ollama/server/imageproc/images.go
Patrick Devine c7cb0f0602
image processing for llama3.2 (#6963)
Co-authored-by: jmorganca <jmorganca@gmail.com>
Co-authored-by: Michael Yang <mxyng@pm.me>
Co-authored-by: Jesse Gross <jesse@ollama.com>
2024-10-18 16:12:35 -07:00

240 lines
6 KiB
Go

package imageproc
import (
"bytes"
"fmt"
"image"
"image/color"
_ "image/jpeg"
_ "image/png"
"math"
"slices"
"golang.org/x/image/draw"
)
func GetSupportedAspectRatios(maxTiles int) []image.Point {
ratios := []image.Point{}
for w := range maxTiles {
for h := range maxTiles {
if (w+1)*(h+1) <= maxTiles {
ratios = append(ratios, image.Point{w + 1, h + 1})
}
}
}
return ratios
}
func clip(a, a_min, a_max int) int {
if a < a_min {
return a_min
} else if a > a_max {
return a_max
}
return a
}
func getImageSizeFitToCanvas(imageSize, canvasSize image.Point, tileSize int) image.Point {
targetWidth := clip(imageSize.X, tileSize, canvasSize.X)
targetHeight := clip(imageSize.Y, tileSize, canvasSize.Y)
scaleWidth := float64(targetWidth) / float64(imageSize.X)
scaleHeight := float64(targetHeight) / float64(imageSize.Y)
var w, h int
if scaleWidth < scaleHeight {
w = targetWidth
h = min(int(math.Floor(float64(imageSize.Y)*scaleWidth)), targetHeight)
} else {
w = min(int(math.Floor(float64(imageSize.X)*scaleHeight)), targetWidth)
h = targetHeight
}
return image.Point{w, h}
}
func getOptimalTiledCanvas(imageSize image.Point, maxImageTiles, tileSize int) image.Point {
possibleTileArrangements := GetSupportedAspectRatios(maxImageTiles)
possibleCanvasSizes := []image.Point{}
for _, pta := range possibleTileArrangements {
possibleCanvasSizes = append(possibleCanvasSizes, image.Point{pta.X * tileSize, pta.Y * tileSize})
}
scales := []float64{}
for _, pcs := range possibleCanvasSizes {
scaleHeight := float64(pcs.Y) / float64(imageSize.Y)
scaleWidth := float64(pcs.X) / float64(imageSize.X)
if scaleWidth > scaleHeight {
scales = append(scales, scaleHeight)
} else {
scales = append(scales, scaleWidth)
}
}
var minUpscale float64
var maxDownscale float64
var upscale bool
for _, s := range scales {
if s > 1.0 {
upscale = true
if minUpscale == 0 {
minUpscale = s
} else {
minUpscale = math.Min(minUpscale, s)
}
} else {
maxDownscale = math.Max(maxDownscale, s)
}
}
selectedScale := maxDownscale
if upscale {
selectedScale = minUpscale
}
var selectedCanvas image.Point
for n, pcs := range possibleCanvasSizes {
if scales[n] == selectedScale {
// choose the smallest possible canvas
if selectedCanvas.X == 0 && selectedCanvas.Y == 0 {
selectedCanvas = pcs
} else if pcs.X*pcs.Y < selectedCanvas.X*selectedCanvas.Y {
selectedCanvas = pcs
}
}
}
return selectedCanvas
}
func splitToTiles(img image.Image, numTilesSize image.Point) []image.Image {
b := img.Bounds()
width := b.Max.X - b.Min.X
height := b.Max.Y - b.Min.Y
tileHeight := height / numTilesSize.Y
tileWidth := width / numTilesSize.X
images := []image.Image{}
for h := range numTilesSize.Y {
for w := range numTilesSize.X {
rect := image.Rect(tileWidth*w, tileHeight*h, tileWidth*(w+1), tileHeight*(h+1))
images = append(images, img.(interface {
SubImage(image.Rectangle) image.Image
}).SubImage(rect))
}
}
return images
}
// remove the "alpha" channel by drawing over a prefilled image
func compositeImage(img image.Image) image.Image {
dst := image.NewRGBA(img.Bounds())
white := color.RGBA{255, 255, 255, 255}
draw.Draw(dst, dst.Bounds(), &image.Uniform{white}, image.Point{}, draw.Src)
draw.Draw(dst, dst.Bounds(), img, img.Bounds().Min, draw.Over)
return dst
}
func ResizeImage(img image.Image, format string, outputSize image.Point, maxImageTiles int) (image.Image, image.Point) {
if format == "png" {
img = compositeImage(img)
}
b := img.Bounds()
tileSize := outputSize.Y
canvasSize := getOptimalTiledCanvas(b.Max, maxImageTiles, tileSize)
aspectRatio := image.Point{canvasSize.X / tileSize, canvasSize.Y / tileSize}
newSize := getImageSizeFitToCanvas(b.Max, canvasSize, tileSize)
dst := image.NewRGBA(image.Rect(0, 0, newSize.X, newSize.Y))
// scaling choices:
// NearestNeighbor fast, blocky output
// ApproxBiLinear fast, medium quality
// BiLinear slow, high quality
// CatmullRom very slow, very high quality
draw.BiLinear.Scale(dst, dst.Rect, img, b, draw.Over, nil)
return dst, aspectRatio
}
func PadImage(img image.Image, outputSize, aspectRatio image.Point) image.Image {
paddedSize := image.Point{
X: outputSize.X * aspectRatio.X,
Y: outputSize.Y * aspectRatio.Y,
}
dst := image.NewRGBA(image.Rect(0, 0, paddedSize.X, paddedSize.Y))
draw.Draw(dst, img.Bounds(), img, image.Point{0, 0}, draw.Over)
return dst
}
func PackImages(img image.Image, aspectRatio image.Point, mean, std [3]float32) []float32 {
subImages := splitToTiles(img, aspectRatio)
var pixelVals []float32
for _, subImg := range subImages {
bounds := subImg.Bounds()
var rVals, gVals, bVals []float32
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
for x := bounds.Min.X; x < bounds.Max.X; x++ {
c := subImg.At(x, y)
r, g, b, _ := c.RGBA()
rVal := float32(r>>8) / 255.0
gVal := float32(g>>8) / 255.0
bVal := float32(b>>8) / 255.0
rVal = (rVal - mean[0]) / std[0]
gVal = (gVal - mean[1]) / std[1]
bVal = (bVal - mean[2]) / std[2]
rVals = append(rVals, rVal)
gVals = append(gVals, gVal)
bVals = append(bVals, bVal)
}
}
pixelVals = append(pixelVals, rVals...)
pixelVals = append(pixelVals, gVals...)
pixelVals = append(pixelVals, bVals...)
}
return pixelVals
}
func Preprocess(imageData []byte) ([]float32, int, error) {
// todo: need guard in here for bad image data
// mllama values
outputSize := image.Point{560, 560}
maxTiles := 4
// clip values
mean := [3]float32{0.48145466, 0.4578275, 0.40821073}
std := [3]float32{0.26862954, 0.26130258, 0.27577711}
img, format, err := image.Decode(bytes.NewReader(imageData))
if err != nil {
return nil, 0, fmt.Errorf("failed to decode image: %w", err)
}
newImage, aspectRatio := ResizeImage(img, format, outputSize, maxTiles)
newImage = PadImage(newImage, outputSize, aspectRatio)
data := PackImages(newImage, aspectRatio, mean, std)
aspectRatioIndex := slices.Index(GetSupportedAspectRatios(maxTiles), aspectRatio) + 1
return data, aspectRatioIndex, nil
}