No description
Find a file
Daniel Hiltgen b111aa5a91
Debug logging for nvcuda init (#7532)
Some users are reporting crashes during nvcuda.dll initialization
on windows.  This should help narrow down where things are going bad.
2024-11-07 14:25:53 -08:00
.github CI: Switch to v13 macos runner (#7498) 2024-11-04 13:02:07 -08:00
api runner.go: Remove unused arguments 2024-11-06 13:32:18 -08:00
app windows: Support alt install paths, fit and finish (#6967) 2024-10-30 09:24:31 -07:00
auth lint 2024-08-01 17:06:06 -07:00
build Optimize container images for startup (#6547) 2024-09-12 12:10:30 -07:00
cmd Fix unicode output on windows with redirect to file (#7358) 2024-10-25 13:43:16 -07:00
convert image processing for llama3.2 (#6963) 2024-10-18 16:12:35 -07:00
discover Debug logging for nvcuda init (#7532) 2024-11-07 14:25:53 -08:00
docs docs: OLLAMA_NEW_RUNNERS no longer exists 2024-11-06 14:39:02 -08:00
envconfig Better support for AMD multi-GPU on linux (#7212) 2024-10-26 14:04:14 -07:00
examples update default model to llama3.2 (#6959) 2024-09-25 11:11:22 -07:00
format lint 2024-08-01 17:06:06 -07:00
integration Add basic mllama integration tests (#7455) 2024-10-31 17:25:48 -07:00
llama Align rocm compiler flags (#7467) 2024-11-07 10:20:50 -08:00
llm runner.go: Remove unused arguments 2024-11-06 13:32:18 -08:00
macapp update default model to llama3.2 (#6959) 2024-09-25 11:11:22 -07:00
openai openai: align chat temperature and frequency_penalty options with completion (#6688) 2024-09-07 09:08:08 -07:00
parser runner.go: Remove unused arguments 2024-11-06 13:32:18 -08:00
progress cmd: spinner progress for transfer model data (#6100) 2024-08-12 11:46:32 -07:00
readline lint 2024-08-13 14:36:33 -07:00
runners Rename gpu package discover (#7143) 2024-10-16 17:45:00 -07:00
scripts CI: omit unused tools for faster release builds (#7432) 2024-11-02 13:56:54 -07:00
server sched: Lift parallel restriction for multimodal models except mllama 2024-11-06 13:32:18 -08:00
template image processing for llama3.2 (#6963) 2024-10-18 16:12:35 -07:00
types Fix typo and improve readability (#5964) 2024-08-13 17:54:19 -07:00
util/bufioutil llm: speed up gguf decoding by a lot (#5246) 2024-06-24 21:47:52 -07:00
version add version 2023-08-22 09:40:58 -07:00
.dockerignore Remove submodule and shift to Go server - 0.4.0 (#7157) 2024-10-30 10:34:28 -07:00
.gitattributes Remove submodule and shift to Go server - 0.4.0 (#7157) 2024-10-30 10:34:28 -07:00
.gitignore llama: Decouple patching script from submodule (#7139) 2024-10-17 15:03:09 -07:00
.golangci.yaml update deprecated warnings 2024-08-28 09:55:11 -07:00
.prettierrc.json move .prettierrc.json to root 2023-07-02 17:34:46 -04:00
CONTRIBUTING.md docs: fix spelling error (#6391) 2024-09-04 09:42:33 -04:00
Dockerfile Remove submodule and shift to Go server - 0.4.0 (#7157) 2024-10-30 10:34:28 -07:00
go.mod Bump to latest Go 1.22 patch (#7379) 2024-10-26 17:03:37 -07:00
go.sum image processing for llama3.2 (#6963) 2024-10-18 16:12:35 -07:00
LICENSE proto -> ollama 2023-06-26 15:57:13 -04:00
main.go lint 2024-08-01 17:06:06 -07:00
Makefile Remove submodule and shift to Go server - 0.4.0 (#7157) 2024-10-30 10:34:28 -07:00
README.md Update README.md (#7516) 2024-11-05 15:07:25 -08:00
SECURITY.md Create SECURITY.md 2024-07-30 21:01:12 -07:00

 ollama

Ollama

Discord

Get up and running with large language models.

macOS

Download

Windows

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Quickstart

To run and chat with Llama 3.2:

ollama run llama3.2

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
Llama 3.2 3B 2.0GB ollama run llama3.2
Llama 3.2 1B 1.3GB ollama run llama3.2:1b
Llama 3.1 8B 4.7GB ollama run llama3.1
Llama 3.1 70B 40GB ollama run llama3.1:70b
Llama 3.1 405B 231GB ollama run llama3.1:405b
Phi 3 Mini 3.8B 2.3GB ollama run phi3
Phi 3 Medium 14B 7.9GB ollama run phi3:medium
Gemma 2 2B 1.6GB ollama run gemma2:2b
Gemma 2 9B 5.5GB ollama run gemma2
Gemma 2 27B 16GB ollama run gemma2:27b
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Solar 10.7B 6.1GB ollama run solar

Note

You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from PyTorch or Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama3.2 model:

ollama pull llama3.2

Create a Modelfile:

FROM llama3.2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory. For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama3.2

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama3.2

Copy a model

ollama cp llama3.2 my-model

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
The image features a yellow smiley face, which is likely the central focus of the picture.

Pass the prompt as an argument

$ ollama run llama3.2 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

Show model information

ollama show llama3.2

List models on your computer

ollama list

List which models are currently loaded

ollama ps

Stop a model which is currently running

ollama stop llama3.2

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

See the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama3.2

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama3.2",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "llama3.2",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Terminal

Apple Vision Pro

Database

Package managers

Libraries

Mobile

  • Enchanted
  • Maid
  • Ollama App (Modern and easy-to-use multi-platform client for Ollama)
  • ConfiChat (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)

Extensions & Plugins

Supported backends

  • llama.cpp project founded by Georgi Gerganov.