42998d797d
* remove c code * pack llama.cpp * use request context for llama_cpp * let llama_cpp decide the number of threads to use * stop llama runner when app stops * remove sample count and duration metrics * use go generate to get libraries * tmp dir for running llm
84 lines
2.5 KiB
Go
84 lines
2.5 KiB
Go
package llm
|
|
|
|
import (
|
|
"context"
|
|
"fmt"
|
|
"log"
|
|
"os"
|
|
|
|
"github.com/pbnjay/memory"
|
|
|
|
"github.com/jmorganca/ollama/api"
|
|
)
|
|
|
|
type LLM interface {
|
|
Predict(context.Context, []int, string, func(api.GenerateResponse)) error
|
|
Embedding(context.Context, string) ([]float64, error)
|
|
Encode(context.Context, string) ([]int, error)
|
|
Decode(context.Context, []int) (string, error)
|
|
SetOptions(api.Options)
|
|
Close()
|
|
Ping(context.Context) error
|
|
}
|
|
|
|
func New(model string, adapters []string, opts api.Options) (LLM, error) {
|
|
if _, err := os.Stat(model); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
f, err := os.Open(model)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer f.Close()
|
|
|
|
ggml, err := DecodeGGML(f, ModelFamilyLlama)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
switch ggml.FileType().String() {
|
|
case "F32", "Q5_0", "Q5_1", "Q8_0":
|
|
if opts.NumGPU != 0 {
|
|
// F32, F16, Q5_0, Q5_1, and Q8_0 do not support Metal API and will
|
|
// cause the runner to segmentation fault so disable GPU
|
|
log.Printf("WARNING: GPU disabled for F32, Q5_0, Q5_1, and Q8_0")
|
|
opts.NumGPU = 0
|
|
}
|
|
}
|
|
|
|
totalResidentMemory := memory.TotalMemory()
|
|
switch ggml.ModelType() {
|
|
case ModelType3B, ModelType7B:
|
|
if ggml.FileType().String() == "F16" && totalResidentMemory < 16*1024*1024 {
|
|
return nil, fmt.Errorf("F16 model requires at least 16GB of memory")
|
|
} else if totalResidentMemory < 8*1024*1024 {
|
|
return nil, fmt.Errorf("model requires at least 8GB of memory")
|
|
}
|
|
case ModelType13B:
|
|
if ggml.FileType().String() == "F16" && totalResidentMemory < 32*1024*1024 {
|
|
return nil, fmt.Errorf("F16 model requires at least 32GB of memory")
|
|
} else if totalResidentMemory < 16*1024*1024 {
|
|
return nil, fmt.Errorf("model requires at least 16GB of memory")
|
|
}
|
|
case ModelType30B, ModelType34B:
|
|
if ggml.FileType().String() == "F16" && totalResidentMemory < 64*1024*1024 {
|
|
return nil, fmt.Errorf("F16 model requires at least 64GB of memory")
|
|
} else if totalResidentMemory < 32*1024*1024 {
|
|
return nil, fmt.Errorf("model requires at least 32GB of memory")
|
|
}
|
|
case ModelType65B:
|
|
if ggml.FileType().String() == "F16" && totalResidentMemory < 128*1024*1024 {
|
|
return nil, fmt.Errorf("F16 model requires at least 128GB of memory")
|
|
} else if totalResidentMemory < 64*1024*1024 {
|
|
return nil, fmt.Errorf("model requires at least 64GB of memory")
|
|
}
|
|
}
|
|
|
|
switch ggml.ModelFamily() {
|
|
case ModelFamilyLlama:
|
|
return newLlama(model, adapters, ggmlRunner(), opts)
|
|
default:
|
|
return nil, fmt.Errorf("unknown ggml type: %s", ggml.ModelFamily())
|
|
}
|
|
}
|