No description
Find a file
2024-01-12 21:59:19 +01:00
.github/workflows add lint and test on pull_request 2024-01-09 09:36:58 -08:00
api add show info command and fix the modelfile 2024-01-05 12:20:05 -08:00
app update dependencies in app/ 2023-10-19 15:52:41 -04:00
cmd Convert the REPL to use /api/chat for interactive responses (#1936) 2024-01-12 12:05:52 -08:00
docs Add group delete to uninstall instructions (#1924) 2024-01-12 00:07:00 -05:00
examples follow best practices by adding resp.Body.Close() (#1708) 2023-12-25 09:01:37 -05:00
format progress: fix bar rate 2023-11-28 11:44:56 -08:00
gpu Fix up the CPU fallback selection 2024-01-11 15:27:06 -08:00
llm improve cuda detection (rel. issue #1704) 2024-01-12 21:59:19 +01:00
parser Add unit tests for Parser (#1815) 2024-01-05 14:04:31 -08:00
progress fix lint 2024-01-09 09:36:58 -08:00
readline fix temporary history file permissions 2024-01-09 09:36:58 -08:00
scripts Build multiple CPU variants and pick the best 2024-01-11 08:42:47 -08:00
server fix(windows): modelpath and list 2024-01-09 09:36:58 -08:00
version add version 2023-08-22 09:40:58 -07:00
.dockerignore Code shuffle to clean up the llm dir 2024-01-04 12:12:05 -08:00
.gitignore Add cgo implementation for llama.cpp 2023-12-19 09:05:46 -08:00
.gitmodules Init submodule with new path 2024-01-04 13:00:13 -08:00
.golangci.yaml add .golangci.yaml 2024-01-09 09:36:58 -08:00
.prettierrc.json move .prettierrc.json to root 2023-07-02 17:34:46 -04:00
Dockerfile Adapted rocm support to cgo based llama.cpp 2023-12-19 09:05:46 -08:00
Dockerfile.build Build multiple CPU variants and pick the best 2024-01-11 08:42:47 -08:00
go.mod Always dynamically load the llm server library 2024-01-11 08:42:47 -08:00
go.sum Add cgo implementation for llama.cpp 2023-12-19 09:05:46 -08:00
LICENSE proto -> ollama 2023-06-26 15:57:13 -04:00
main.go set non-zero error code on error 2023-08-14 14:09:58 -07:00
README.md Add semantic kernel to Readme (#1931) 2024-01-11 14:40:23 -05:00

logo

Ollama

Discord

Get up and running with large language models locally.

macOS

Download

Windows

Coming soon! For now, you can install Ollama on Windows via WSL2.

Linux & WSL2

curl https://ollama.ai/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Quickstart

To run and chat with Llama 2:

ollama run llama2

Model library

Ollama supports a list of open-source models available on ollama.ai/library

Here are some example open-source models that can be downloaded:

Model Parameters Size Download
Llama 2 7B 3.8GB ollama run llama2
Mistral 7B 4.1GB ollama run mistral
Dolphin Phi 2.7B 1.6GB ollama run dolphin-phi
Phi-2 2.7B 1.7GB ollama run phi
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
Llama 2 13B 13B 7.3GB ollama run llama2:13b
Llama 2 70B 70B 39GB ollama run llama2:70b
Orca Mini 3B 1.9GB ollama run orca-mini
Vicuna 7B 3.8GB ollama run vicuna
LLaVA 7B 4.5GB ollama run llava

Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from PyTorch or Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama2 model:

ollama pull llama2

Create a Modelfile:

FROM llama2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory. For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama2

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama2

Copy a model

ollama cp llama2 my-llama2

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

>>> What's in this image? /Users/jmorgan/Desktop/smile.png
The image features a yellow smiley face, which is likely the central focus of the picture.

Pass in prompt as arguments

$ ollama run llama2 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

List models on your computer

ollama list

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

Install cmake and go:

brew install cmake go

Then generate dependencies:

go generate ./...

Then build the binary:

go build .

More detailed instructions can be found in the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama2

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama2",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "mistral",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Terminal

Database

Package managers

Libraries

Mobile

Extensions & Plugins