ollama/README.md
2023-10-16 15:51:44 -07:00

234 lines
No EOL
6.1 KiB
Markdown

<div align="center">
<picture>
<source media="(prefers-color-scheme: dark)" height="200px" srcset="https://github.com/jmorganca/ollama/assets/3325447/56ea1849-1284-4645-8970-956de6e51c3c">
<img alt="logo" height="200px" src="https://github.com/jmorganca/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
</picture>
</div>
# Ollama
[![Discord](https://dcbadge.vercel.app/api/server/ollama?style=flat&compact=true)](https://discord.gg/ollama)
Get up and running with large language models locally.
### macOS
[Download](https://ollama.ai/download/Ollama-darwin.zip)
### Windows
Coming soon!
### Linux & WSL2
```
curl https://ollama.ai/install.sh | sh
```
[Manual install instructions](https://github.com/jmorganca/ollama/blob/main/docs/linux.md)
### Docker
See the official [Docker image](https://hub.docker.com/r/ollama/ollama).
## Quickstart
To run and chat with [Llama 2](https://ollama.ai/library/llama2):
```
ollama run llama2
```
## Model library
Ollama supports a list of open-source models available on [ollama.ai/library](https://ollama.ai/library 'ollama model library')
Here are some example open-source models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | ------------------------------ |
| Mistral | 7B | 4.1GB | `ollama run mistral` |
| Llama 2 | 7B | 3.8GB | `ollama run llama2` |
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
| Llama 2 13B | 13B | 7.3GB | `ollama run llama2:13b` |
| Llama 2 70B | 70B | 39GB | `ollama run llama2:70b` |
| Orca Mini | 3B | 1.9GB | `ollama run orca-mini` |
| Vicuna | 7B | 3.8GB | `ollama run vicuna` |
> Note: You should have at least 8 GB of RAM to run the 3B models, 16 GB to run the 7B models, and 32 GB to run the 13B models.
## Customize your own model
### Import from GGUF
Ollama supports importing GGUF models in the Modelfile:
1. Create a file named `Modelfile`, with a `FROM` instruction with the local filepath to the model you want to import.
```
FROM ./vicuna-33b.Q4_0.gguf
```
2. Create the model in Ollama
```
ollama create example -f Modelfile
```
3. Run the model
```
ollama run example
```
### Import from PyTorch or Safetensors
See the [guide](docs/import.md) on importing models for more information.
### Customize a prompt
Models from the Ollama library can be customized with a prompt. The example
```
ollama pull llama2
```
Create a `Modelfile`:
```
FROM llama2
# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
# set the system prompt
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""
```
Next, create and run the model:
```
ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.
```
For more examples, see the [examples](examples) directory. For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation.
## CLI Reference
### Create a model
`ollama create` is used to create a model from a Modelfile.
### Pull a model
```
ollama pull llama2
```
> This command can also be used to update a local model. Only the diff will be pulled.
### Remove a model
```
ollama rm llama2
```
### Copy a model
```
ollama cp llama2 my-llama2
```
### Multiline input
For multiline input, you can wrap text with `"""`:
```
>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.
```
### Pass in prompt as arguments
```
$ ollama run llama2 "summarize this file:" "$(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
```
### List models on your computer
```
ollama list
```
### Start Ollama
`ollama serve` is used when you want to start ollama without running the desktop application.
## Building
Install `cmake` and `go`:
```
brew install cmake
brew install go
```
Then generate dependencies and build:
```
go generate ./...
go build .
```
Next, start the server:
```
./ollama serve
```
Finally, in a separate shell, run a model:
```
./ollama run llama2
```
## REST API
> See the [API documentation](docs/api.md) for all endpoints.
Ollama has an API for running and managing models. For example to generate text from a model:
```
curl -X POST http://localhost:11434/api/generate -d '{
"model": "llama2",
"prompt":"Why is the sky blue?"
}'
```
## Community Integrations
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama) with [example](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa)
- [LlamaIndex](https://gpt-index.readthedocs.io/en/stable/examples/llm/ollama.html)
- [Raycast extension](https://github.com/MassimilianoPasquini97/raycast_ollama)
- [Discollama](https://github.com/mxyng/discollama) (Discord bot inside the Ollama discord channel)
- [Continue](https://github.com/continuedev/continue)
- [Obsidian Ollama plugin](https://github.com/hinterdupfinger/obsidian-ollama)
- [Dagger Chatbot](https://github.com/samalba/dagger-chatbot)
- [LiteLLM](https://github.com/BerriAI/litellm)
- [Discord AI Bot](https://github.com/mekb-turtle/discord-ai-bot)
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
- [Dumbar](https://github.com/JerrySievert/Dumbar)
- [Emacs client](https://github.com/zweifisch/ollama)
- [oterm](https://github.com/ggozad/oterm)
- [Ellama Emacs client](https://github.com/s-kostyaev/ellama)