ollama/llm/llm.go
Michael Yang 91b3e4d282 update memory calcualtions
count each layer independently when deciding gpu offloading
2024-04-01 13:16:32 -07:00

183 lines
4.7 KiB
Go

package llm
import (
"context"
"fmt"
"log/slog"
"os"
"slices"
"strings"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/gpu"
)
type LLM interface {
Predict(context.Context, PredictOpts, func(PredictResult)) error
Embedding(context.Context, string) ([]float64, error)
Encode(context.Context, string) ([]int, error)
Decode(context.Context, []int) (string, error)
Close()
}
var cpuOnlyFamilies = []string{
"mamba",
}
func New(model string, adapters, projectors []string, opts *api.Options) (LLM, error) {
if _, err := os.Stat(model); err != nil {
return nil, err
}
f, err := os.Open(model)
if err != nil {
return nil, err
}
defer f.Close()
ggml, _, err := DecodeGGML(f)
if err != nil {
return nil, err
}
if opts.NumCtx > int(ggml.KV().ContextLength()) {
slog.Warn("requested context length is greater than model max context length", "requested", opts.NumCtx, "model", ggml.KV().ContextLength())
opts.NumCtx = int(ggml.KV().ContextLength())
}
if opts.NumCtx < 4 {
opts.NumCtx = 4
}
availableMemory, _ := gpu.CheckVRAM()
info := gpu.GetGPUInfo()
usedMemory := info.MinimumMemory
for _, projector := range projectors {
usedMemory += projectorMemoryRequirements(projector)
// multimodal models require at least 2048 context
opts.NumCtx = max(opts.NumCtx, 2048)
}
// fp16 k,v = (1 (k) + 1 (v)) * sizeof(float16) * n_ctx * n_layer * n_embd / n_head * n_head_kv
kv := 2 * 2 * int64(opts.NumCtx) * int64(ggml.KV().BlockCount()) * int64(ggml.KV().EmbeddingLength()) / int64(ggml.KV().HeadCount()) * int64(ggml.KV().HeadCountKV())
// this amount is the overhead + tensors in memory
// TODO: get this from the llama.cpp's graph calculations instead of
// estimating it's 1/6 * kv_cache_size * num_gqa
graph := int64(ggml.KV().GQA()) * kv / 6
usedMemory += graph
if usedMemory > availableMemory || slices.Contains(cpuOnlyFamilies, ggml.KV().Architecture()) {
info.Library = "cpu"
}
requiredMemory := usedMemory
var layers int
for i := 0; i < int(ggml.KV().BlockCount()); i++ {
layerMemory := ggml.LayerSize(fmt.Sprintf("blk.%d.", i)) + kv/int64(ggml.KV().BlockCount())
requiredMemory += layerMemory
if availableMemory > usedMemory+layerMemory && (opts.NumGPU < 0 || layers < opts.NumGPU) {
usedMemory += layerMemory
layers++
}
}
memOutputLayer := ggml.LayerSize("output.")
requiredMemory += memOutputLayer
// only offload output layer if all repeating layers are offloaded
if layers >= int(ggml.KV().BlockCount()) && availableMemory > usedMemory+memOutputLayer {
usedMemory += memOutputLayer
layers++
}
slog.Info(
"offload to gpu",
"layers", layers,
"required", format.HumanBytes2(requiredMemory),
"used", format.HumanBytes2(usedMemory),
"available", format.HumanBytes2(availableMemory),
"kv", format.HumanBytes2(kv),
"graph", format.HumanBytes2(graph),
)
if opts.NumGPU < 0 && info.Library != "cpu" {
opts.NumGPU = layers
}
return newLlmServer(info, model, adapters, projectors, opts)
}
func projectorMemoryRequirements(filename string) int64 {
file, err := os.Open(filename)
if err != nil {
return 0
}
defer file.Close()
ggml, _, err := DecodeGGML(file)
if err != nil {
return 0
}
prefixes := make(map[string]struct{})
for _, layer := range ggml.Tensors() {
parts := strings.Split(layer.Name, ".")
prefixes[strings.Join(parts[:2], ".")] = struct{}{}
}
var ask int64
for prefix := range prefixes {
ask += ggml.LayerSize(prefix)
}
return ask
}
// Give any native cgo implementations an opportunity to initialize
func Init() error {
return nativeInit()
}
func newLlmServer(gpuInfo gpu.GpuInfo, model string, adapters, projectors []string, opts *api.Options) (LLM, error) {
dynLibs := getDynLibs(gpuInfo)
// Check to see if the user has requested a specific library instead of auto-detecting
demandLib := os.Getenv("OLLAMA_LLM_LIBRARY")
if demandLib != "" {
libPath := availableDynLibs[demandLib]
if libPath == "" {
slog.Info(fmt.Sprintf("Invalid OLLAMA_LLM_LIBRARY %s - not found", demandLib))
} else {
slog.Info(fmt.Sprintf("Loading OLLAMA_LLM_LIBRARY=%s", demandLib))
dynLibs = []string{libPath}
}
}
// We stage into a temp directory, and if we've been idle for a while, it may have been reaped
_, err := os.Stat(dynLibs[0])
if err != nil {
slog.Info(fmt.Sprintf("%s has disappeared, reloading libraries", dynLibs[0]))
err = nativeInit()
if err != nil {
return nil, err
}
}
err2 := fmt.Errorf("unable to locate suitable llm library")
for _, dynLib := range dynLibs {
srv, err := newDynExtServer(dynLib, model, adapters, projectors, opts)
if err == nil {
return srv, nil
}
slog.Warn(fmt.Sprintf("Failed to load dynamic library %s %s", dynLib, err))
err2 = err
}
return nil, err2
}