This refines where we extract the LLM libraries to by adding a new OLLAMA_HOME env var, that defaults to `~/.ollama` The logic was already idempotenent, so this should speed up startups after the first time a new release is deployed. It also cleans up after itself. We now build only a single ROCm version (latest major) on both windows and linux. Given the large size of ROCms tensor files, we split the dependency out. It's bundled into the installer on windows, and a separate download on windows. The linux install script is now smart and detects the presence of AMD GPUs and looks to see if rocm v6 is already present, and if not, then downloads our dependency tar file. For Linux discovery, we now use sysfs and check each GPU against what ROCm supports so we can degrade to CPU gracefully instead of having llama.cpp+rocm assert/crash on us. For Windows, we now use go's windows dynamic library loading logic to access the amdhip64.dll APIs to query the GPU information.
3.7 KiB
How to troubleshoot issues
Sometimes Ollama may not perform as expected. One of the best ways to figure out what happened is to take a look at the logs. Find the logs on Mac by running the command:
cat ~/.ollama/logs/server.log
On Linux systems with systemd, the logs can be found with this command:
journalctl -u ollama
When you run Ollama in a container, the logs go to stdout/stderr in the container:
docker logs <container-name>
(Use docker ps
to find the container name)
If manually running ollama serve
in a terminal, the logs will be on that terminal.
When you run Ollama on Windows, there are a few different locations. You can view them in the explorer window by hitting <cmd>+R
and type in:
explorer %LOCALAPPDATA%\Ollama
to view logsexplorer %LOCALAPPDATA%\Programs\Ollama
to browse the binaries (The installer adds this to your user PATH)explorer %HOMEPATH%\.ollama
to browse where models and configuration is storedexplorer %TEMP%
where temporary executable files are stored in one or moreollama*
directories
To enable additional debug logging to help troubleshoot problems, first Quit the running app from the tray menu then in a powershell terminal
$env:OLLAMA_DEBUG="1"
& "ollama app.exe"
Join the Discord for help interpreting the logs.
LLM libraries
Ollama includes multiple LLM libraries compiled for different GPUs and CPU
vector features. Ollama tries to pick the best one based on the capabilities of
your system. If this autodetection has problems, or you run into other problems
(e.g. crashes in your GPU) you can workaround this by forcing a specific LLM
library. cpu_avx2
will perform the best, followed by cpu_avx
an the slowest
but most compatible is cpu
. Rosetta emulation under MacOS will work with the
cpu
library.
In the server log, you will see a message that looks something like this (varies from release to release):
Dynamic LLM libraries [rocm_v6 cpu cpu_avx cpu_avx2 cuda_v11 rocm_v5]
Experimental LLM Library Override
You can set OLLAMA_LLM_LIBRARY to any of the available LLM libraries to bypass autodetection, so for example, if you have a CUDA card, but want to force the CPU LLM library with AVX2 vector support, use:
OLLAMA_LLM_LIBRARY="cpu_avx2" ollama serve
You can see what features your CPU has with the following.
cat /proc/cpuinfo| grep flags | head -1
AMD Radeon GPU Support
Ollama leverages the AMD ROCm library, which does not support all AMD GPUs. In
some cases you can force the system to try to use a close GPU type. For example
The Radeon RX 5400 is gfx1034
(also known as 10.3.4) however, ROCm does not
support this patch-level, the closest support is gfx1030
. You can use the
environment variable HSA_OVERRIDE_GFX_VERSION
with x.y.z
syntax. So for
example, to force the system to run on the RX 5400, you would set
HSA_OVERRIDE_GFX_VERSION="10.3.0"
as an environment variable for the server.
At this time, the known supported GPU types are the following: (This may change from release to release)
- gfx900
- gfx906
- gfx908
- gfx90a
- gfx940
- gfx941
- gfx942
- gfx1030
- gfx1100
- gfx1101
- gfx1102
This will not work for all unsupported GPUs. Reach out on Discord or file an issue for additional help.
Installing older versions on Linux
If you run into problems on Linux and want to install an older version you can tell the install script which version to install.
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION="0.1.27" sh
Known issues
- N/A