file_type"));
|
||||
const int idx_desc = get_key_index(ctx, "general.description");
|
||||
const std::string description = gguf_get_val_str(ctx, idx_desc);
|
||||
const int idx_name = gguf_find_key(ctx, "general.name");
|
||||
if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
|
||||
const std::string name = gguf_get_val_str(ctx, idx_name);
|
||||
LOG("model name: %s", name.c_str());
|
||||
}
|
||||
LOG("description: %s", description.c_str());
|
||||
LOG("GGUF version: %d", gguf_get_version(ctx));
|
||||
LOG("alignment: %zu", gguf_get_alignment(ctx));
|
||||
LOG("n_tensors: %d", n_tensors);
|
||||
LOG("n_kv: %d", n_kv);
|
||||
LOG("ftype: %s", ftype.c_str());
|
||||
LOG("");
|
||||
}
|
||||
const int n_tensors = gguf_get_n_tensors(ctx);
|
||||
|
||||
mllama_ctx *new_mllama = new mllama_ctx{};
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
new_mllama->backend = ggml_backend_cuda_init(0);
|
||||
LOG("vision using CUDA backend");
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
new_mllama->backend = ggml_backend_metal_init();
|
||||
LOG("vision using Metal backend");
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CANN
|
||||
new_mllama->backend = ggml_backend_cann_init(0);
|
||||
LOG("vision using CANN backend");
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_VULKAN
|
||||
new_mllama->backend = ggml_backend_vk_init(0);
|
||||
LOG("vision using Vulkan backend");
|
||||
#endif
|
||||
|
||||
if (!new_mllama->backend) {
|
||||
new_mllama->backend = ggml_backend_cpu_init();
|
||||
LOG("vision using CPU backend");
|
||||
}
|
||||
|
||||
// load tensors
|
||||
{
|
||||
std::vector<uint8_t> read_buf;
|
||||
struct ggml_init_params params = {
|
||||
(n_tensors + 1) * ggml_tensor_overhead(), // mem_size
|
||||
nullptr, // mem_buffer
|
||||
true, // no_alloc
|
||||
};
|
||||
|
||||
new_mllama->ctx_data = ggml_init(params);
|
||||
if (!new_mllama->ctx_data) {
|
||||
LOG("ggml_init() failed");
|
||||
mllama_free(new_mllama);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
#ifdef _WIN32
|
||||
int wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, NULL, 0);
|
||||
if (!wlen) {
|
||||
return NULL;
|
||||
}
|
||||
wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
|
||||
wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, wbuf, wlen);
|
||||
if (!wlen) {
|
||||
free(wbuf);
|
||||
return NULL;
|
||||
}
|
||||
#if __GLIBCXX__
|
||||
int fd = _wopen(wbuf, _O_RDONLY | _O_BINARY);
|
||||
__gnu_cxx::stdio_filebuf<char> buffer(fd, std::ios_base::in);
|
||||
std::istream fin(&buffer);
|
||||
#else // MSVC
|
||||
// unused in our current build
|
||||
auto fin = std::ifstream(wbuf, std::ios::binary);
|
||||
#endif
|
||||
free(wbuf);
|
||||
#else
|
||||
auto fin = std::ifstream(fname, std::ios::binary);
|
||||
#endif
|
||||
if (!fin) {
|
||||
LOG("cannot open model file for loading tensors\n");
|
||||
mllama_free(new_mllama);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// add tensors to context
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
const char *name = gguf_get_tensor_name(ctx, i);
|
||||
struct ggml_tensor *t = ggml_get_tensor(meta, name);
|
||||
struct ggml_tensor *cur = ggml_dup_tensor(new_mllama->ctx_data, t);
|
||||
ggml_set_name(cur, name);
|
||||
}
|
||||
|
||||
// alloc memory and offload data
|
||||
new_mllama->params_buffer = ggml_backend_alloc_ctx_tensors(new_mllama->ctx_data, new_mllama->backend);
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
const char *name = gguf_get_tensor_name(ctx, i);
|
||||
struct ggml_tensor *cur = ggml_get_tensor(new_mllama->ctx_data, name);
|
||||
const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
|
||||
fin.seekg(offset, std::ios::beg);
|
||||
if (!fin) {
|
||||
LOG("failed to seek for tensor %s\n", name);
|
||||
mllama_free(new_mllama);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
int num_bytes = ggml_nbytes(cur);
|
||||
if (ggml_backend_buffer_is_host(new_mllama->params_buffer)) {
|
||||
// for the CPU and Metal backend, we can read directly into the tensor
|
||||
fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
|
||||
} else {
|
||||
// read into a temporary buffer first, then copy to device memory
|
||||
read_buf.resize(num_bytes);
|
||||
fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
|
||||
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(_WIN32) && defined(__GLIBCXX__)
|
||||
close(fd);
|
||||
#else
|
||||
fin.close();
|
||||
#endif
|
||||
}
|
||||
|
||||
// vision model
|
||||
// load vision model
|
||||
auto &vision_model = new_mllama->vision_model;
|
||||
auto &hparams = vision_model.hparams;
|
||||
hparams.hidden_size = get_u32(ctx, "mllama.vision.embedding_length");
|
||||
hparams.n_head = get_u32(ctx, "mllama.vision.attention.head_count");
|
||||
hparams.n_intermediate = get_u32(ctx, "mllama.vision.feed_forward_length");
|
||||
hparams.n_layer = get_u32(ctx, "mllama.vision.block_count");
|
||||
hparams.n_global_layer = get_u32(ctx, "mllama.vision.global.block_count");
|
||||
hparams.n_tiles = get_u32(ctx, "mllama.vision.max_num_tiles");
|
||||
hparams.image_size = get_u32(ctx, "mllama.vision.image_size");
|
||||
hparams.patch_size = get_u32(ctx, "mllama.vision.patch_size");
|
||||
hparams.projection_dim = get_u32(ctx, "mllama.vision.projection_dim");
|
||||
hparams.eps = get_f32(ctx, "mllama.vision.attention.layer_norm_epsilon");
|
||||
|
||||
std::vector<uint32_t> intermediate_layers_indices = get_u32_array(ctx, "mllama.vision.intermediate_layers_indices");
|
||||
hparams.intermediate_layers.resize(hparams.n_layer);
|
||||
for (size_t i = 0; i < intermediate_layers_indices.size(); i++) {
|
||||
hparams.intermediate_layers[intermediate_layers_indices[i]] = true;
|
||||
}
|
||||
|
||||
if (verbosity >= 2) {
|
||||
LOG("");
|
||||
LOG("vision model hparams");
|
||||
LOG("image_size %d", hparams.image_size);
|
||||
LOG("patch_size %d", hparams.patch_size);
|
||||
LOG("v_hidden_size %d", hparams.hidden_size);
|
||||
LOG("v_n_intermediate %d", hparams.n_intermediate);
|
||||
LOG("v_projection_dim %d", hparams.projection_dim);
|
||||
LOG("v_n_head %d", hparams.n_head);
|
||||
LOG("v_n_layer %d", hparams.n_layer);
|
||||
LOG("v_n_global_layer %d", hparams.n_global_layer);
|
||||
LOG("v_eps %f", hparams.eps);
|
||||
}
|
||||
|
||||
vision_model.class_embedding = mllama_tensor_load(new_mllama->ctx_data, "v.class_embd", true);
|
||||
vision_model.patch_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.patch_embd.weight", true);
|
||||
|
||||
vision_model.position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.position_embd.weight", true);
|
||||
vision_model.position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.position_embd.gate", true);
|
||||
|
||||
vision_model.pre_ln_w = mllama_tensor_load(new_mllama->ctx_data, "v.pre_ln.weight", true);
|
||||
vision_model.pre_ln_b = mllama_tensor_load(new_mllama->ctx_data, "v.pre_ln.bias", true);
|
||||
vision_model.post_ln_w = mllama_tensor_load(new_mllama->ctx_data, "v.post_ln.weight", true);
|
||||
vision_model.post_ln_b = mllama_tensor_load(new_mllama->ctx_data, "v.post_ln.bias", true);
|
||||
|
||||
vision_model.tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.tile_position_embd.weight", true);
|
||||
vision_model.tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.tile_position_embd.gate", true);
|
||||
|
||||
vision_model.pre_tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.pre_tile_position_embd.weight", true);
|
||||
vision_model.pre_tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.pre_tile_position_embd.gate", true);
|
||||
|
||||
vision_model.post_tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.post_tile_position_embd.weight", true);
|
||||
vision_model.post_tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.post_tile_position_embd.gate", true);
|
||||
|
||||
vision_model.mm_0_w = mllama_tensor_load(new_mllama->ctx_data, "mm.0.weight", false);
|
||||
vision_model.mm_0_b = mllama_tensor_load(new_mllama->ctx_data, "mm.0.bias", false);
|
||||
|
||||
vision_model.layers = mllama_layers_load(new_mllama->ctx_data, "v", hparams.n_layer);
|
||||
vision_model.global_layers = mllama_layers_load(new_mllama->ctx_data, "v.global", hparams.n_global_layer);
|
||||
|
||||
ggml_free(meta);
|
||||
|
||||
new_mllama->ctx_gguf = ctx;
|
||||
|
||||
{
|
||||
// measure mem requirement and allocate
|
||||
new_mllama->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
|
||||
new_mllama->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_mllama->backend));
|
||||
struct mllama_image_batch batch;
|
||||
batch.size = 1;
|
||||
ggml_cgraph *gf = mllama_image_build_graph(new_mllama, &batch);
|
||||
ggml_gallocr_reserve(new_mllama->compute_alloc, gf);
|
||||
size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_mllama->compute_alloc, 0);
|
||||
LOG("compute allocated memory: %.2f MB", compute_memory_buffer_size / 1024.0 / 1024.0);
|
||||
}
|
||||
|
||||
return new_mllama;
|
||||
}
|
||||
|
||||
struct mllama_image *mllama_image_init() {
|
||||
return new mllama_image();
|
||||
}
|
||||
|
||||
void mllama_image_free(struct mllama_image *img) { delete img; }
|
||||
void mllama_image_batch_free(struct mllama_image_batch *batch) {
|
||||
if (batch->size > 0) {
|
||||
delete[] batch->data;
|
||||
batch->size = 0;
|
||||
}
|
||||
}
|
||||
|
||||
bool mllama_image_load_from_data(const void *data, const int n, const int width, const int height, const int num_channels, const int num_tiles, const int aspect_ratio_id, struct mllama_image *img) {
|
||||
img->width = width;
|
||||
img->height = height;
|
||||
img->num_channels = num_channels;
|
||||
img->num_tiles = num_tiles;
|
||||
img->aspect_ratio_id = aspect_ratio_id;
|
||||
img->data.resize(n);
|
||||
|
||||
memcpy(img->data.data(), data, n);
|
||||
return true;
|
||||
}
|
||||
|
||||
inline int mllama(int x, int lower, int upper) {
|
||||
return std::max(lower, std::min(x, upper));
|
||||
}
|
||||
|
||||
void mllama_free(mllama_ctx *ctx) {
|
||||
ggml_free(ctx->ctx_data);
|
||||
gguf_free(ctx->ctx_gguf);
|
||||
|
||||
ggml_backend_buffer_free(ctx->params_buffer);
|
||||
ggml_backend_free(ctx->backend);
|
||||
ggml_gallocr_free(ctx->compute_alloc);
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
bool mllama_image_encode(struct mllama_ctx *ctx, const int n_threads, mllama_image *img, float *vec) {
|
||||
mllama_image_batch imgs{};
|
||||
imgs.size = 1;
|
||||
imgs.data = img;
|
||||
return mllama_image_batch_encode(ctx, n_threads, &imgs, vec);
|
||||
}
|
||||
|
||||
bool mllama_image_batch_encode(mllama_ctx *ctx, const int n_threads, const mllama_image_batch *imgs, float *vec) {
|
||||
int batch_size = imgs->size;
|
||||
REQUIRE(batch_size == 1);
|
||||
|
||||
// build the inference graph
|
||||
ggml_cgraph *gf = mllama_image_build_graph(ctx, imgs);
|
||||
ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
|
||||
|
||||
// set inputs
|
||||
const auto &model = ctx->vision_model;
|
||||
const auto &hparams = model.hparams;
|
||||
|
||||
const int image_size = hparams.image_size;
|
||||
int image_size_width = image_size;
|
||||
int image_size_height = image_size;
|
||||
|
||||
const int patch_size = hparams.patch_size;
|
||||
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
|
||||
const int num_positions = num_patches + (model.class_embedding == nullptr ? 0 : 1);
|
||||
|
||||
{
|
||||
struct ggml_tensor *inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
|
||||
ggml_backend_tensor_set(inp_raw, imgs->data[0].data.data(), 0, ggml_nbytes(inp_raw));
|
||||
}
|
||||
|
||||
{
|
||||
struct ggml_tensor *embeddings = ggml_graph_get_tensor(gf, "embeddings");
|
||||
if (embeddings != nullptr) {
|
||||
void *zeros = malloc(ggml_nbytes(embeddings));
|
||||
memset(zeros, 0, ggml_nbytes(embeddings));
|
||||
ggml_backend_tensor_set(embeddings, zeros, 0, ggml_nbytes(embeddings));
|
||||
free(zeros);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
struct ggml_tensor *positions = ggml_graph_get_tensor(gf, "positions");
|
||||
if (positions != nullptr) {
|
||||
int *positions_data = (int *)malloc(ggml_nbytes(positions));
|
||||
for (int i = 0; i < num_positions; i++) {
|
||||
positions_data[i] = i;
|
||||
}
|
||||
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
|
||||
free(positions_data);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
struct ggml_tensor *aspect_ratios = ggml_graph_get_tensor(gf, "aspect_ratios");
|
||||
if (aspect_ratios != nullptr) {
|
||||
int *aspect_ratios_data = (int *)malloc(ggml_nbytes(aspect_ratios));
|
||||
aspect_ratios_data[0] = imgs->data[0].aspect_ratio_id;
|
||||
ggml_backend_tensor_set(aspect_ratios, aspect_ratios_data, 0, ggml_nbytes(aspect_ratios));
|
||||
free(aspect_ratios_data);
|
||||
}
|
||||
}
|
||||
|
||||
if (ggml_backend_is_cpu(ctx->backend)) {
|
||||
ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
|
||||
}
|
||||
|
||||
ggml_backend_graph_compute(ctx->backend, gf);
|
||||
|
||||
// the last node is the embedding tensor
|
||||
struct ggml_tensor *embeddings = ggml_graph_node(gf, ggml_graph_n_nodes(gf) - 1);
|
||||
|
||||
// copy the embeddings to the location passed by the user
|
||||
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int32_t mllama_image_size(const struct mllama_ctx *ctx) {
|
||||
return ctx->vision_model.hparams.image_size;
|
||||
}
|
||||
|
||||
int32_t mllama_patch_size(const struct mllama_ctx *ctx) {
|
||||
return ctx->vision_model.hparams.patch_size;
|
||||
}
|
||||
|
||||
int32_t mllama_hidden_size(const struct mllama_ctx *ctx) {
|
||||
return ctx->vision_model.hparams.hidden_size;
|
||||
}
|
||||
|
||||
int mllama_n_patches(const struct mllama_ctx *ctx) {
|
||||
const auto &hparams = ctx->vision_model.hparams;
|
||||
return (hparams.image_size / hparams.patch_size) * (hparams.image_size / hparams.patch_size);
|
||||
}
|
||||
|
||||
int mllama_n_positions(const struct mllama_ctx *ctx) {
|
||||
return mllama_n_patches(ctx) + (ctx->vision_model.class_embedding == nullptr ? 0 : 1);
|
||||
}
|
||||
|
||||
int mllama_n_tiles(const struct mllama_ctx *ctx) {
|
||||
return ctx->vision_model.hparams.n_tiles;
|
||||
}
|
||||
|
||||
int mllama_n_embd(const struct mllama_ctx *ctx) {
|
||||
return ctx->vision_model.hparams.projection_dim;
|
||||
}
|
||||
|
||||
size_t mllama_n_embd_bytes(const struct mllama_ctx *ctx) {
|
||||
return mllama_n_positions(ctx) * mllama_n_embd(ctx) * mllama_n_tiles(ctx) * sizeof(float);
|
||||
}
|
61
llama/mllama.h
vendored
Normal file
61
llama/mllama.h
vendored
Normal file
|
@ -0,0 +1,61 @@
|
|||
#ifndef MLLAMA_H
|
||||
#define MLLAMA_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
#if defined(_WIN32) && !defined(__MINGW32__)
|
||||
#ifdef LLAMA_BUILD
|
||||
#define MLLAMA_API __declspec(dllexport)
|
||||
#else
|
||||
#define MLLAMA_API __declspec(dllimport)
|
||||
#endif
|
||||
#else
|
||||
#define MLLAMA_API __attribute__((visibility("default")))
|
||||
#endif
|
||||
#else
|
||||
#define MLLAMA_API
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct mllama_ctx;
|
||||
|
||||
struct mllama_image_batch {
|
||||
struct mllama_image *data;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
MLLAMA_API struct mllama_ctx *mllama_model_load(const char *fname, int verbosity);
|
||||
MLLAMA_API struct mllama_ctx *mllama_model_load_cpu(const char *fname, int verbosity);
|
||||
|
||||
MLLAMA_API void mllama_free(struct mllama_ctx *ctx);
|
||||
|
||||
MLLAMA_API int32_t mllama_image_size(const struct mllama_ctx *ctx);
|
||||
MLLAMA_API int32_t mllama_patch_size(const struct mllama_ctx *ctx);
|
||||
MLLAMA_API int32_t mllama_hidden_size(const struct mllama_ctx *ctx);
|
||||
|
||||
MLLAMA_API int mllama_n_patches(const struct mllama_ctx *ctx);
|
||||
MLLAMA_API int mllama_n_positions(const struct mllama_ctx *ctx);
|
||||
MLLAMA_API int mllama_n_tiles(const struct mllama_ctx *ctx);
|
||||
MLLAMA_API int mllama_n_embd(const struct mllama_ctx *ctx);
|
||||
MLLAMA_API size_t mllama_n_embd_bytes(const struct mllama_ctx *ctx);
|
||||
|
||||
MLLAMA_API struct mllama_image *mllama_image_init();
|
||||
|
||||
MLLAMA_API void mllama_image_free(struct mllama_image *img);
|
||||
MLLAMA_API void mllama_image_batch_free(struct mllama_image_batch *batch);
|
||||
|
||||
MLLAMA_API bool mllama_image_load_from_data(const void *data, const int n, const int nx, const int ny, const int nc, const int nt, const int aspect_ratio_id, struct mllama_image *img);
|
||||
|
||||
MLLAMA_API bool mllama_image_encode(struct mllama_ctx *ctx, int n_threads, struct mllama_image *img, float *vec);
|
||||
MLLAMA_API bool mllama_image_batch_encode(struct mllama_ctx *ctx, int n_threads, const struct mllama_image_batch *imgs, float *vec);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // MLLAMA_H
|
690
llama/patches/0010-add-mllama-support.patch
Normal file
690
llama/patches/0010-add-mllama-support.patch
Normal file
|
@ -0,0 +1,690 @@
|
|||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: jmorganca <jmorganca@gmail.com>
|
||||
Date: Thu, 17 Oct 2024 15:18:22 -0700
|
||||
Subject: [PATCH] add mllama support
|
||||
|
||||
mllama adds cross-attention layers to the standard llama architecture
|
||||
it also requires a way to input a new tensor: cross_attention_state
|
||||
once per generation
|
||||
|
||||
cross-attention layers don't change and so they are cached in the
|
||||
kv cache once per run
|
||||
|
||||
remaining is to implement the cross attention mask
|
||||
---
|
||||
include/llama.h | 4 +
|
||||
src/llama.cpp | 456 ++++++++++++++++++++++++++++++++++++++++++++++--
|
||||
2 files changed, 447 insertions(+), 13 deletions(-)
|
||||
|
||||
diff --git a/include/llama.h b/include/llama.h
|
||||
index 7cae1bbe..122e3cf1 100644
|
||||
--- a/include/llama.h
|
||||
+++ b/include/llama.h
|
||||
@@ -423,6 +423,10 @@ extern "C" {
|
||||
struct llama_model * model,
|
||||
struct llama_context_params params);
|
||||
|
||||
+ // TODO (jmorganca): this should most likely be passed in as part of a batch
|
||||
+ // and not set on the context for all batches.
|
||||
+ LLAMA_API void llama_set_cross_attn_state(struct llama_context * ctx, float * cross_attn_state);
|
||||
+
|
||||
// Frees all allocated memory
|
||||
LLAMA_API void llama_free(struct llama_context * ctx);
|
||||
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index 83b80b59..b189a19a 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -169,6 +169,7 @@ static std::string format(const char * fmt, ...) {
|
||||
|
||||
enum llm_arch {
|
||||
LLM_ARCH_LLAMA,
|
||||
+ LLM_ARCH_MLLAMA,
|
||||
LLM_ARCH_FALCON,
|
||||
LLM_ARCH_BAICHUAN,
|
||||
LLM_ARCH_GROK,
|
||||
@@ -223,6 +224,7 @@ enum llm_arch {
|
||||
|
||||
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_LLAMA, "llama" },
|
||||
+ { LLM_ARCH_MLLAMA, "mllama" },
|
||||
{ LLM_ARCH_FALCON, "falcon" },
|
||||
{ LLM_ARCH_GROK, "grok" },
|
||||
{ LLM_ARCH_GPT2, "gpt2" },
|
||||
@@ -330,6 +332,7 @@ enum llm_kv {
|
||||
LLM_KV_ATTENTION_SLIDING_WINDOW,
|
||||
LLM_KV_ATTENTION_SCALE,
|
||||
LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
|
||||
+ LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS,
|
||||
|
||||
LLM_KV_ROPE_DIMENSION_COUNT,
|
||||
LLM_KV_ROPE_FREQ_BASE,
|
||||
@@ -439,6 +442,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
||||
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
||||
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection.%d" },
|
||||
+ { LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers" },
|
||||
|
||||
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
|
||||
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
|
||||
@@ -613,6 +617,14 @@ enum llm_tensor {
|
||||
LLM_TENSOR_CLS,
|
||||
LLM_TENSOR_CLS_OUT,
|
||||
LLM_TENSOR_BSKCN_TV,
|
||||
+ LLM_TENSOR_CROSS_ATTN_K_NORM,
|
||||
+ LLM_TENSOR_CROSS_ATTN_K_PROJ,
|
||||
+ LLM_TENSOR_CROSS_ATTN_O_PROJ,
|
||||
+ LLM_TENSOR_CROSS_ATTN_Q_NORM,
|
||||
+ LLM_TENSOR_CROSS_ATTN_Q_PROJ,
|
||||
+ LLM_TENSOR_CROSS_ATTN_V_PROJ,
|
||||
+ LLM_TENSOR_CROSS_ATTN_ATTN_GATE,
|
||||
+ LLM_TENSOR_CROSS_ATTN_MLP_GATE,
|
||||
};
|
||||
|
||||
static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
|
||||
@@ -642,6 +654,40 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
},
|
||||
},
|
||||
+ {
|
||||
+ LLM_ARCH_MLLAMA,
|
||||
+ {
|
||||
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
+ { LLM_TENSOR_OUTPUT, "output" },
|
||||
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||||
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||||
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
+ { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
|
||||
+ { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
|
||||
+ { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
|
||||
+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
+ { LLM_TENSOR_CROSS_ATTN_K_NORM, "blk.%d.cross_attn_k_norm" },
|
||||
+ { LLM_TENSOR_CROSS_ATTN_K_PROJ, "blk.%d.cross_attn_k_proj" },
|
||||
+ { LLM_TENSOR_CROSS_ATTN_O_PROJ, "blk.%d.cross_attn_o_proj" },
|
||||
+ { LLM_TENSOR_CROSS_ATTN_Q_NORM, "blk.%d.cross_attn_q_norm" },
|
||||
+ { LLM_TENSOR_CROSS_ATTN_Q_PROJ, "blk.%d.cross_attn_q_proj" },
|
||||
+ { LLM_TENSOR_CROSS_ATTN_V_PROJ, "blk.%d.cross_attn_v_proj" },
|
||||
+ { LLM_TENSOR_CROSS_ATTN_ATTN_GATE, "blk.%d.cross_attn_attn_gate" },
|
||||
+ { LLM_TENSOR_CROSS_ATTN_MLP_GATE, "blk.%d.cross_attn_mlp_gate" },
|
||||
+ },
|
||||
+ },
|
||||
{
|
||||
LLM_ARCH_BAICHUAN,
|
||||
{
|
||||
@@ -2390,6 +2436,7 @@ enum e_model {
|
||||
MODEL_40B,
|
||||
MODEL_65B,
|
||||
MODEL_70B,
|
||||
+ MODEL_90B,
|
||||
MODEL_236B,
|
||||
MODEL_314B,
|
||||
MODEL_SMALL,
|
||||
@@ -2434,6 +2481,7 @@ struct llama_hparams {
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
||||
|
||||
std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr;
|
||||
+ std::array<uint32_t, LLAMA_MAX_LAYERS> cross_attn_layers;
|
||||
|
||||
uint32_t n_layer_dense_lead = 0;
|
||||
uint32_t n_lora_q = 0;
|
||||
@@ -2502,10 +2550,11 @@ struct llama_hparams {
|
||||
if (this->n_expert != other.n_expert) return true;
|
||||
if (this->n_expert_used != other.n_expert_used) return true;
|
||||
|
||||
- if (this->n_head_arr != other.n_head_arr) return true;
|
||||
- if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
|
||||
- if (this->n_ff_arr != other.n_ff_arr) return true;
|
||||
- if (this->n_bskcn_arr != other.n_bskcn_arr) return true;
|
||||
+ if (this->n_head_arr != other.n_head_arr) return true;
|
||||
+ if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
|
||||
+ if (this->n_ff_arr != other.n_ff_arr) return true;
|
||||
+ if (this->n_bskcn_arr != other.n_bskcn_arr) return true;
|
||||
+ if (this->cross_attn_layers != other.cross_attn_layers) return true;
|
||||
|
||||
if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true;
|
||||
if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
|
||||
@@ -2623,6 +2672,10 @@ struct llama_hparams {
|
||||
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
+
|
||||
+ bool cross_attention_layer(uint32_t il) const {
|
||||
+ return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
|
||||
+ }
|
||||
};
|
||||
|
||||
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|
||||
@@ -2806,6 +2859,16 @@ struct llama_layer {
|
||||
struct ggml_tensor * ffn_down_scale;
|
||||
|
||||
struct ggml_tensor * bskcn_tv;
|
||||
+
|
||||
+ // cross attention
|
||||
+ struct ggml_tensor * cross_attn_k_norm;
|
||||
+ struct ggml_tensor * cross_attn_k_proj;
|
||||
+ struct ggml_tensor * cross_attn_o_proj;
|
||||
+ struct ggml_tensor * cross_attn_q_norm;
|
||||
+ struct ggml_tensor * cross_attn_q_proj;
|
||||
+ struct ggml_tensor * cross_attn_v_proj;
|
||||
+ struct ggml_tensor * cross_attn_attn_gate;
|
||||
+ struct ggml_tensor * cross_attn_mlp_gate;
|
||||
};
|
||||
|
||||
// very similar to llama_batch,
|
||||
@@ -3452,6 +3515,12 @@ struct llama_context {
|
||||
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
|
||||
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
|
||||
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
|
||||
+
|
||||
+ // TODO (jmorganca): this should most likely be passed in as part of a batch
|
||||
+ // and not set on the context for all batches.
|
||||
+ float * cross_attn_state = nullptr;
|
||||
+ bool cross_attn_state_first_pass = true;
|
||||
+ struct ggml_tensor * inp_cross_attn_state; // F32 [4, n_embd, 1061]
|
||||
};
|
||||
|
||||
struct llama_lora_weight {
|
||||
@@ -3686,6 +3755,18 @@ static bool llama_kv_cache_init(
|
||||
cache.v_l.reserve(n_layer);
|
||||
|
||||
for (int i = 0; i < (int) n_layer; i++) {
|
||||
+ // for cross attention layers
|
||||
+ if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layer(i)) {
|
||||
+ struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
|
||||
+ ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
|
||||
+ ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
|
||||
+ ggml_format_name(k, "cache_k_l%d", i);
|
||||
+ ggml_format_name(v, "cache_v_l%d", i);
|
||||
+ cache.k_l.push_back(k);
|
||||
+ cache.v_l.push_back(v);
|
||||
+ continue;
|
||||
+ }
|
||||
+
|
||||
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
|
||||
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
|
||||
|
||||
@@ -5460,12 +5541,14 @@ static void llm_load_hparams(
|
||||
}
|
||||
|
||||
// zero-out the per-layer hparams
|
||||
- std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
|
||||
- std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
|
||||
- std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
|
||||
+ std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
|
||||
+ std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
|
||||
+ std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
|
||||
+ std::fill(hparams.cross_attn_layers.begin(), hparams.cross_attn_layers.end(), -1);
|
||||
|
||||
- ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer);
|
||||
- ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer);
|
||||
+ ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer);
|
||||
+ ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer);
|
||||
+ ml.get_arr(LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, hparams.cross_attn_layers, false);
|
||||
|
||||
// n_head_kv is optional, default to n_head
|
||||
hparams.n_head_kv_arr = hparams.n_head_arr;
|
||||
@@ -5514,7 +5597,7 @@ static void llm_load_hparams(
|
||||
|
||||
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
|
||||
|
||||
- if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
|
||||
+ if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_MLLAMA || model.arch == LLM_ARCH_FALCON) {
|
||||
if (hparams.n_rot != hparams.n_embd_head_k) {
|
||||
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
|
||||
}
|
||||
@@ -5554,6 +5637,16 @@ static void llm_load_hparams(
|
||||
}
|
||||
}
|
||||
} break;
|
||||
+ case LLM_ARCH_MLLAMA:
|
||||
+ {
|
||||
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
+
|
||||
+ switch (hparams.n_layer) {
|
||||
+ case 40: model.type = e_model::MODEL_11B; break;
|
||||
+ case 100: model.type = e_model::MODEL_90B; break;
|
||||
+ default: model.type = e_model::MODEL_UNKNOWN;
|
||||
+ }
|
||||
+ } break;
|
||||
case LLM_ARCH_MINICPM:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
@@ -7249,6 +7342,55 @@ static bool llm_load_tensors(
|
||||
layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head_qk_rope/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
}
|
||||
} break;
|
||||
+ case LLM_ARCH_MLLAMA:
|
||||
+ {
|
||||
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab+8});
|
||||
+
|
||||
+ // output
|
||||
+ {
|
||||
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||||
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
+
|
||||
+ // if output is NULL, init from the input tok embed
|
||||
+ if (model.output == NULL) {
|
||||
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||||
+ }
|
||||
+ }
|
||||
+
|
||||
+ for (int i = 0; i < n_layer; ++i) {
|
||||
+ ggml_context * ctx_layer = ctx_for_layer(i);
|
||||
+ ggml_context * ctx_split = ctx_for_layer_split(i);
|
||||
+
|
||||
+ auto & layer = model.layers[i];
|
||||
+
|
||||
+ if (hparams.cross_attention_layer(i)) {
|
||||
+ layer.cross_attn_k_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_NORM, "weight", i), {128});
|
||||
+ layer.cross_attn_k_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_PROJ, "weight", i), {n_embd, 1024});
|
||||
+ layer.cross_attn_o_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_O_PROJ, "weight", i), {n_embd, n_embd});
|
||||
+ layer.cross_attn_q_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_Q_NORM, "weight", i), {128});
|
||||
+ layer.cross_attn_q_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_Q_PROJ, "weight", i), {n_embd, n_embd});
|
||||
+ layer.cross_attn_v_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_V_PROJ, "weight", i), {n_embd, 1024});
|
||||
+ layer.cross_attn_attn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_ATTN_GATE, i), {1});
|
||||
+ layer.cross_attn_mlp_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_MLP_GATE, i), {1});
|
||||
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||||
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
+ } else {
|
||||
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
|
||||
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||||
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
||||
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
|
||||
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
+ layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||||
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
+ }
|
||||
+ }
|
||||
+ } break;
|
||||
case LLM_ARCH_GROK:
|
||||
{
|
||||
if (n_expert == 0) {
|
||||
@@ -9093,7 +9235,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
|
||||
|
||||
if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
|
||||
model.hparams.n_vocab != model.vocab.id_to_token.size()) {
|
||||
- throw std::runtime_error("vocab size mismatch");
|
||||
+ LLAMA_LOG_WARN("%s: vocab mismatch %u !- %zu ...\n", __func__, model.hparams.n_vocab, model.vocab.id_to_token.size());
|
||||
}
|
||||
|
||||
if (params.vocab_only) {
|
||||
@@ -9178,7 +9320,7 @@ static struct ggml_tensor * llm_build_inp_embd(
|
||||
|
||||
inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
|
||||
} else {
|
||||
- lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
|
||||
+ lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
|
||||
inpL = lctx.inp_embd;
|
||||
ggml_set_input(lctx.inp_embd);
|
||||
}
|
||||
@@ -9193,6 +9335,22 @@ static struct ggml_tensor * llm_build_inp_embd(
|
||||
return inpL;
|
||||
}
|
||||
|
||||
+static struct ggml_tensor * llm_build_inp_cross_attn_state(
|
||||
+ struct ggml_context * ctx,
|
||||
+ struct llama_context & lctx,
|
||||
+ const llama_hparams & hparams,
|
||||
+ const llm_build_cb & cb) {
|
||||
+ const int64_t n_embd = hparams.n_embd;
|
||||
+
|
||||
+ struct ggml_tensor * inpCAS;
|
||||
+ lctx.inp_cross_attn_state = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd, 1601, 4);
|
||||
+ cb(lctx.inp_cross_attn_state, "inp_cross_attn_state", -1);
|
||||
+ ggml_set_input(lctx.inp_cross_attn_state);
|
||||
+ inpCAS = lctx.inp_cross_attn_state;
|
||||
+
|
||||
+ return inpCAS;
|
||||
+}
|
||||
+
|
||||
static void llm_build_kv_store(
|
||||
struct ggml_context * ctx,
|
||||
const llama_hparams & hparams,
|
||||
@@ -10167,6 +10325,7 @@ struct llm_build_context {
|
||||
lctx.inp_pos_bucket = nullptr;
|
||||
lctx.inp_embd_enc = nullptr;
|
||||
lctx.inp_KQ_mask_cross = nullptr;
|
||||
+ lctx.inp_cross_attn_state = nullptr;
|
||||
}
|
||||
|
||||
void free() {
|
||||
@@ -10754,6 +10913,253 @@ struct llm_build_context {
|
||||
LLM_NORM_RMS, cb, -1);
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||||
+ cb(cur, "result_output", -1);
|
||||
+
|
||||
+ ggml_build_forward_expand(gf, cur);
|
||||
+
|
||||
+ return gf;
|
||||
+ }
|
||||
+
|
||||
+ struct ggml_cgraph * build_mllama() {
|
||||
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
+
|
||||
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
+ int32_t n_tokens = this->n_tokens;
|
||||
+
|
||||
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
+
|
||||
+ struct ggml_tensor * cur;
|
||||
+ struct ggml_tensor * inpL;
|
||||
+ struct ggml_tensor * inpCAS;
|
||||
+
|
||||
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||
+ inpCAS = llm_build_inp_cross_attn_state(ctx0, lctx, hparams, cb);
|
||||
+
|
||||
+ // inp_pos - contains the positions
|
||||
+ struct ggml_tensor * inp_pos = build_inp_pos();
|
||||
+
|
||||
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||
+
|
||||
+ for (int il = 0; il < n_layer; ++il) {
|
||||
+ struct ggml_tensor * inpSA = inpL;
|
||||
+
|
||||
+ // norm
|
||||
+ cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
+ model.layers[il].attn_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, il);
|
||||
+ cb(cur, "attn_norm", il);
|
||||
+
|
||||
+ if (hparams.cross_attention_layer(il)) {
|
||||
+ if (!lctx.cross_attn_state) {
|
||||
+ continue;
|
||||
+ }
|
||||
+
|
||||
+ // cross attention layer
|
||||
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_q_proj, cur);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ Qcur = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ // TODO: is this required?
|
||||
+ Qcur = ggml_cont(ctx0, Qcur);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].cross_attn_q_norm, NULL, LLM_NORM_RMS, cb, il);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ struct ggml_tensor * Kcur;
|
||||
+ if (lctx.cross_attn_state_first_pass) {
|
||||
+ Kcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_k_proj, inpCAS);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, 6404);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ Kcur = ggml_permute(ctx0, Kcur, 0, 2, 1, 3);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ // TODO: is this required?
|
||||
+ Kcur = ggml_cont(ctx0, Kcur);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].cross_attn_k_norm, NULL, LLM_NORM_RMS, cb, il);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, kv_self.k_l[il]));
|
||||
+ } else {
|
||||
+ Kcur = ggml_view_tensor(ctx0, kv_self.k_l[il]);
|
||||
+ cb(Kcur, "Kcur (view)", il);
|
||||
+ }
|
||||
+
|
||||
+ struct ggml_tensor * Vcur;
|
||||
+ if (lctx.cross_attn_state_first_pass) {
|
||||
+ Vcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_v_proj, inpCAS);
|
||||
+ cb(Vcur, "Vcur", il);
|
||||
+
|
||||
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, 6404);
|
||||
+ cb(Vcur, "Vcur", il);
|
||||
+
|
||||
+ Vcur = ggml_permute(ctx0, Vcur, 0, 2, 1, 3);
|
||||
+ cb(Vcur, "Vcur", il);
|
||||
+
|
||||
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, kv_self.v_l[il]));
|
||||
+ } else {
|
||||
+ Vcur = ggml_view_tensor(ctx0, kv_self.v_l[il]);
|
||||
+ cb(Vcur, "Vcur (view)", il);
|
||||
+ }
|
||||
+
|
||||
+ struct ggml_tensor * kq = ggml_mul_mat(ctx0, Kcur, Qcur);
|
||||
+ cb(kq, "kq", il);
|
||||
+
|
||||
+ kq = ggml_scale_inplace(ctx0, kq, 1.0f/sqrtf(float(n_embd_head)));
|
||||
+ cb(kq, "kq_scaled", il);
|
||||
+
|
||||
+ // TODO: apply causal masks
|
||||
+ struct ggml_tensor * kq_soft_max = ggml_soft_max_inplace(ctx0, kq);
|
||||
+ cb(kq_soft_max, "kq_soft_max", il);
|
||||
+
|
||||
+ Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, Vcur));
|
||||
+ cb(Vcur, "Vcur", il);
|
||||
+
|
||||
+ struct ggml_tensor * kqv = ggml_mul_mat(ctx0, Vcur, kq_soft_max);
|
||||
+ cb(kqv, "kqv", il);
|
||||
+
|
||||
+ struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
|
||||
+ cb(kqv_merged, "kqv_merged", il);
|
||||
+
|
||||
+ cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens);
|
||||
+ cb(cur, "kqv_merged_cont", il);
|
||||
+
|
||||
+ cur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_o_proj, cur);
|
||||
+ cb(cur, "cur", il);
|
||||
+
|
||||
+ // TODO: do this in place once?
|
||||
+ cur = ggml_mul(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_attn_gate));
|
||||
+
|
||||
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
+ cb(ffn_inp, "ffn_inp", il);
|
||||
+
|
||||
+ // feed-forward network
|
||||
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
+ model.layers[il].ffn_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, il);
|
||||
+ cb(cur, "ffn_norm", il);
|
||||
+
|
||||
+ cur = llm_build_ffn(ctx0, lctx, cur,
|
||||
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
||||
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||
+ NULL,
|
||||
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
+ cb(cur, "ffn_out", il);
|
||||
+
|
||||
+ // TODO: do this inplace once?
|
||||
+ cur = ggml_add_inplace(ctx0, ggml_mul_inplace(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_mlp_gate)), ffn_inp);
|
||||
+ cb(cur, "ffn_out", il);
|
||||
+
|
||||
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||||
+ cb(cur, "l_out", il);
|
||||
+
|
||||
+ // input for next layer
|
||||
+ inpL = cur;
|
||||
+ } else {
|
||||
+ // self attention layer
|
||||
+
|
||||
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
+ struct ggml_tensor * rope_factors = build_rope_factors(il);
|
||||
+
|
||||
+ // compute Q and K and RoPE them
|
||||
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+ if (model.layers[il].bq) {
|
||||
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+ }
|
||||
+
|
||||
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+ if (model.layers[il].bk) {
|
||||
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+ }
|
||||
+
|
||||
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||||
+ cb(Vcur, "Vcur", il);
|
||||
+ if (model.layers[il].bv) {
|
||||
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
+ cb(Vcur, "Vcur", il);
|
||||
+ }
|
||||
+
|
||||
+ Qcur = ggml_rope_ext(
|
||||
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
|
||||
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
+ ext_factor, attn_factor, beta_fast, beta_slow
|
||||
+ );
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ Kcur = ggml_rope_ext(
|
||||
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
|
||||
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
+ ext_factor, attn_factor, beta_fast, beta_slow
|
||||
+ );
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||||
+ model.layers[il].wo, model.layers[il].bo,
|
||||
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
+
|
||||
+
|
||||
+ if (il == n_layer - 1) {
|
||||
+ // skip computing output for unused tokens
|
||||
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
+ n_tokens = n_outputs;
|
||||
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
+ }
|
||||
+
|
||||
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
+ cb(ffn_inp, "ffn_inp", il);
|
||||
+
|
||||
+ // feed-forward network
|
||||
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
+ model.layers[il].ffn_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, il);
|
||||
+ cb(cur, "ffn_norm", il);
|
||||
+
|
||||
+ cur = llm_build_ffn(ctx0, lctx, cur,
|
||||
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
||||
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||
+ NULL,
|
||||
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
+ cb(cur, "ffn_out", il);
|
||||
+
|
||||
+ cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
+ cb(cur, "ffn_out", il);
|
||||
+
|
||||
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||||
+ cb(cur, "l_out", il);
|
||||
+
|
||||
+ // input for next layer
|
||||
+ inpL = cur;
|
||||
+ }
|
||||
+ }
|
||||
+
|
||||
+ cur = inpL;
|
||||
+
|
||||
+ cur = llm_build_norm(ctx0, cur, hparams,
|
||||
+ model.output_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, -1);
|
||||
+ cb(cur, "result_norm", -1);
|
||||
+
|
||||
// lm_head
|
||||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||||
cb(cur, "result_output", -1);
|
||||
@@ -16501,6 +16907,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
{
|
||||
result = llm.build_llama();
|
||||
} break;
|
||||
+ case LLM_ARCH_MLLAMA:
|
||||
+ {
|
||||
+ result = llm.build_mllama();
|
||||
+ } break;
|
||||
case LLM_ARCH_BAICHUAN:
|
||||
{
|
||||
result = llm.build_baichuan();
|
||||
@@ -16773,6 +17183,14 @@ static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
|
||||
ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
|
||||
}
|
||||
|
||||
+ // TODO (jmorganca): this might copy a lot of data on every request of a
|
||||
+ // single generation even though it doesn't change, so we should
|
||||
+ // find a way to not set this more than one time per image
|
||||
+ if (lctx.inp_cross_attn_state &&
|
||||
+ lctx.inp_cross_attn_state->buffer) {
|
||||
+ ggml_backend_tensor_set(lctx.inp_cross_attn_state, lctx.cross_attn_state, 0, hparams.n_embd * 1601 * 4 * ggml_element_size(lctx.inp_cross_attn_state));
|
||||
+ }
|
||||
+
|
||||
if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
|
||||
GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
|
||||
const int64_t n_tokens = batch.n_tokens;
|
||||
@@ -17455,6 +17873,10 @@ static int llama_decode_internal(
|
||||
|
||||
llama_set_inputs(lctx, ubatch);
|
||||
|
||||
+ // TODO: replace with something better to find out if its
|
||||
+ // our first actual pass
|
||||
+ lctx.cross_attn_state_first_pass = false;
|
||||
+
|
||||
llama_graph_compute(lctx, gf, n_threads, threadpool);
|
||||
|
||||
// update the kv ring buffer
|
||||
@@ -18648,7 +19070,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
if (llama_model_has_encoder(&model)) {
|
||||
n_attn_layer *= 3;
|
||||
}
|
||||
- GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
|
||||
+ if (qs.n_attention_wv != n_attn_layer) {
|
||||
+ LLAMA_LOG_WARN("%s: n_attention_wv is unexpected, expected: %d, found: %d\n", __func__, n_attn_layer, qs.n_attention_wv);
|
||||
+ }
|
||||
}
|
||||
|
||||
size_t total_size_org = 0;
|
||||
@@ -19744,6 +20168,11 @@ struct llama_context * llama_new_context_with_model(
|
||||
return ctx;
|
||||
}
|
||||
|
||||
+void llama_set_cross_attn_state(struct llama_context * ctx, float * cross_attn_state) {
|
||||
+ ctx->cross_attn_state_first_pass = true;
|
||||
+ ctx->cross_attn_state = cross_attn_state;
|
||||
+}
|
||||
+
|
||||
void llama_free(struct llama_context * ctx) {
|
||||
delete ctx;
|
||||
}
|
||||
@@ -19814,6 +20243,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
||||
|
||||
// use what we call a normal RoPE, operating on pairs of consecutive head values
|
||||
case LLM_ARCH_LLAMA:
|
||||
+ case LLM_ARCH_MLLAMA:
|
||||
case LLM_ARCH_BAICHUAN:
|
||||
case LLM_ARCH_STARCODER:
|
||||
case LLM_ARCH_PLAMO:
|
409
llama/patches/0011-add-unpad-operator.patch
Normal file
409
llama/patches/0011-add-unpad-operator.patch
Normal file
|
@ -0,0 +1,409 @@
|
|||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: Michael Yang <mxyng@pm.me>
|
||||
Date: Thu, 17 Oct 2024 17:19:25 -0700
|
||||
Subject: [PATCH] add unpad operator
|
||||
|
||||
---
|
||||
ggml/include/ggml.h | 10 ++++
|
||||
ggml/src/ggml-cuda.cu | 4 ++
|
||||
ggml/src/ggml-cuda/pad.cu | 46 +++++++++++++++++++
|
||||
ggml/src/ggml-cuda/pad.cuh | 1 +
|
||||
ggml/src/ggml-metal.m | 33 ++++++++++++++
|
||||
ggml/src/ggml-metal.metal | 45 ++++++++++++++++++
|
||||
ggml/src/ggml.c | 93 +++++++++++++++++++++++++++++++++++++-
|
||||
7 files changed, 230 insertions(+), 2 deletions(-)
|
||||
|
||||
diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h
|
||||
index ce3d92cb..962cb5f7 100644
|
||||
--- a/ggml/include/ggml.h
|
||||
+++ b/ggml/include/ggml.h
|
||||
@@ -506,6 +506,7 @@ extern "C" {
|
||||
GGML_OP_POOL_2D_BACK,
|
||||
GGML_OP_UPSCALE, // nearest interpolate
|
||||
GGML_OP_PAD,
|
||||
+ GGML_OP_UNPAD,
|
||||
GGML_OP_ARANGE,
|
||||
GGML_OP_TIMESTEP_EMBEDDING,
|
||||
GGML_OP_ARGSORT,
|
||||
@@ -1764,6 +1765,15 @@ extern "C" {
|
||||
int p2,
|
||||
int p3);
|
||||
|
||||
+ // unpad each dimension: [x, ..., x, y, ..., y] -> [x, ..., x]
|
||||
+ GGML_API struct ggml_tensor * ggml_unpad(
|
||||
+ struct ggml_context * ctx,
|
||||
+ struct ggml_tensor * a,
|
||||
+ int p0,
|
||||
+ int p1,
|
||||
+ int p2,
|
||||
+ int p3);
|
||||
+
|
||||
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
|
||||
// timesteps: [N,]
|
||||
// return: [N, dim]
|
||||
diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu
|
||||
index fe77b81c..6e84af56 100644
|
||||
--- a/ggml/src/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda.cu
|
||||
@@ -2270,6 +2270,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_PAD:
|
||||
ggml_cuda_op_pad(ctx, dst);
|
||||
break;
|
||||
+ case GGML_OP_UNPAD:
|
||||
+ ggml_cuda_op_unpad(ctx, dst);
|
||||
+ break;
|
||||
case GGML_OP_ARANGE:
|
||||
ggml_cuda_op_arange(ctx, dst);
|
||||
break;
|
||||
@@ -2992,6 +2995,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
||||
case GGML_OP_GROUP_NORM:
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
+ case GGML_OP_UNPAD:
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
diff --git a/ggml/src/ggml-cuda/pad.cu b/ggml/src/ggml-cuda/pad.cu
|
||||
index aba539e8..39fd4b16 100644
|
||||
--- a/ggml/src/ggml-cuda/pad.cu
|
||||
+++ b/ggml/src/ggml-cuda/pad.cu
|
||||
@@ -47,3 +47,49 @@ void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
|
||||
}
|
||||
+
|
||||
+static __global__ void unpad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
|
||||
+ // blockIdx.z: idx of ne2*ne3, aka ne02*ne03
|
||||
+ // blockIdx.y: idx of ne1
|
||||
+ // blockIDx.x: idx of ne0 / BLOCK_SIZE
|
||||
+ int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
+ if (nidx >= ne0) {
|
||||
+ return;
|
||||
+ }
|
||||
+
|
||||
+ // operation
|
||||
+ int offset_dst =
|
||||
+ nidx +
|
||||
+ blockIdx.y * ne0 +
|
||||
+ blockIdx.z * ne0 * gridDim.y;
|
||||
+ if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
|
||||
+ int offset_src =
|
||||
+ nidx +
|
||||
+ blockIdx.y * ne00 +
|
||||
+ blockIdx.z * ne00 * ne01;
|
||||
+ dst[offset_dst] = x[offset_src];
|
||||
+ }
|
||||
+}
|
||||
+
|
||||
+static void unpad_f32_cuda(const float * x, float * dst,
|
||||
+ const int ne00, const int ne01, const int ne02, const int ne03,
|
||||
+ const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
|
||||
+ int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
|
||||
+ dim3 gridDim(num_blocks, ne1, ne2*ne3);
|
||||
+ unpad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
|
||||
+}
|
||||
+
|
||||
+void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
+ const ggml_tensor * src0 = dst->src[0];
|
||||
+ const float * src0_d = (const float *)src0->data;
|
||||
+ float * dst_d = (float *)dst->data;
|
||||
+ cudaStream_t stream = ctx.stream();
|
||||
+
|
||||
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
+ GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
||||
+
|
||||
+ unpad_f32_cuda(src0_d, dst_d,
|
||||
+ src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||||
+ dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
|
||||
+}
|
||||
diff --git a/ggml/src/ggml-cuda/pad.cuh b/ggml/src/ggml-cuda/pad.cuh
|
||||
index 8fd386b0..e2ededc3 100644
|
||||
--- a/ggml/src/ggml-cuda/pad.cuh
|
||||
+++ b/ggml/src/ggml-cuda/pad.cuh
|
||||
@@ -3,3 +3,4 @@
|
||||
#define CUDA_PAD_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
+void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
diff --git a/ggml/src/ggml-metal.m b/ggml/src/ggml-metal.m
|
||||
index 829c5e39..25702d85 100644
|
||||
--- a/ggml/src/ggml-metal.m
|
||||
+++ b/ggml/src/ggml-metal.m
|
||||
@@ -193,6 +193,7 @@
|
||||
GGML_METAL_KERNEL_TYPE_IM2COL_F32,
|
||||
GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_PAD_F32,
|
||||
+ GGML_METAL_KERNEL_TYPE_UNPAD_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ARANGE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
|
||||
@@ -689,6 +690,7 @@ static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
|
||||
+ GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UNPAD_F32, unpad_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
|
||||
@@ -846,6 +848,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_context * ctx
|
||||
return false;
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
+ case GGML_OP_UNPAD:
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_ARGSORT:
|
||||
@@ -2655,6 +2658,36 @@ static void ggml_metal_encode_node(
|
||||
|
||||
const int nth = MIN(1024, ne0);
|
||||
|
||||
+ [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
+ } break;
|
||||
+ case GGML_OP_UNPAD:
|
||||
+ {
|
||||
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
+
|
||||
+ id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UNPAD_F32].pipeline;
|
||||
+
|
||||
+ [encoder setComputePipelineState:pipeline];
|
||||
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
+ [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
||||
+ [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
||||
+ [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
||||
+ [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
|
||||
+ [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
|
||||
+ [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
|
||||
+ [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
|
||||
+ [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
|
||||
+ [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
|
||||
+ [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
|
||||
+ [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
|
||||
+ [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
|
||||
+ [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
|
||||
+ [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
|
||||
+ [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
|
||||
+ [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
|
||||
+
|
||||
+ const int nth = MIN(1024, ne0);
|
||||
+
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_ARANGE:
|
||||
diff --git a/ggml/src/ggml-metal.metal b/ggml/src/ggml-metal.metal
|
||||
index 2b200032..09887511 100644
|
||||
--- a/ggml/src/ggml-metal.metal
|
||||
+++ b/ggml/src/ggml-metal.metal
|
||||
@@ -2029,6 +2029,51 @@ kernel void kernel_pad_f32(
|
||||
}
|
||||
}
|
||||
|
||||
+kernel void kernel_unpad_f32(
|
||||
+ device const char * src0,
|
||||
+ device char * dst,
|
||||
+ constant int64_t & ne00,
|
||||
+ constant int64_t & ne01,
|
||||
+ constant int64_t & ne02,
|
||||
+ constant int64_t & ne03,
|
||||
+ constant uint64_t & nb00,
|
||||
+ constant uint64_t & nb01,
|
||||
+ constant uint64_t & nb02,
|
||||
+ constant uint64_t & nb03,
|
||||
+ constant int64_t & ne0,
|
||||
+ constant int64_t & ne1,
|
||||
+ constant int64_t & ne2,
|
||||
+ constant int64_t & ne3,
|
||||
+ constant uint64_t & nb0,
|
||||
+ constant uint64_t & nb1,
|
||||
+ constant uint64_t & nb2,
|
||||
+ constant uint64_t & nb3,
|
||||
+ uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
+ uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
+ uint3 ntg[[threads_per_threadgroup]]) {
|
||||
+
|
||||
+ const int64_t i3 = tgpig.z;
|
||||
+ const int64_t i2 = tgpig.y;
|
||||
+ const int64_t i1 = tgpig.x;
|
||||
+
|
||||
+ const int64_t i03 = i3;
|
||||
+ const int64_t i02 = i2;
|
||||
+ const int64_t i01 = i1;
|
||||
+
|
||||
+ device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
|
||||
+ device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
|
||||
+
|
||||
+ if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||
+ for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
||||
+ if (i0 < ne00) {
|
||||
+ dst_ptr[i0] = src0_ptr[i0];
|
||||
+ }
|
||||
+ }
|
||||
+
|
||||
+ return;
|
||||
+ }
|
||||
+}
|
||||
+
|
||||
kernel void kernel_arange_f32(
|
||||
device char * dst,
|
||||
constant int64_t & ne0,
|
||||
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
|
||||
index bcbc32d9..f4864ac8 100644
|
||||
--- a/ggml/src/ggml.c
|
||||
+++ b/ggml/src/ggml.c
|
||||
@@ -2997,6 +2997,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||
"POOL_2D_BACK",
|
||||
"UPSCALE",
|
||||
"PAD",
|
||||
+ "UNPAD",
|
||||
"ARANGE",
|
||||
"TIMESTEP_EMBEDDING",
|
||||
"ARGSORT",
|
||||
@@ -3030,7 +3031,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||
"OPT_STEP_ADAMW",
|
||||
};
|
||||
|
||||
-static_assert(GGML_OP_COUNT == 80, "GGML_OP_COUNT != 80");
|
||||
+static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
|
||||
|
||||
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"none",
|
||||
@@ -3091,6 +3092,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"pool_2d_back(x)",
|
||||
"upscale(x)",
|
||||
"pad(x)",
|
||||
+ "unpad(x)",
|
||||
"arange(start, stop, step)",
|
||||
"timestep_embedding(timesteps, dim, max_period)",
|
||||
"argsort(x)",
|
||||
@@ -3124,7 +3126,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"adamw(x)",
|
||||
};
|
||||
|
||||
-static_assert(GGML_OP_COUNT == 80, "GGML_OP_COUNT != 80");
|
||||
+static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
|
||||
|
||||
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
|
||||
|
||||
@@ -6955,6 +6957,32 @@ struct ggml_tensor * ggml_pad(
|
||||
return result;
|
||||
}
|
||||
|
||||
+// ggml_unpad
|
||||
+
|
||||
+struct ggml_tensor * ggml_unpad(
|
||||
+ struct ggml_context * ctx,
|
||||
+ struct ggml_tensor * a,
|
||||
+ int p0, int p1, int p2, int p3) {
|
||||
+ bool is_node = false;
|
||||
+
|
||||
+ if (a->grad) {
|
||||
+ GGML_ABORT("fatal error"); // TODO: implement backward
|
||||
+ is_node = true;
|
||||
+ }
|
||||
+
|
||||
+ struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
|
||||
+ a->ne[0] - p0,
|
||||
+ a->ne[1] - p1,
|
||||
+ a->ne[2] - p2,
|
||||
+ a->ne[3] - p3);
|
||||
+
|
||||
+ result->op = GGML_OP_UNPAD;
|
||||
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
+ result->src[0] = a;
|
||||
+
|
||||
+ return result;
|
||||
+}
|
||||
+
|
||||
// ggml_arange
|
||||
|
||||
struct ggml_tensor * ggml_arange(
|
||||
@@ -15312,6 +15340,58 @@ static void ggml_compute_forward_pad(
|
||||
}
|
||||
}
|
||||
|
||||
+static void ggml_compute_forward_unpad_f32(
|
||||
+ const struct ggml_compute_params *params,
|
||||
+ struct ggml_tensor *dst) {
|
||||
+
|
||||
+ const struct ggml_tensor * src0 = dst->src[0];
|
||||
+
|
||||
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||||
+ GGML_ASSERT( dst->nb[0] == sizeof(float));
|
||||
+
|
||||
+ const int ith = params->ith;
|
||||
+ const int nth = params->nth;
|
||||
+
|
||||
+ GGML_TENSOR_UNARY_OP_LOCALS
|
||||
+
|
||||
+ float * dst_ptr = (float *) dst->data;
|
||||
+
|
||||
+ // TODO: optimize
|
||||
+
|
||||
+ for (int64_t i2 = 0; i2 < ne2; ++i2) {
|
||||
+ for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
|
||||
+ for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
||||
+ for (int64_t i3 = 0; i3 < ne3; ++i3) {
|
||||
+ const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
|
||||
+
|
||||
+ const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
+
|
||||
+ if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||
+ dst_ptr[dst_idx] = *src_ptr;
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+}
|
||||
+
|
||||
+static void ggml_compute_forward_unpad(
|
||||
+ const struct ggml_compute_params * params,
|
||||
+ struct ggml_tensor * dst) {
|
||||
+
|
||||
+ const struct ggml_tensor * src0 = dst->src[0];
|
||||
+
|
||||
+ switch (src0->type) {
|
||||
+ case GGML_TYPE_F32:
|
||||
+ {
|
||||
+ ggml_compute_forward_unpad_f32(params, dst);
|
||||
+ } break;
|
||||
+ default:
|
||||
+ {
|
||||
+ GGML_ABORT("fatal error");
|
||||
+ }
|
||||
+ }
|
||||
+}
|
||||
|
||||
// ggml_compute_forward_arange
|
||||
|
||||
@@ -17294,6 +17374,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
{
|
||||
ggml_compute_forward_pad(params, tensor);
|
||||
} break;
|
||||
+ case GGML_OP_UNPAD:
|
||||
+ {
|
||||
+ ggml_compute_forward_unpad(params, tensor);
|
||||
+ } break;
|
||||
case GGML_OP_ARANGE:
|
||||
{
|
||||
ggml_compute_forward_arange(params, tensor);
|
||||
@@ -18369,6 +18453,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
||||
{
|
||||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||||
}
|
||||
+ case GGML_OP_UNPAD:
|
||||
+ {
|
||||
+ GGML_ABORT("fatal error"); // TODO: not implemented
|
||||
+ }
|
||||
case GGML_OP_ARANGE:
|
||||
{
|
||||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||||
@@ -19165,6 +19253,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
} break;
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
+ case GGML_OP_UNPAD:
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_ARGSORT:
|
|
@ -206,6 +206,26 @@ func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
|
|||
}
|
||||
}
|
||||
|
||||
if s.clip.cc != nil {
|
||||
var embed [][]float32
|
||||
|
||||
if s.clip.cc.IsMllama && len(images) >= 1 {
|
||||
hash := s.cache.HashImage(images[0].Data)
|
||||
|
||||
s.clip.mu.Lock()
|
||||
var err error
|
||||
embed, err = s.cache.FindImage(hash)
|
||||
if err != nil {
|
||||
embed = llama.NewMllamaImageEmbed(s.lc, s.clip.cc, images[0].Data, images[0].AspectRatioID)
|
||||
s.cache.AddImage(hash, embed)
|
||||
}
|
||||
s.clip.mu.Unlock()
|
||||
}
|
||||
s.mu.Lock()
|
||||
llama.MllamaSetCrossAttn(s.lc, s.clip.cc, embed)
|
||||
s.mu.Unlock()
|
||||
}
|
||||
|
||||
return inputs, nil
|
||||
}
|
||||
|
||||
|
@ -294,6 +314,9 @@ func (s *Server) removeSequence(seqIndex int, reason string) {
|
|||
close(seq.responses)
|
||||
close(seq.embedding)
|
||||
seq.cache.InUse = false
|
||||
if s.clip.cc != nil {
|
||||
llama.MllamaSetCrossAttn(s.lc, s.clip.cc, nil)
|
||||
}
|
||||
s.seqs[seqIndex] = nil
|
||||
}
|
||||
|
||||
|
@ -517,8 +540,9 @@ type Options struct {
|
|||
}
|
||||
|
||||
type ImageData struct {
|
||||
Data []byte `json:"data"`
|
||||
ID int `json:"id"`
|
||||
Data []byte `json:"data"`
|
||||
ID int `json:"id"`
|
||||
AspectRatioID int `json:"aspect_ratio_id"`
|
||||
}
|
||||
|
||||
type CompletionRequest struct {
|
||||
|
@ -770,7 +794,11 @@ func (s *Server) loadModel(
|
|||
}
|
||||
|
||||
if ppath != "" {
|
||||
s.clip.cc = llama.NewClipContext(ppath)
|
||||
var err error
|
||||
s.clip.cc, err = llama.NewClipContext(ppath)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
|
||||
s.cache = NewInputCache(s.lc, kvSize, s.parallel, multiUserCache)
|
||||
|
|
|
@ -51,8 +51,8 @@ func (llm *ggla) KV() KV {
|
|||
return llm.kv
|
||||
}
|
||||
|
||||
func (llm *ggla) Tensors() Tensors {
|
||||
return Tensors{
|
||||
func (llm *ggla) Tensors() *Tensors {
|
||||
return &Tensors{
|
||||
Items: llm.tensors,
|
||||
Offset: llm.tensorOffset,
|
||||
}
|
||||
|
|
43
llm/ggml.go
43
llm/ggml.go
|
@ -5,7 +5,9 @@ import (
|
|||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"slices"
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
"github.com/ollama/ollama/util/bufioutil"
|
||||
)
|
||||
|
@ -17,7 +19,7 @@ type GGML struct {
|
|||
|
||||
type model interface {
|
||||
KV() KV
|
||||
Tensors() Tensors
|
||||
Tensors() *Tensors
|
||||
}
|
||||
|
||||
type KV map[string]any
|
||||
|
@ -123,25 +125,34 @@ func (kv KV) ChatTemplate() string {
|
|||
type Tensors struct {
|
||||
Items []*Tensor
|
||||
Offset uint64
|
||||
|
||||
layers map[string]Layer
|
||||
layersOnce sync.Once
|
||||
}
|
||||
|
||||
func (ts Tensors) Layers() map[string]Layer {
|
||||
layers := make(map[string]Layer)
|
||||
for _, t := range ts.Items {
|
||||
parts := strings.Split(t.Name, ".")
|
||||
if parts[0] == "blk" {
|
||||
// join first and second part, e.g. blk.%d
|
||||
parts = append([]string{fmt.Sprintf("%s.%s", parts[0], parts[1])}, parts[2:]...)
|
||||
func (ts *Tensors) Layers() map[string]Layer {
|
||||
ts.layersOnce.Do(func() {
|
||||
ts.layers = make(map[string]Layer)
|
||||
for _, t := range ts.Items {
|
||||
parts := strings.Split(t.Name, ".")
|
||||
if index := slices.IndexFunc(parts, func(s string) bool { return s == "blk" || s == "mm" }); index != -1 {
|
||||
if len(parts) > index+2 {
|
||||
// blk and mm should have a number after them, join it
|
||||
parts = append(
|
||||
[]string{strings.Join(parts[:index+2], ".")},
|
||||
parts[index+2:]...)
|
||||
}
|
||||
}
|
||||
|
||||
if _, ok := ts.layers[parts[0]]; !ok {
|
||||
ts.layers[parts[0]] = make(Layer)
|
||||
}
|
||||
|
||||
ts.layers[parts[0]][strings.Join(parts[1:], ".")] = t
|
||||
}
|
||||
})
|
||||
|
||||
if _, ok := layers[parts[0]]; !ok {
|
||||
layers[parts[0]] = make(Layer)
|
||||
}
|
||||
|
||||
layers[parts[0]][strings.Join(parts[1:], ".")] = t
|
||||
}
|
||||
|
||||
return layers
|
||||
return ts.layers
|
||||
}
|
||||
|
||||
type Layer map[string]*Tensor
|
||||
|
|
|
@ -110,8 +110,8 @@ func (llm *gguf) KV() KV {
|
|||
return llm.kv
|
||||
}
|
||||
|
||||
func (llm *gguf) Tensors() Tensors {
|
||||
return Tensors{
|
||||
func (llm *gguf) Tensors() *Tensors {
|
||||
return &Tensors{
|
||||
Items: llm.tensors,
|
||||
Offset: llm.tensorOffset,
|
||||
}
|
||||
|
|
|
@ -3,6 +3,7 @@ package llm
|
|||
import (
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
|
@ -63,6 +64,8 @@ type MemoryEstimate struct {
|
|||
memoryLayerOutput uint64
|
||||
graphFullOffload uint64
|
||||
graphPartialOffload uint64
|
||||
|
||||
projectorWeights, projectorGraph uint64
|
||||
}
|
||||
|
||||
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
|
||||
|
@ -78,7 +81,8 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
|||
var graphOffload uint64
|
||||
|
||||
// Projectors loaded into GPU0 only
|
||||
var projectorSize uint64
|
||||
var projectorWeights uint64
|
||||
var projectorGraph uint64
|
||||
|
||||
// Conditional output size on GPU 0
|
||||
var memoryLayerOutput uint64
|
||||
|
@ -103,7 +107,9 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
|||
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", availableList)
|
||||
|
||||
for _, projector := range projectors {
|
||||
projectorSize += projectorMemoryRequirements(projector)
|
||||
weight, graph := projectorMemoryRequirements(projector)
|
||||
projectorWeights += weight
|
||||
projectorGraph += graph
|
||||
|
||||
// multimodal models require at least 2048 context
|
||||
opts.NumCtx = max(opts.NumCtx, 2048)
|
||||
|
@ -149,7 +155,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
|||
}
|
||||
|
||||
// Output layer handled at the end if we have space
|
||||
gpuZeroOverhead := projectorSize
|
||||
gpuZeroOverhead := projectorWeights + projectorGraph
|
||||
|
||||
// Reduce set of GPUs to only those that have sufficient space to fit overhead and at least one layer
|
||||
var layerCount int
|
||||
|
@ -303,6 +309,8 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
|||
memoryLayerOutput: memoryLayerOutput,
|
||||
graphFullOffload: graphFullOffload,
|
||||
graphPartialOffload: graphPartialOffload,
|
||||
projectorWeights: projectorWeights,
|
||||
projectorGraph: projectorGraph,
|
||||
}
|
||||
|
||||
if gpus[0].Library == "cpu" {
|
||||
|
@ -323,7 +331,19 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
|||
|
||||
func (m MemoryEstimate) log() {
|
||||
overhead := envconfig.GpuOverhead()
|
||||
slog.Info(
|
||||
|
||||
log := slog.With()
|
||||
if m.projectorWeights > 0 {
|
||||
log = log.With(
|
||||
slog.Group(
|
||||
"projector",
|
||||
"weights", format.HumanBytes2(m.projectorWeights),
|
||||
"graph", format.HumanBytes2(m.projectorGraph),
|
||||
),
|
||||
)
|
||||
}
|
||||
|
||||
log.Info(
|
||||
"offload to "+m.inferenceLibrary,
|
||||
slog.Group(
|
||||
"layers",
|
||||
|
@ -371,3 +391,52 @@ func (m MemoryEstimate) log() {
|
|||
),
|
||||
)
|
||||
}
|
||||
|
||||
func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
|
||||
file, err := os.Open(filename)
|
||||
if err != nil {
|
||||
return 0, 0
|
||||
}
|
||||
defer file.Close()
|
||||
|
||||
ggml, _, err := DecodeGGML(file, 0)
|
||||
if err != nil {
|
||||
return 0, 0
|
||||
}
|
||||
|
||||
for _, layer := range ggml.Tensors().Layers() {
|
||||
weights += layer.size()
|
||||
}
|
||||
|
||||
switch arch := ggml.KV().Architecture(); arch {
|
||||
case "mllama":
|
||||
kv := func(n string) uint64 {
|
||||
if v, ok := ggml.KV()[arch+".vision."+n].(uint32); ok {
|
||||
return uint64(v)
|
||||
}
|
||||
|
||||
return 0
|
||||
}
|
||||
|
||||
imageSize := kv("image_size")
|
||||
|
||||
maxNumTiles := kv("max_num_tiles")
|
||||
embeddingLength := kv("embedding_length")
|
||||
headCount := kv("attention.head_count")
|
||||
|
||||
numPatches := (imageSize / kv("patch_size")) * (imageSize / kv("patch_size"))
|
||||
if _, ok := ggml.Tensors().Layers()["v"]["class_embd"]; ok {
|
||||
numPatches++
|
||||
}
|
||||
|
||||
numPaddedPatches := numPatches + 8 - (numPatches%8)%8
|
||||
|
||||
graphSize = 4 * (8 +
|
||||
imageSize*imageSize*kv("num_channels")*maxNumTiles +
|
||||
embeddingLength*numPatches*maxNumTiles +
|
||||
9*embeddingLength*numPaddedPatches*maxNumTiles +
|
||||
numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
|
||||
}
|
||||
|
||||
return weights, graphSize
|
||||
}
|
||||
|
|
|
@ -442,26 +442,6 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter
|
|||
return nil, finalErr
|
||||
}
|
||||
|
||||
func projectorMemoryRequirements(filename string) uint64 {
|
||||
file, err := os.Open(filename)
|
||||
if err != nil {
|
||||
return 0
|
||||
}
|
||||
defer file.Close()
|
||||
|
||||
ggml, _, err := DecodeGGML(file, 0)
|
||||
if err != nil {
|
||||
return 0
|
||||
}
|
||||
|
||||
var mem uint64
|
||||
for _, layer := range ggml.Tensors().Layers() {
|
||||
mem += layer.size()
|
||||
}
|
||||
|
||||
return mem
|
||||
}
|
||||
|
||||
type ServerStatus int
|
||||
|
||||
const ( // iota is reset to 0
|
||||
|
@ -673,8 +653,9 @@ ws ::= ([ \t\n] ws)?
|
|||
const maxBufferSize = 512 * format.KiloByte
|
||||
|
||||
type ImageData struct {
|
||||
Data []byte `json:"data"`
|
||||
ID int `json:"id"`
|
||||
Data []byte `json:"data"`
|
||||
ID int `json:"id"`
|
||||
AspectRatioID int `json:"aspect_ratio_id"`
|
||||
}
|
||||
|
||||
type completion struct {
|
||||
|
|
240
server/imageproc/images.go
Normal file
240
server/imageproc/images.go
Normal file
|
@ -0,0 +1,240 @@
|
|||
package imageproc
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"image"
|
||||
"image/color"
|
||||
_ "image/jpeg"
|
||||
_ "image/png"
|
||||
"math"
|
||||
"slices"
|
||||
|
||||
"golang.org/x/image/draw"
|
||||
)
|
||||
|
||||
func GetSupportedAspectRatios(maxTiles int) []image.Point {
|
||||
ratios := []image.Point{}
|
||||
|
||||
for w := range maxTiles {
|
||||
for h := range maxTiles {
|
||||
if (w+1)*(h+1) <= maxTiles {
|
||||
ratios = append(ratios, image.Point{w + 1, h + 1})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return ratios
|
||||
}
|
||||
|
||||
func clip(a, a_min, a_max int) int {
|
||||
if a < a_min {
|
||||
return a_min
|
||||
} else if a > a_max {
|
||||
return a_max
|
||||
}
|
||||
|
||||
return a
|
||||
}
|
||||
|
||||
func getImageSizeFitToCanvas(imageSize, canvasSize image.Point, tileSize int) image.Point {
|
||||
targetWidth := clip(imageSize.X, tileSize, canvasSize.X)
|
||||
targetHeight := clip(imageSize.Y, tileSize, canvasSize.Y)
|
||||
|
||||
scaleWidth := float64(targetWidth) / float64(imageSize.X)
|
||||
scaleHeight := float64(targetHeight) / float64(imageSize.Y)
|
||||
|
||||
var w, h int
|
||||
|
||||
if scaleWidth < scaleHeight {
|
||||
w = targetWidth
|
||||
h = min(int(math.Floor(float64(imageSize.Y)*scaleWidth)), targetHeight)
|
||||
} else {
|
||||
w = min(int(math.Floor(float64(imageSize.X)*scaleHeight)), targetWidth)
|
||||
h = targetHeight
|
||||
}
|
||||
|
||||
return image.Point{w, h}
|
||||
}
|
||||
|
||||
func getOptimalTiledCanvas(imageSize image.Point, maxImageTiles, tileSize int) image.Point {
|
||||
possibleTileArrangements := GetSupportedAspectRatios(maxImageTiles)
|
||||
possibleCanvasSizes := []image.Point{}
|
||||
for _, pta := range possibleTileArrangements {
|
||||
possibleCanvasSizes = append(possibleCanvasSizes, image.Point{pta.X * tileSize, pta.Y * tileSize})
|
||||
}
|
||||
|
||||
scales := []float64{}
|
||||
|
||||
for _, pcs := range possibleCanvasSizes {
|
||||
scaleHeight := float64(pcs.Y) / float64(imageSize.Y)
|
||||
scaleWidth := float64(pcs.X) / float64(imageSize.X)
|
||||
|
||||
if scaleWidth > scaleHeight {
|
||||
scales = append(scales, scaleHeight)
|
||||
} else {
|
||||
scales = append(scales, scaleWidth)
|
||||
}
|
||||
}
|
||||
|
||||
var minUpscale float64
|
||||
var maxDownscale float64
|
||||
var upscale bool
|
||||
|
||||
for _, s := range scales {
|
||||
if s > 1.0 {
|
||||
upscale = true
|
||||
if minUpscale == 0 {
|
||||
minUpscale = s
|
||||
} else {
|
||||
minUpscale = math.Min(minUpscale, s)
|
||||
}
|
||||
} else {
|
||||
maxDownscale = math.Max(maxDownscale, s)
|
||||
}
|
||||
}
|
||||
|
||||
selectedScale := maxDownscale
|
||||
if upscale {
|
||||
selectedScale = minUpscale
|
||||
}
|
||||
|
||||
var selectedCanvas image.Point
|
||||
for n, pcs := range possibleCanvasSizes {
|
||||
if scales[n] == selectedScale {
|
||||
// choose the smallest possible canvas
|
||||
if selectedCanvas.X == 0 && selectedCanvas.Y == 0 {
|
||||
selectedCanvas = pcs
|
||||
} else if pcs.X*pcs.Y < selectedCanvas.X*selectedCanvas.Y {
|
||||
selectedCanvas = pcs
|
||||
}
|
||||
}
|
||||
}
|
||||
return selectedCanvas
|
||||
}
|
||||
|
||||
func splitToTiles(img image.Image, numTilesSize image.Point) []image.Image {
|
||||
b := img.Bounds()
|
||||
width := b.Max.X - b.Min.X
|
||||
height := b.Max.Y - b.Min.Y
|
||||
tileHeight := height / numTilesSize.Y
|
||||
tileWidth := width / numTilesSize.X
|
||||
|
||||
images := []image.Image{}
|
||||
|
||||
for h := range numTilesSize.Y {
|
||||
for w := range numTilesSize.X {
|
||||
rect := image.Rect(tileWidth*w, tileHeight*h, tileWidth*(w+1), tileHeight*(h+1))
|
||||
images = append(images, img.(interface {
|
||||
SubImage(image.Rectangle) image.Image
|
||||
}).SubImage(rect))
|
||||
}
|
||||
}
|
||||
|
||||
return images
|
||||
}
|
||||
|
||||
// remove the "alpha" channel by drawing over a prefilled image
|
||||
func compositeImage(img image.Image) image.Image {
|
||||
dst := image.NewRGBA(img.Bounds())
|
||||
|
||||
white := color.RGBA{255, 255, 255, 255}
|
||||
draw.Draw(dst, dst.Bounds(), &image.Uniform{white}, image.Point{}, draw.Src)
|
||||
draw.Draw(dst, dst.Bounds(), img, img.Bounds().Min, draw.Over)
|
||||
|
||||
return dst
|
||||
}
|
||||
|
||||
func ResizeImage(img image.Image, format string, outputSize image.Point, maxImageTiles int) (image.Image, image.Point) {
|
||||
if format == "png" {
|
||||
img = compositeImage(img)
|
||||
}
|
||||
|
||||
b := img.Bounds()
|
||||
tileSize := outputSize.Y
|
||||
|
||||
canvasSize := getOptimalTiledCanvas(b.Max, maxImageTiles, tileSize)
|
||||
aspectRatio := image.Point{canvasSize.X / tileSize, canvasSize.Y / tileSize}
|
||||
newSize := getImageSizeFitToCanvas(b.Max, canvasSize, tileSize)
|
||||
|
||||
dst := image.NewRGBA(image.Rect(0, 0, newSize.X, newSize.Y))
|
||||
|
||||
// scaling choices:
|
||||
// NearestNeighbor fast, blocky output
|
||||
// ApproxBiLinear fast, medium quality
|
||||
// BiLinear slow, high quality
|
||||
// CatmullRom very slow, very high quality
|
||||
draw.BiLinear.Scale(dst, dst.Rect, img, b, draw.Over, nil)
|
||||
|
||||
return dst, aspectRatio
|
||||
}
|
||||
|
||||
func PadImage(img image.Image, outputSize, aspectRatio image.Point) image.Image {
|
||||
paddedSize := image.Point{
|
||||
X: outputSize.X * aspectRatio.X,
|
||||
Y: outputSize.Y * aspectRatio.Y,
|
||||
}
|
||||
|
||||
dst := image.NewRGBA(image.Rect(0, 0, paddedSize.X, paddedSize.Y))
|
||||
draw.Draw(dst, img.Bounds(), img, image.Point{0, 0}, draw.Over)
|
||||
|
||||
return dst
|
||||
}
|
||||
|
||||
func PackImages(img image.Image, aspectRatio image.Point, mean, std [3]float32) []float32 {
|
||||
subImages := splitToTiles(img, aspectRatio)
|
||||
|
||||
var pixelVals []float32
|
||||
|
||||
for _, subImg := range subImages {
|
||||
bounds := subImg.Bounds()
|
||||
var rVals, gVals, bVals []float32
|
||||
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
|
||||
for x := bounds.Min.X; x < bounds.Max.X; x++ {
|
||||
c := subImg.At(x, y)
|
||||
r, g, b, _ := c.RGBA()
|
||||
rVal := float32(r>>8) / 255.0
|
||||
gVal := float32(g>>8) / 255.0
|
||||
bVal := float32(b>>8) / 255.0
|
||||
|
||||
rVal = (rVal - mean[0]) / std[0]
|
||||
gVal = (gVal - mean[1]) / std[1]
|
||||
bVal = (bVal - mean[2]) / std[2]
|
||||
|
||||
rVals = append(rVals, rVal)
|
||||
gVals = append(gVals, gVal)
|
||||
bVals = append(bVals, bVal)
|
||||
}
|
||||
}
|
||||
pixelVals = append(pixelVals, rVals...)
|
||||
pixelVals = append(pixelVals, gVals...)
|
||||
pixelVals = append(pixelVals, bVals...)
|
||||
}
|
||||
|
||||
return pixelVals
|
||||
}
|
||||
|
||||
func Preprocess(imageData []byte) ([]float32, int, error) {
|
||||
// todo: need guard in here for bad image data
|
||||
|
||||
// mllama values
|
||||
outputSize := image.Point{560, 560}
|
||||
maxTiles := 4
|
||||
|
||||
// clip values
|
||||
mean := [3]float32{0.48145466, 0.4578275, 0.40821073}
|
||||
std := [3]float32{0.26862954, 0.26130258, 0.27577711}
|
||||
|
||||
img, format, err := image.Decode(bytes.NewReader(imageData))
|
||||
if err != nil {
|
||||
return nil, 0, fmt.Errorf("failed to decode image: %w", err)
|
||||
}
|
||||
|
||||
newImage, aspectRatio := ResizeImage(img, format, outputSize, maxTiles)
|
||||
newImage = PadImage(newImage, outputSize, aspectRatio)
|
||||
|
||||
data := PackImages(newImage, aspectRatio, mean, std)
|
||||
aspectRatioIndex := slices.Index(GetSupportedAspectRatios(maxTiles), aspectRatio) + 1
|
||||
|
||||
return data, aspectRatioIndex, nil
|
||||
}
|
344
server/imageproc/images_test.go
Normal file
344
server/imageproc/images_test.go
Normal file
|
@ -0,0 +1,344 @@
|
|||
package imageproc
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"image"
|
||||
"image/png"
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
)
|
||||
|
||||
func TestAspectRatios(t *testing.T) {
|
||||
type aspectCase struct {
|
||||
MaxTiles int
|
||||
Expected []image.Point
|
||||
}
|
||||
|
||||
cases := []aspectCase{
|
||||
{
|
||||
MaxTiles: 1,
|
||||
Expected: []image.Point{{1, 1}},
|
||||
},
|
||||
{
|
||||
MaxTiles: 2,
|
||||
Expected: []image.Point{{1, 1}, {1, 2}, {2, 1}},
|
||||
},
|
||||
{
|
||||
MaxTiles: 3,
|
||||
Expected: []image.Point{{1, 1}, {1, 2}, {1, 3}, {2, 1}, {3, 1}},
|
||||
},
|
||||
{
|
||||
MaxTiles: 4,
|
||||
Expected: []image.Point{{1, 1}, {1, 2}, {1, 3}, {1, 4}, {2, 1}, {2, 2}, {3, 1}, {4, 1}},
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
actual := GetSupportedAspectRatios(c.MaxTiles)
|
||||
|
||||
if diff := cmp.Diff(actual, c.Expected); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestGetImageSizeFitToCanvas(t *testing.T) {
|
||||
type imageSizeCase struct {
|
||||
ImageRect image.Point
|
||||
CanvasRect image.Point
|
||||
TileSize int
|
||||
Expected image.Point
|
||||
}
|
||||
|
||||
cases := []imageSizeCase{
|
||||
{
|
||||
ImageRect: image.Point{400, 400},
|
||||
CanvasRect: image.Point{640, 480},
|
||||
TileSize: 200,
|
||||
Expected: image.Point{400, 400},
|
||||
},
|
||||
{
|
||||
ImageRect: image.Point{1024, 768},
|
||||
CanvasRect: image.Point{640, 480},
|
||||
TileSize: 200,
|
||||
Expected: image.Point{640, 480},
|
||||
},
|
||||
{
|
||||
ImageRect: image.Point{500, 500},
|
||||
CanvasRect: image.Point{1000, 1000},
|
||||
TileSize: 750,
|
||||
Expected: image.Point{750, 750},
|
||||
},
|
||||
{
|
||||
ImageRect: image.Point{500, 1000},
|
||||
CanvasRect: image.Point{2000, 2000},
|
||||
TileSize: 2000,
|
||||
Expected: image.Point{1000, 2000},
|
||||
},
|
||||
{
|
||||
ImageRect: image.Point{4000, 3000},
|
||||
CanvasRect: image.Point{2000, 1000},
|
||||
TileSize: 1000,
|
||||
Expected: image.Point{1333, 1000},
|
||||
},
|
||||
{
|
||||
ImageRect: image.Point{667, 1000},
|
||||
CanvasRect: image.Point{1000, 1000},
|
||||
TileSize: 560,
|
||||
Expected: image.Point{667, 1000},
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
actual := getImageSizeFitToCanvas(c.ImageRect, c.CanvasRect, c.TileSize)
|
||||
|
||||
if actual != c.Expected {
|
||||
t.Errorf("incorrect image rect: '%#v'. expected: '%#v'", actual, c.Expected)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestGetOptimalTiledCanvas(t *testing.T) {
|
||||
type tiledCanvasSizeCase struct {
|
||||
ImageSize image.Point
|
||||
MaxImageTiles int
|
||||
TileSize int
|
||||
Expected image.Point
|
||||
}
|
||||
|
||||
cases := []tiledCanvasSizeCase{
|
||||
{
|
||||
ImageSize: image.Point{1024, 768},
|
||||
MaxImageTiles: 4,
|
||||
TileSize: 1000,
|
||||
Expected: image.Point{2000, 1000},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{1024, 768},
|
||||
MaxImageTiles: 4,
|
||||
TileSize: 560,
|
||||
Expected: image.Point{1120, 1120},
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
actual := getOptimalTiledCanvas(c.ImageSize, c.MaxImageTiles, c.TileSize)
|
||||
|
||||
if actual != c.Expected {
|
||||
t.Errorf("incorrect tiled canvas: '%#v'. expected: '%#v'", actual, c.Expected)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestSplitToTiles(t *testing.T) {
|
||||
type splitCase struct {
|
||||
TestImage image.Image
|
||||
NumTilesSize image.Point
|
||||
Expected []image.Image
|
||||
}
|
||||
|
||||
cases := []splitCase{
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 1024, 768)),
|
||||
NumTilesSize: image.Point{1, 1},
|
||||
Expected: []image.Image{image.NewRGBA(image.Rect(0, 0, 1024, 768))},
|
||||
},
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 1000, 500)),
|
||||
NumTilesSize: image.Point{2, 1},
|
||||
Expected: []image.Image{
|
||||
image.NewRGBA(image.Rect(0, 0, 500, 500)),
|
||||
image.NewRGBA(image.Rect(500, 0, 1000, 500)),
|
||||
},
|
||||
},
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 1000, 1000)),
|
||||
NumTilesSize: image.Point{2, 2},
|
||||
Expected: []image.Image{
|
||||
image.NewRGBA(image.Rect(0, 0, 500, 500)),
|
||||
image.NewRGBA(image.Rect(500, 0, 1000, 500)),
|
||||
image.NewRGBA(image.Rect(0, 500, 500, 1000)),
|
||||
image.NewRGBA(image.Rect(500, 500, 1000, 1000)),
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
actual := splitToTiles(c.TestImage, c.NumTilesSize)
|
||||
|
||||
if len(actual) != len(c.Expected) {
|
||||
t.Errorf("incorrect number of images '%d': expected: '%d'", len(actual), len(c.Expected))
|
||||
}
|
||||
|
||||
for i := range actual {
|
||||
if actual[i].Bounds() != c.Expected[i].Bounds() {
|
||||
t.Errorf("image size incorrect: '%#v': expected: '%#v'", actual[i].Bounds(), c.Expected[i].Bounds())
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestResize(t *testing.T) {
|
||||
type resizeCase struct {
|
||||
TestImage image.Image
|
||||
OutputSize image.Point
|
||||
MaxImageTiles int
|
||||
ExpectedImage image.Image
|
||||
ExpectedAspectRatio image.Point
|
||||
}
|
||||
|
||||
cases := []resizeCase{
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 200, 200)),
|
||||
OutputSize: image.Point{100, 100},
|
||||
MaxImageTiles: 1,
|
||||
ExpectedImage: image.NewRGBA(image.Rect(0, 0, 100, 100)),
|
||||
ExpectedAspectRatio: image.Point{1, 1},
|
||||
},
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 200, 200)),
|
||||
OutputSize: image.Point{100, 100},
|
||||
MaxImageTiles: 2,
|
||||
ExpectedImage: image.NewRGBA(image.Rect(0, 0, 100, 100)),
|
||||
ExpectedAspectRatio: image.Point{1, 1},
|
||||
},
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 10, 10)),
|
||||
OutputSize: image.Point{560, 560},
|
||||
MaxImageTiles: 4,
|
||||
ExpectedImage: image.NewRGBA(image.Rect(0, 0, 560, 560)),
|
||||
ExpectedAspectRatio: image.Point{1, 1},
|
||||
},
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 2560, 1920)),
|
||||
OutputSize: image.Point{560, 560},
|
||||
MaxImageTiles: 4,
|
||||
ExpectedImage: image.NewRGBA(image.Rect(0, 0, 1120, 840)),
|
||||
ExpectedAspectRatio: image.Point{2, 2},
|
||||
},
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 1024, 768)),
|
||||
OutputSize: image.Point{560, 560},
|
||||
MaxImageTiles: 4,
|
||||
ExpectedImage: image.NewRGBA(image.Rect(0, 0, 1024, 768)),
|
||||
ExpectedAspectRatio: image.Point{2, 2},
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
actualImage, actualAspectRatio := ResizeImage(c.TestImage, "png", c.OutputSize, c.MaxImageTiles)
|
||||
|
||||
if actualImage.Bounds() != c.ExpectedImage.Bounds() {
|
||||
t.Errorf("image size incorrect: '%#v': expected: '%#v'", actualImage.Bounds(), c.ExpectedImage.Bounds())
|
||||
}
|
||||
|
||||
if actualAspectRatio != c.ExpectedAspectRatio {
|
||||
t.Errorf("aspect ratio incorrect: '%#v': expected: '%#v'", actualAspectRatio, c.ExpectedAspectRatio)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestPad(t *testing.T) {
|
||||
type padCase struct {
|
||||
TestImage image.Image
|
||||
OutputSize image.Point
|
||||
AspectRatio image.Point
|
||||
Expected image.Image
|
||||
}
|
||||
|
||||
cases := []padCase{
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 1000, 667)),
|
||||
OutputSize: image.Point{560, 560},
|
||||
AspectRatio: image.Point{2, 2},
|
||||
Expected: image.NewRGBA(image.Rect(0, 0, 1120, 1120)),
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
actual := PadImage(c.TestImage, c.OutputSize, c.AspectRatio)
|
||||
|
||||
if actual.Bounds() != c.Expected.Bounds() {
|
||||
t.Errorf("image size incorrect: '%#v': expected: '%#v'", actual.Bounds(), c.Expected.Bounds())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestPackImages(t *testing.T) {
|
||||
type packCase struct {
|
||||
TestImage image.Image
|
||||
AspectRatio image.Point
|
||||
ExpectedVals int
|
||||
}
|
||||
|
||||
mean := [3]float32{0.48145466, 0.4578275, 0.40821073}
|
||||
std := [3]float32{0.26862954, 0.26130258, 0.27577711}
|
||||
|
||||
cases := []packCase{
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 1120, 1120)),
|
||||
AspectRatio: image.Point{2, 2},
|
||||
ExpectedVals: 2 * 2 * 3 * 560 * 560,
|
||||
},
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 560, 560)),
|
||||
AspectRatio: image.Point{1, 1},
|
||||
ExpectedVals: 1 * 1 * 3 * 560 * 560,
|
||||
},
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 1120, 560)),
|
||||
AspectRatio: image.Point{1, 2},
|
||||
ExpectedVals: 1 * 2 * 3 * 560 * 560,
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
actualVals := PackImages(c.TestImage, c.AspectRatio, mean, std)
|
||||
if len(actualVals) != c.ExpectedVals {
|
||||
t.Errorf("packed image size incorrect: '%d': expected: '%d'", len(actualVals), c.ExpectedVals)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestPreprocess(t *testing.T) {
|
||||
type preprocessCase struct {
|
||||
TestImage image.Image
|
||||
ExpectedVals int
|
||||
ExpectedAspectRatioID int
|
||||
}
|
||||
|
||||
cases := []preprocessCase{
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 10, 10)),
|
||||
ExpectedVals: 0,
|
||||
ExpectedAspectRatioID: 1,
|
||||
},
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 1024, 768)),
|
||||
ExpectedVals: 0,
|
||||
ExpectedAspectRatioID: 6,
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
var buf bytes.Buffer
|
||||
err := png.Encode(&buf, c.TestImage)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
imgData, aspectRatioID, err := Preprocess(buf.Bytes())
|
||||
if err != nil {
|
||||
t.Fatalf("error processing: %q", err)
|
||||
}
|
||||
|
||||
if len(imgData) == 0 {
|
||||
t.Errorf("no image data returned")
|
||||
}
|
||||
|
||||
if aspectRatioID != c.ExpectedAspectRatioID {
|
||||
t.Errorf("aspect ratio incorrect: '%d': expected: '%d'", aspectRatioID, c.ExpectedAspectRatioID)
|
||||
}
|
||||
}
|
||||
}
|
|
@ -194,7 +194,9 @@ func parseFromFile(ctx context.Context, command string, baseLayers []*layerGGML,
|
|||
mediatype := "application/vnd.ollama.image.model"
|
||||
if ggml.Name() == "ggla" || ggml.KV().Kind() == "adapter" {
|
||||
mediatype = "application/vnd.ollama.image.adapter"
|
||||
} else if ggml.KV().Architecture() == "clip" {
|
||||
}
|
||||
|
||||
if _, ok := ggml.KV()[fmt.Sprintf("%s.vision.block_count", ggml.KV().Architecture())]; ok || ggml.KV().Kind() == "projector" {
|
||||
mediatype = "application/vnd.ollama.image.projector"
|
||||
}
|
||||
|
||||
|
|
100
server/prompt.go
100
server/prompt.go
|
@ -3,24 +3,42 @@ package server
|
|||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/server/imageproc"
|
||||
"github.com/ollama/ollama/template"
|
||||
)
|
||||
|
||||
type tokenizeFunc func(context.Context, string) ([]int, error)
|
||||
|
||||
var errTooManyImages = errors.New("vision model only supports a single image per message")
|
||||
|
||||
// chatPrompt accepts a list of messages and returns the prompt and images that should be used for the next chat turn.
|
||||
// chatPrompt truncates any messages that exceed the context window of the model, making sure to always include 1) the
|
||||
// latest message and 2) system messages
|
||||
func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.Options, msgs []api.Message, tools []api.Tool) (prompt string, images []llm.ImageData, _ error) {
|
||||
var system []api.Message
|
||||
// always include the last message
|
||||
|
||||
isMllama := checkMllamaModelFamily(m)
|
||||
|
||||
n := len(msgs) - 1
|
||||
// in reverse, find all messages that fit into context window
|
||||
for i := n - 1; i >= 0; i-- {
|
||||
for i := n; i >= 0; i-- {
|
||||
if isMllama && len(msgs[i].Images) > 1 {
|
||||
return "", nil, errTooManyImages
|
||||
}
|
||||
|
||||
// always include the last message
|
||||
if i == n {
|
||||
continue
|
||||
}
|
||||
|
||||
system = make([]api.Message, 0)
|
||||
for j := range i {
|
||||
if msgs[j].Role == "system" {
|
||||
|
@ -38,16 +56,16 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
|
|||
return "", nil, err
|
||||
}
|
||||
|
||||
c := len(s)
|
||||
ctxLen := len(s)
|
||||
if m.ProjectorPaths != nil {
|
||||
for _, m := range msgs[i:] {
|
||||
// images are represented as 768 sized embeddings
|
||||
// TODO: get embedding length from project metadata
|
||||
c += 768 * len(m.Images)
|
||||
ctxLen += 768 * len(m.Images)
|
||||
}
|
||||
}
|
||||
|
||||
if c > opts.NumCtx {
|
||||
if ctxLen > opts.NumCtx {
|
||||
slog.Debug("truncating input messages which exceed context length", "truncated", len(msgs[i:]))
|
||||
break
|
||||
} else {
|
||||
|
@ -55,20 +73,70 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
|
|||
}
|
||||
}
|
||||
|
||||
// truncate any messages that do not fit into the context window
|
||||
var b bytes.Buffer
|
||||
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[n:]...), Tools: tools}); err != nil {
|
||||
return "", nil, err
|
||||
currMsgIdx := n
|
||||
|
||||
if isMllama {
|
||||
lastMsgIdx := len(msgs) - 1
|
||||
for i := lastMsgIdx; i >= currMsgIdx; i-- {
|
||||
if len(msgs[i].Images) > 0 {
|
||||
data, aspectRatioID, err := imageproc.Preprocess(msgs[i].Images[0])
|
||||
if err != nil {
|
||||
return "", nil, err
|
||||
}
|
||||
|
||||
buf := new(bytes.Buffer)
|
||||
err = binary.Write(buf, binary.LittleEndian, data)
|
||||
if err != nil {
|
||||
return "", nil, err
|
||||
}
|
||||
|
||||
imgData := llm.ImageData{
|
||||
Data: buf.Bytes(),
|
||||
AspectRatioID: aspectRatioID,
|
||||
}
|
||||
|
||||
msgs[i].Content = strings.TrimSpace("<|image|>" + msgs[i].Content)
|
||||
images = append(images, imgData)
|
||||
break
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for cnt, msg := range msgs[currMsgIdx:] {
|
||||
prefix := ""
|
||||
prompt := msg.Content
|
||||
for _, i := range msg.Images {
|
||||
imgData := llm.ImageData{
|
||||
ID: len(images),
|
||||
Data: i,
|
||||
}
|
||||
|
||||
imgTag := fmt.Sprintf("[img-%d]", imgData.ID)
|
||||
if !strings.Contains(prompt, "[img]") {
|
||||
prefix += imgTag
|
||||
} else {
|
||||
prompt = strings.Replace(prompt, "[img]", imgTag, 1)
|
||||
}
|
||||
|
||||
images = append(images, imgData)
|
||||
}
|
||||
msgs[currMsgIdx+cnt].Content = strings.TrimSpace(prefix + " " + prompt)
|
||||
}
|
||||
}
|
||||
|
||||
for _, m := range msgs[n:] {
|
||||
for _, i := range m.Images {
|
||||
images = append(images, llm.ImageData{
|
||||
ID: len(images),
|
||||
Data: i,
|
||||
})
|
||||
}
|
||||
// truncate any messages that do not fit into the context window
|
||||
var b bytes.Buffer
|
||||
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[currMsgIdx:]...), Tools: tools}); err != nil {
|
||||
return "", nil, err
|
||||
}
|
||||
|
||||
return b.String(), images, nil
|
||||
}
|
||||
|
||||
func checkMllamaModelFamily(m *Model) bool {
|
||||
for _, arch := range m.Config.ModelFamilies {
|
||||
if arch == "mllama" {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
|
|
@ -3,6 +3,8 @@ package server
|
|||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"image"
|
||||
"image/png"
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
|
@ -13,18 +15,53 @@ import (
|
|||
|
||||
func TestChatPrompt(t *testing.T) {
|
||||
type expect struct {
|
||||
prompt string
|
||||
images [][]byte
|
||||
prompt string
|
||||
images [][]byte
|
||||
aspectRatioID int
|
||||
error error
|
||||
}
|
||||
|
||||
tmpl, err := template.Parse(`
|
||||
{{- if .System }}{{ .System }} {{ end }}
|
||||
{{- if .Prompt }}{{ .Prompt }} {{ end }}
|
||||
{{- if .Response }}{{ .Response }} {{ end }}`)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
visionModel := Model{Template: tmpl, ProjectorPaths: []string{"vision"}}
|
||||
mllamaModel := Model{Template: tmpl, ProjectorPaths: []string{"vision"}, Config: ConfigV2{ModelFamilies: []string{"mllama"}}}
|
||||
|
||||
createImg := func(width, height int) ([]byte, error) {
|
||||
img := image.NewRGBA(image.Rect(0, 0, 5, 5))
|
||||
var buf bytes.Buffer
|
||||
|
||||
if err := png.Encode(&buf, img); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return buf.Bytes(), nil
|
||||
}
|
||||
|
||||
imgBuf, err := createImg(5, 5)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
imgBuf2, err := createImg(6, 6)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
cases := []struct {
|
||||
name string
|
||||
model Model
|
||||
limit int
|
||||
msgs []api.Message
|
||||
expect
|
||||
}{
|
||||
{
|
||||
name: "messages",
|
||||
model: visionModel,
|
||||
limit: 64,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!"},
|
||||
|
@ -37,6 +74,7 @@ func TestChatPrompt(t *testing.T) {
|
|||
},
|
||||
{
|
||||
name: "truncate messages",
|
||||
model: visionModel,
|
||||
limit: 1,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!"},
|
||||
|
@ -49,6 +87,7 @@ func TestChatPrompt(t *testing.T) {
|
|||
},
|
||||
{
|
||||
name: "truncate messages with image",
|
||||
model: visionModel,
|
||||
limit: 64,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!"},
|
||||
|
@ -64,6 +103,7 @@ func TestChatPrompt(t *testing.T) {
|
|||
},
|
||||
{
|
||||
name: "truncate messages with images",
|
||||
model: visionModel,
|
||||
limit: 64,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!", Images: []api.ImageData{[]byte("something")}},
|
||||
|
@ -79,6 +119,7 @@ func TestChatPrompt(t *testing.T) {
|
|||
},
|
||||
{
|
||||
name: "messages with images",
|
||||
model: visionModel,
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!", Images: []api.ImageData{[]byte("something")}},
|
||||
|
@ -95,6 +136,7 @@ func TestChatPrompt(t *testing.T) {
|
|||
},
|
||||
{
|
||||
name: "message with image tag",
|
||||
model: visionModel,
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry! [img]", Images: []api.ImageData{[]byte("something")}},
|
||||
|
@ -111,6 +153,7 @@ func TestChatPrompt(t *testing.T) {
|
|||
},
|
||||
{
|
||||
name: "messages with interleaved images",
|
||||
model: visionModel,
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!"},
|
||||
|
@ -129,6 +172,7 @@ func TestChatPrompt(t *testing.T) {
|
|||
},
|
||||
{
|
||||
name: "truncate message with interleaved images",
|
||||
model: visionModel,
|
||||
limit: 1024,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!"},
|
||||
|
@ -146,6 +190,7 @@ func TestChatPrompt(t *testing.T) {
|
|||
},
|
||||
{
|
||||
name: "message with system prompt",
|
||||
model: visionModel,
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "system", Content: "You are the Test Who Lived."},
|
||||
|
@ -159,6 +204,7 @@ func TestChatPrompt(t *testing.T) {
|
|||
},
|
||||
{
|
||||
name: "out of order system",
|
||||
model: visionModel,
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!"},
|
||||
|
@ -170,23 +216,113 @@ func TestChatPrompt(t *testing.T) {
|
|||
prompt: "You're a test, Harry! I-I'm a what? You are the Test Who Lived. A test. And a thumping good one at that, I'd wager. ",
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
tmpl, err := template.Parse(`
|
||||
{{- if .System }}{{ .System }} {{ end }}
|
||||
{{- if .Prompt }}{{ .Prompt }} {{ end }}
|
||||
{{- if .Response }}{{ .Response }} {{ end }}`)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
{
|
||||
name: "multiple images same prompt",
|
||||
model: visionModel,
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "Compare these two pictures of hotdogs", Images: []api.ImageData{[]byte("one hotdog"), []byte("two hotdogs")}},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "[img-0][img-1] Compare these two pictures of hotdogs ",
|
||||
images: [][]byte{[]byte("one hotdog"), []byte("two hotdogs")},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "messages with mllama (no images)",
|
||||
model: mllamaModel,
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!"},
|
||||
{Role: "assistant", Content: "I-I'm a what?"},
|
||||
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager."},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "You're a test, Harry! I-I'm a what? A test. And a thumping good one at that, I'd wager. ",
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "messages with mllama single prompt",
|
||||
model: mllamaModel,
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "How many hotdogs are in this image?", Images: []api.ImageData{imgBuf}},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "<|image|>How many hotdogs are in this image? ",
|
||||
images: [][]byte{imgBuf},
|
||||
aspectRatioID: 1,
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "messages with mllama",
|
||||
model: mllamaModel,
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!"},
|
||||
{Role: "assistant", Content: "I-I'm a what?"},
|
||||
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{imgBuf}},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "You're a test, Harry! I-I'm a what? <|image|>A test. And a thumping good one at that, I'd wager. ",
|
||||
images: [][]byte{imgBuf},
|
||||
aspectRatioID: 1,
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "multiple messages with mllama",
|
||||
model: mllamaModel,
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!", Images: []api.ImageData{imgBuf}},
|
||||
{Role: "assistant", Content: "I-I'm a what?"},
|
||||
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{imgBuf2}},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "You're a test, Harry! I-I'm a what? <|image|>A test. And a thumping good one at that, I'd wager. ",
|
||||
images: [][]byte{imgBuf2},
|
||||
aspectRatioID: 1,
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "earlier image with mllama",
|
||||
model: mllamaModel,
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "How many hotdogs are in this image?", Images: []api.ImageData{imgBuf}},
|
||||
{Role: "assistant", Content: "There are four hotdogs."},
|
||||
{Role: "user", Content: "Which ones have mustard?"},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "<|image|>How many hotdogs are in this image? There are four hotdogs. Which ones have mustard? ",
|
||||
images: [][]byte{imgBuf},
|
||||
aspectRatioID: 1,
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "too many images with mllama",
|
||||
model: mllamaModel,
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!"},
|
||||
{Role: "assistant", Content: "I-I'm a what?"},
|
||||
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{imgBuf, imgBuf}},
|
||||
},
|
||||
expect: expect{
|
||||
error: errTooManyImages,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
model := Model{Template: tmpl, ProjectorPaths: []string{"vision"}}
|
||||
model := tt.model
|
||||
opts := api.Options{Runner: api.Runner{NumCtx: tt.limit}}
|
||||
prompt, images, err := chatPrompt(context.TODO(), &model, mockRunner{}.Tokenize, &opts, tt.msgs, nil)
|
||||
if err != nil {
|
||||
if tt.error == nil && err != nil {
|
||||
t.Fatal(err)
|
||||
} else if tt.error != nil && err != tt.error {
|
||||
t.Fatalf("expected err '%q', got '%q'", tt.error, err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(prompt, tt.prompt); diff != "" {
|
||||
|
@ -202,8 +338,14 @@ func TestChatPrompt(t *testing.T) {
|
|||
t.Errorf("expected ID %d, got %d", i, images[i].ID)
|
||||
}
|
||||
|
||||
if !bytes.Equal(images[i].Data, tt.images[i]) {
|
||||
t.Errorf("expected %q, got %q", tt.images[i], images[i])
|
||||
if len(model.Config.ModelFamilies) == 0 {
|
||||
if !bytes.Equal(images[i].Data, tt.images[i]) {
|
||||
t.Errorf("expected %q, got %q", tt.images[i], images[i].Data)
|
||||
}
|
||||
} else {
|
||||
if images[i].AspectRatioID != tt.aspectRatioID {
|
||||
t.Errorf("expected aspect ratio %d, got %d", tt.aspectRatioID, images[i].AspectRatioID)
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
|
|
|
@ -119,20 +119,21 @@ func (s *Server) GenerateHandler(c *gin.Context) {
|
|||
return
|
||||
}
|
||||
|
||||
model, err := GetModel(req.Model)
|
||||
if err != nil {
|
||||
switch {
|
||||
case os.IsNotExist(err):
|
||||
c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("model '%s' not found", req.Model)})
|
||||
case err.Error() == "invalid model name":
|
||||
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
|
||||
default:
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// expire the runner
|
||||
if req.Prompt == "" && req.KeepAlive != nil && int(req.KeepAlive.Seconds()) == 0 {
|
||||
model, err := GetModel(req.Model)
|
||||
if err != nil {
|
||||
switch {
|
||||
case os.IsNotExist(err):
|
||||
c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("model '%s' not found", req.Model)})
|
||||
case err.Error() == "invalid model name":
|
||||
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
|
||||
default:
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
}
|
||||
return
|
||||
}
|
||||
s.sched.expireRunner(model)
|
||||
|
||||
c.JSON(http.StatusOK, api.GenerateResponse{
|
||||
|
@ -169,6 +170,7 @@ func (s *Server) GenerateHandler(c *gin.Context) {
|
|||
|
||||
checkpointLoaded := time.Now()
|
||||
|
||||
// load the model
|
||||
if req.Prompt == "" {
|
||||
c.JSON(http.StatusOK, api.GenerateResponse{
|
||||
Model: req.Model,
|
||||
|
@ -179,6 +181,12 @@ func (s *Server) GenerateHandler(c *gin.Context) {
|
|||
return
|
||||
}
|
||||
|
||||
isMllama := checkMllamaModelFamily(model)
|
||||
if isMllama && len(req.Images) > 1 {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "this model only supports one image: more than one image sent"})
|
||||
return
|
||||
}
|
||||
|
||||
images := make([]llm.ImageData, len(req.Images))
|
||||
for i := range req.Images {
|
||||
images[i] = llm.ImageData{ID: i, Data: req.Images[i]}
|
||||
|
@ -212,7 +220,11 @@ func (s *Server) GenerateHandler(c *gin.Context) {
|
|||
}
|
||||
|
||||
for _, i := range images {
|
||||
msgs = append(msgs, api.Message{Role: "user", Content: fmt.Sprintf("[img-%d]", i.ID)})
|
||||
if isMllama {
|
||||
msgs = append(msgs, api.Message{Role: "user", Content: "<|image|>"})
|
||||
} else {
|
||||
msgs = append(msgs, api.Message{Role: "user", Content: fmt.Sprintf("[img-%d]", i.ID)})
|
||||
}
|
||||
}
|
||||
|
||||
values.Messages = append(msgs, api.Message{Role: "user", Content: req.Prompt})
|
||||
|
|
|
@ -421,22 +421,22 @@ func TestGenerate(t *testing.T) {
|
|||
|
||||
t.Run("missing body", func(t *testing.T) {
|
||||
w := createRequest(t, s.GenerateHandler, nil)
|
||||
if w.Code != http.StatusBadRequest {
|
||||
t.Errorf("expected status 400, got %d", w.Code)
|
||||
if w.Code != http.StatusNotFound {
|
||||
t.Errorf("expected status 404, got %d", w.Code)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(w.Body.String(), `{"error":"model is required"}`); diff != "" {
|
||||
if diff := cmp.Diff(w.Body.String(), `{"error":"model '' not found"}`); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("missing model", func(t *testing.T) {
|
||||
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{})
|
||||
if w.Code != http.StatusBadRequest {
|
||||
t.Errorf("expected status 400, got %d", w.Code)
|
||||
if w.Code != http.StatusNotFound {
|
||||
t.Errorf("expected status 404, got %d", w.Code)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(w.Body.String(), `{"error":"model is required"}`); diff != "" {
|
||||
if diff := cmp.Diff(w.Body.String(), `{"error":"model '' not found"}`); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
|
|
@ -562,7 +562,7 @@ func TestShow(t *testing.T) {
|
|||
Modelfile: fmt.Sprintf(
|
||||
"FROM %s\nFROM %s",
|
||||
createBinFile(t, llm.KV{"general.architecture": "test"}, nil),
|
||||
createBinFile(t, llm.KV{"general.architecture": "clip"}, nil),
|
||||
createBinFile(t, llm.KV{"general.type": "projector", "general.architecture": "clip"}, nil),
|
||||
),
|
||||
})
|
||||
|
||||
|
|
|
@ -5,7 +5,6 @@ import (
|
|||
"embed"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"math"
|
||||
"slices"
|
||||
|
@ -302,22 +301,10 @@ func (t *Template) Execute(w io.Writer, v Values) error {
|
|||
// into a single message. collate also collects and returns all system messages.
|
||||
// collate mutates message content adding image tags ([img-%d]) as needed
|
||||
func collate(msgs []api.Message) (string, []*api.Message) {
|
||||
var n int
|
||||
|
||||
var system []string
|
||||
var collated []*api.Message
|
||||
for i := range msgs {
|
||||
msg := msgs[i]
|
||||
for range msg.Images {
|
||||
imageTag := fmt.Sprintf("[img-%d]", n)
|
||||
if !strings.Contains(msg.Content, "[img]") {
|
||||
msg.Content = strings.TrimSpace("[img] " + msg.Content)
|
||||
}
|
||||
|
||||
msg.Content = strings.Replace(msg.Content, "[img]", imageTag, 1)
|
||||
n++
|
||||
}
|
||||
|
||||
if msg.Role == "system" {
|
||||
system = append(system, msg.Content)
|
||||
}
|
||||
|
|
|
@ -317,45 +317,6 @@ What is your name?<|im_end|>
|
|||
<|im_start|>assistant
|
||||
`,
|
||||
},
|
||||
{
|
||||
"moondream",
|
||||
[]template{
|
||||
// this does not have a "no response" test because it's impossible to render the same output
|
||||
{"response", `{{ if .Prompt }}Question: {{ .Prompt }}
|
||||
|
||||
{{ end }}Answer: {{ .Response }}
|
||||
|
||||
`},
|
||||
{"messages", `
|
||||
{{- range .Messages }}
|
||||
{{- if eq .Role "user" }}Question: {{ .Content }}
|
||||
|
||||
{{ else if eq .Role "assistant" }}Answer: {{ .Content }}
|
||||
|
||||
{{ end }}
|
||||
{{- end }}Answer: `},
|
||||
},
|
||||
Values{
|
||||
Messages: []api.Message{
|
||||
{Role: "user", Content: "What's in this image?", Images: []api.ImageData{[]byte("")}},
|
||||
{Role: "assistant", Content: "It's a hot dog."},
|
||||
{Role: "user", Content: "What's in _this_ image?"},
|
||||
{Role: "user", Images: []api.ImageData{[]byte("")}},
|
||||
{Role: "user", Content: "Is it a hot dog?"},
|
||||
},
|
||||
},
|
||||
`Question: [img-0] What's in this image?
|
||||
|
||||
Answer: It's a hot dog.
|
||||
|
||||
Question: What's in _this_ image?
|
||||
|
||||
[img-1]
|
||||
|
||||
Is it a hot dog?
|
||||
|
||||
Answer: `,
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
|
|
Loading…
Reference in a new issue