Compare commits

...

114 commits

Author SHA1 Message Date
9fa4a19138
Merge https://github.com/ollama/ollama 2024-11-30 23:59:00 +05:30
ef58459f87
Merge https://github.com/ollama/ollama
Signed-off-by: baalajimaestro <baalajimaestro@ptr.moe>
2024-11-30 23:58:51 +05:30
Parth Sareen
5f8051180e
Enable index tracking for tools - openai api support (#7888) 2024-11-29 20:00:09 -08:00
Jeffrey Morgan
39e29ae5dd
llama: fix typo and formatting in readme (#7876) 2024-11-28 17:27:11 -08:00
TheCookingSenpai
30a9f063c9
readme: add SpaceLlama, YouLama, and DualMind to community integrations (#7216) 2024-11-28 15:16:27 -08:00
Parth Sareen
ce7455a8e1
api: enable tool streaming (#7836) 2024-11-27 13:40:57 -08:00
ItzCrazyKns
e3936d4fb3
Support Multiple LoRa Adapters (#7667)
Closes #7627
2024-11-27 11:00:04 -08:00
Bruce MacDonald
940e62772e
openai: remove unused error code (#7850)
The writeError takes a code argument which is no longer used. Remove it for clarity.
2024-11-26 16:08:09 -08:00
Jesse Gross
71e6a0d0d1 runner.go: Don't try to extract image tags for text models
When processing a prompt, we look for image tags of the form
[img-0], which are inserted by the Ollama server process.
However, this can cause errors if the original prompt has these
tags - typically an image not found error is returned.

This changes tag searching behavior to be similar to the 0.3.x
series, which will largely avoid these problems. However,they can
still happen when input text with these tags is used with image
models. The correct solution is to escape the tags but this is a
larger issue with special sequences in general so this is an
incremental fix that should avoid the problem for the majority
of cases.
2024-11-26 13:23:24 -08:00
Jesse Gross
2cd11ae365 runner.go: Add unit tests for context shifting
This also makes it easier to truncate long inputs the same as
shifting but does not actually implement it. This type of
truncation has a trade off between quality and time to first
token.
2024-11-26 11:21:35 -08:00
jake83741
52bbad12f9
readme: update description for vnc-lm community integration (#7832) 2024-11-25 17:56:30 -08:00
frob
30e88d7f31
cmd: don't submit svg files as images for now (#7830) 2024-11-25 16:43:29 -08:00
Blake Mizerany
2b7ed61ca2
server: fix Transport override (#7834)
This changes makeRequest to update the http client Transport if and only
if testMakeRequestDialContext is set. This is to avoid overriding the
default Transport when testMakeRequestDialContext is nil, which broke
existing behavior, included proxies, timeouts, and other behaviors.

Fixes #7829
Fixes #7788
2024-11-25 15:08:34 -08:00
Shikhar Bakhda
647513a7d4
readme: add HoneyHive to community integrations (#7831) 2024-11-25 09:55:33 -08:00
Bruce MacDonald
a210ec74d2
cmd: print location of model after pushing (#7695)
After a user pushes their model it is not clear what to do next. Add a link
to the output of `ollama push` that tells the user where their model can now
be found.
2024-11-25 09:40:16 -08:00
Simon Schampijer
cfb1ddd6fc
examples: update langchain-python-simple (#3591)
- better formatting of input prompt
- use invoke instead of predict
2024-11-24 16:06:22 -08:00
reid41
3987acd7ec
readme: add descriptions for QA-Pilot and shell-pilot community integrations (#4303) 2024-11-24 15:55:09 -08:00
frob
fda1e6b563
llm: bring fileTypes into alignment with llama.cpp (#7819) 2024-11-24 10:33:33 -08:00
Adarsh Mishra
3440ffb37b
readme: add description for OpenTalkGpt in community integrations (#7818) 2024-11-24 10:32:23 -08:00
Patcher
a820d2b267
readme: add observability section with OpenLIT to community-integrations 2024-11-23 18:03:12 -08:00
Meng Zhuo
2ebdb54fb3
all: update math32 go mod to v1.11.0 (#6627) 2024-11-23 15:21:54 -08:00
josc146
bb52abfa55
readme: add ChatGPTBox and RWKV-Runner to community integrations (#4118) 2024-11-23 13:31:27 -08:00
oza6ut0ne
31cb1ca9e5
openai: accept X-Stainless-Retry-Count header (#6910) 2024-11-23 12:39:05 -08:00
Rodrigo Ribeiro Gomes
78f779a323
readme: add powershai, a powershell module with ollama support to community integrations (#7438) 2024-11-23 10:08:59 -08:00
Jesse Gross
3478b2cf14 runner.go: Fix deadlock with many concurrent requests
If there are no avilable slots for new sequences then a request
will not be added to the processing queue but will continue on
to wait for a response that never comes. Besides never giving a
response to the request, this prevents the model from being
unloaded due to the outstanding request.

To prevent this, there are semaphores that prevent more requests
from being processed than there are slots - one in the Ollama
server and one in the runner.
 - The Ollama server one works but it is not designed to protect
the runner's data internal structures and the runner can return a
final response before clearing its data structures.
 - The internal runner semaphore has similar behavior where it
 can release the semaphore when it issues a response. This is
 wrong - it should only release the semaphore after it has
 cleared the data structure.

In addition, we should return an error if a slot is not found
rather than deadlocking in the event we ever get to this spot.

Fixes #7779
2024-11-22 16:14:51 -08:00
Bruce MacDonald
7b5585b9cb
server: remove out of date anonymous access check (#7785)
In the past the ollama.com server would return a JWT that contained
information about the user being authenticated. This was used to return
different error messages to the user. This is no longer possible since the
token used to authenticate does not contain information about the user
anymore. Removing this code that no longer works.

Follow up changes will improve the error messages returned here, but good to
clean up first.
2024-11-22 11:57:35 -08:00
Daniel Hiltgen
f0a351810c
tests: fix max queue integration test (#7782)
This had fallen out of sync with the envconfig behavior, where max queue default was not zero.
2024-11-22 08:05:45 -08:00
Daniel Hiltgen
b85520bfb9
logs: explain client aborts better (#7783)
Users get confused by "Failed to acquire semaphore" error="context canceled"
messages in the logs, which are actually clients giving up.  While there could be
a legitimate hang bug in the system, sometimes this is just short client timeouts
with an overloaded system, so this should help users understand what's going on
better.
2024-11-22 08:05:32 -08:00
Daniel Hiltgen
d88972ea48
Be quiet when redirecting output (#7360)
This avoids emitting the progress indicators to stderr, and the interactive
prompts to the output file or pipe.  Running "ollama run model > out.txt"
now exits immediately, and "echo hello | ollama run model > out.txt"
produces zero stderr output and a typical response in out.txt
2024-11-22 08:04:54 -08:00
Leon Sander
25c9339e2d
readme: add Local Multimodal AI Chat app to community integrations (#6931) 2024-11-21 20:39:38 -08:00
Mikel Olasagasti Uranga
597072ef1b
readme: update google/uuid module (#7310)
update uuid.New().String() to uuid.NewString()
2024-11-21 19:37:04 -08:00
Dustin
84b3e07f1b
readme: add ollamarama-matrix to community integrations (#7325) 2024-11-21 17:49:30 -08:00
Edwin.JH.Lee
422d52858c
readme: add x-cmd ollama module to community integrations (#5191) 2024-11-21 16:55:25 -08:00
Elias
723f285813
readme: add OrionChat to community integrations (#7084)
OrionChat is a free web-based chat interface that simplifies interactions
with multiple AI model providers. It provides a unified platform for chatting
and exploring multiple large language models (LLMs).
2024-11-21 11:23:42 -08:00
湛露先生
eaaf5d309d
cmd: delete duplicated call to sb.Reset() (#7308)
Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2024-11-21 11:20:48 -08:00
Jeffrey Morgan
27d9c749d5
docs: remove tutorials, add cloud section to community integrations (#7784) 2024-11-21 09:59:53 -08:00
R0CKSTAR
b7bddeebc1
env.sh: cleanup unused RELEASE_IMAGE_REPO (#6855)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2024-11-21 08:28:04 -08:00
Paul Robello
6a0c2ec50f
readme: add terminal tool ParLlama to community integrations (#5623) 2024-11-21 02:55:35 -08:00
毛巳煜
baa41be2aa
readme: add a community made ollama web management tool (#7126) 2024-11-21 02:51:45 -08:00
xuyangbocn
2157b1232e
readme: add Terraform AWS Ollama & Open WebUI community example (#5633) 2024-11-21 02:28:57 -08:00
emrgnt-cmplxty
37711578a2
readme: add R2R to community integrations (#5587) 2024-11-21 02:09:36 -08:00
Cyril Blaecke
fb2c9594e0
readme: Add Nosia to Community Integrations (#5381) 2024-11-21 02:07:17 -08:00
Christian Tzolov
7fbcd55da3
readme: Add Spring AI library reference (#5981) 2024-11-21 02:02:14 -08:00
Philippe Charrière
b4348bdd25
readme: add Parakeet to community integrations
Parakeet is a GoLang SDK for Ollama

---------

Co-authored-by: Parth Sareen <parth.sareen@ollama.com>
2024-11-21 02:00:32 -08:00
Marcin Szczygliński
155734e09a
readme: add community integration py-gpt (#6503) 2024-11-21 01:54:39 -08:00
Michael
883d80e097
readme: add Promptery to community integrations (#7093) 2024-11-21 01:46:20 -08:00
Jakub Burkiewicz
e4c9f75b23
readme: add node-red-contrib-ollama to community integrations (#4648) 2024-11-21 01:09:37 -08:00
Dezoito
f5ec7cc872
readme: add ollama grid search, a community project (#4301) 2024-11-21 01:02:46 -08:00
Franco Lombardo
811bafba82
readme: Add LLPhant to community integrations (#5679) 2024-11-21 00:54:26 -08:00
Aarushi
431075fcbb
readme: add autogpt integration to list of community integrations (#6459) 2024-11-21 00:51:38 -08:00
Kevin Brake
c4f27225ac
readme: add community contribution to readme ollama-kis (#5575) 2024-11-21 00:31:27 -08:00
chyok
b7aa5ee06c
readme: Add tkinter-based client to community based integrations (#5412) 2024-11-21 00:19:24 -08:00
Nico
3f87f71755
readme: add Shinkai Desktop to community integrations (#4877) 2024-11-21 00:16:18 -08:00
Laurent Eschenauer
20623cec13
readme: add OpenGPA to community integrations (#5497) 2024-11-21 00:13:54 -08:00
Andy Gill
0e5f31a86d
readme: add Haverscript to community integrations (#6945)
Haverscript uses classical functional programming techniques to provide a composable interface for interacting with ollama-hosted LLMs.
2024-11-21 00:11:39 -08:00
drunkwcodes
7e92091751
readme: Terminal app bb7 to community integrations (#7064) 2024-11-21 00:03:11 -08:00
boessu
1a742f54c9
readme: update AMD ROCm links (#7213) 2024-11-20 23:48:55 -08:00
奶茶叔叔
6a89dcf848
readme: flutter-based chat app to community integrations (#7221) 2024-11-20 23:30:10 -08:00
Alexander F. Rødseth
c5e238e8e5
readme: orbiton to community integrations (#7770) 2024-11-20 23:24:05 -08:00
Nikita Ganzikov
fce30f407a
app: typo in wintray messages const (#7705) 2024-11-20 22:01:58 -08:00
Daniel Hiltgen
d863298210
docs: Link to AMD guide on multi-GPU guidance (#7744) 2024-11-20 16:00:46 -08:00
Jesse Gross
c4b34f2a2a runner.go: Truncate inputs that exceed context rather than shifting
Previous versions of the runner would truncate inputs to the context
window before beginning processing. The main processing loop relied
on this behavior if the context needed to be shifted later (due to
token generation). If truncation did not occur then invariants
would be broken, causing crashes or infinite loops.

Later versions attempted to fix these bugs and make the logic less
subtle so that all inputs could be handled. Truncation was removed
to make things consistent.

However, truncation is much faster than processing and shifting, so
removing it caused performance problems when the input vastly exceeded
the context size. This restores the input truncation as a performance
optimization while keeping the more robust processing logic.

Fixes #7762
2024-11-20 12:49:24 -08:00
Jesse Gross
c3ff916431 runner.go: Don't add inputs to cache view until actually processed
We need to track which tokens are in the cache ourselves. We currently
add tokens to the cache tracker when we add them to batch but they are
not actually in the cache until we call Decode. This can cause
confusion when we are shifting the cache.

Avoids "could not find a KV slot for the batch" issues.

Bug #7545
2024-11-20 12:49:24 -08:00
Jesse Gross
3fc1dc0e6f runner.go: Hard fail on errors rather than potentially infinite looping
We try to recover from errors by dropping the tokens that caused the
problem and re-trying. However, dropping the tokens is not correct
and continuing often leads to infinite loops. To avoid, this we
end the sequence if such a condition is detected, which is also
surprising.

At this point, it is better to just report the error. This will make
it easier to find problems and the alternatives are perhaps even more
surprising to users.

This is not a very satisfactory solution either - we should isolate
the error and return it to the user without killing the whole process.
However, this is an incremental step and consistent with most other
failures (which either manifest as abort() or panic).
2024-11-20 12:49:24 -08:00
Jesse Gross
7121dfa309 runner.go: Retry decoding after defragmentation if needed
Fragmentation of the KV cache can occur due to cache shifting or
different sequences getting processed. Decode uses a heuristic to
decide if it should defrag. However, this heuristic isn't 100%
accurate, so decoding can sometimes fail by surprise.

For these cases, if decode indicates that there is no KV cache space,
we should defrag and then try again.
2024-11-20 12:49:24 -08:00
Jesse Gross
5f68fcab12 runner.go: Use correct index when retrieving embedding results
This doesn't have any impact currently because NUM_PARALLEL is forced
to 1 for embeddings, so both indicies will always be 0.
2024-11-20 12:49:24 -08:00
Emir Sahin
ecf41eed05
readme: add llm-axe to community integrations (#5931) 2024-11-20 10:53:14 -08:00
Marcus Ziadé
b8c66d3307
readme: add a swift community integration (#7383) 2024-11-20 10:49:15 -08:00
thewh1teagle
303f4bc79e
readme: add vibe app to community integrations (#7607) 2024-11-20 10:45:10 -08:00
Adarsh Mishra
d2a25206b1
readme: add opentalkgpt to community integrations (#7707) 2024-11-20 10:42:55 -08:00
rohitanshu
2f0a8c8778
docs: fix minor typo in import.md (#7764)
change 'containg' to 'containing'
2024-11-20 09:57:32 -08:00
Gordon Kamer
bfd30f4286
readme: add Abbey to community integrations (#7746) 2024-11-19 21:37:15 -08:00
Jonathan Hecl
0ef17ede89
readme: add Gollama to community integrations (#7756) 2024-11-19 21:31:43 -08:00
Daniel Hiltgen
909a88c5c0
Improve crash reporting (#7728)
Many model crashes are masked behind "An existing connection was forcibly closed by the remote host"
This captures that common error message and wires in any detected errors from the log.

This also adds the deepseek context shift error to the known errors we capture.
2024-11-19 16:26:57 -08:00
Daniel Hiltgen
f602ab4de4
expose underlying error on embedding failure (#7743)
Avoid a round-trip asking users for logs to see what went wrong.
2024-11-19 16:26:05 -08:00
Gabe Goodhart
807ace5b1f fix(runner): Set logits to 0 if false on Batch.Add
https://github.com/ollama/ollama/issues/7656
Branch: Granite3StoppingBug-7656

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2024-11-19 15:45:37 -08:00
Blake Mizerany
4b8a2e341a
server: allow mixed-case model names on push, pull, cp, and create (#7676)
This change allows for mixed-case model names to be pushed, pulled,
copied, and created, which was previously disallowed because the Ollama
registry was backed by a Docker registry that enforced a naming
convention that disallowed mixed-case names, which is no longer the
case.

This does not break existing, intended, behaviors.

Also, make TestCase test a story of creating, updating, pulling, and
copying a model with case variations, ensuring the model's manifest is
updated correctly, and not duplicated across different files with
different case variations.
2024-11-19 15:05:57 -08:00
frob
e66c29261a
Better error suppresion when getting terminal colours (#7739)
Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2024-11-19 08:33:52 -08:00
Patrick Devine
712d63c3f0
update the docs (#7731) 2024-11-18 21:17:38 -08:00
Patrick Sy
6cdf27d154
readme: add Alfred Ollama to community integrations (#7724) 2024-11-18 19:33:23 -08:00
frob
5c18e66384
Notify the user if systemd is not running (#6693)
Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2024-11-18 15:02:41 -08:00
Daniel Hiltgen
35096a7eff
win: add right click menu support (#7727)
Enable both left and right click on the pop-up menu
2024-11-18 14:39:52 -08:00
Daniel Hiltgen
81d55d3e4d
fix index out of range on zero layer metal load (#7696)
If the model doesn't fit any layers on metal, and we load zero layers
we would panic trying to look up the GPU size during scheduling ops
2024-11-18 11:48:13 -08:00
Vinh Nguyen
a14f76491d
readme: improve Community Integrations section (#7718) 2024-11-17 19:30:22 -08:00
Nicolas Bonamy
760cfa27e5
readme: add Witsy and multi-llm-ts to community integrations (#7713) 2024-11-17 16:33:10 -08:00
Darius Kocar
c9a5aca3da
readme: add Perfect Memory AI to community integrations (#7431) 2024-11-17 15:19:26 -08:00
Tushar Adhatrao
d5da2ab7e8
readme: add ollama-haskell library to community integrations (#7451) 2024-11-17 15:18:04 -08:00
Vinh Nguyen
1c04117114
readme: add the VT app to the community integrations section (#7706) 2024-11-17 14:35:41 -08:00
Jeffrey Morgan
8b4b243f5f
server: fix warnings in prompt_test.go (#7710) 2024-11-17 13:01:04 -08:00
Jeffrey Morgan
b42a596425
docs: add customization section in linux.md (#7709) 2024-11-17 11:48:12 -08:00
Daniel Hiltgen
4759d879f2
Install support for jetpacks (#7632)
Follow up to #7217 - merge after release
2024-11-15 16:47:54 -08:00
Jesse Gross
d875e99e46 runner.go: Propagate panics back to the user.
This is a partial revert of 8a35bb92
"runner.go: Increase survivability of main processing loop", removing
the panic handler.

Although we want to avoid errors taking down the runner, we also
should make the user aware of problems when they happen. In the
future, we can restructure things so both parts are true.
2024-11-15 11:52:25 -08:00
Jesse Gross
8a35bb926e runner.go: Increase survivability of main processing loop
Currently, if an error occurs during the prep stages (such as
tokenizing) of a single request, it will only affect that request.
However, if an error happens during decoding, it can take down the
entire runner.

Instead, it's better to drop the tokens that triggered the error and try to
keep going. However, we also need to stop when we run out of tokens,
otherwise, this just causes an infinite loop. This is likely the cause
of at least some of the hanging issues that have been reported.

Bug #7573
2024-11-14 17:18:41 -08:00
Daniel Hiltgen
a0ea067b63
build: fix arm container image (#7674)
Fix a rebase glitch from the old C++ runner build model
2024-11-14 16:02:01 -08:00
Patrick Devine
4efb98cb4f
add line numbers for parser errors (#7326) 2024-11-14 13:59:44 -08:00
Bruce MacDonald
0679d491fe
chore(deps): bump golang.org/x dependencies (#7655)
- golang.org/x/sync v0.3.0 -> v0.9.0
- golang.org/x/image v0.14.0 -> v0.22.0
- golang.org/x/text v0.15.0 -> v0.20.0
2024-11-14 13:58:25 -08:00
Jesse Gross
c25ffde91d runner.go: Don't trim whitespace from inputs
It's possible to get prompts that consist entirely of whitespace -
this is most likely to happen when generating embeddings. Currently,
we will trim this away, leaving an empty prompt, which will then
generate an error.

Generating embeddings from whitespace should not trigger an error,
as this may break pipelines. It's better to just leave the whitespace
in place and process what we are given. This is consistent with
past versions of Ollama.

Bug #7578
2024-11-14 11:23:06 -08:00
Jesse Gross
17b386a891 runner.go: Enforce NUM_PARALLEL directly in the runner
NUM_PARALEL is currently enforced by the Ollama server process - it
will only issue requests to the runner if the maximum number of
concurrent requests has not been exceeded. Although this should
be sufficient, it is good for the runner to protect its own data
structures. Currently, if too many requests get through to the
runner, they will just get stuck and never return.

This may help with reports of Ollama hanging, though it is unclear
how it would actually occur.

Bug #7573
2024-11-14 11:21:59 -08:00
Michael Yang
549c2bdfcf
Merge pull request #7657 from ollama/mxyng/sync
fix(mllama): sync backend between batches
2024-11-14 09:40:04 -08:00
Blake Mizerany
67691e410d
cmd: preserve exact bytes when displaying template/system layers (#7586) 2024-11-13 23:53:30 -08:00
Michael Yang
5b3393b6a2 fix(mllama): sync backend between batches 2024-11-13 16:37:21 -08:00
Jesse Gross
d7eb05b936 runner.go: Fix off-by-one for num predicted 2024-11-12 11:35:57 -08:00
Daniel Hiltgen
636a743c2b
CI: give windows lint more time (#7635)
It looks like 8 minutes isn't quite enough and we're seeing sporadic timeouts
2024-11-12 11:22:39 -08:00
Daniel Hiltgen
df011054fa
Jetpack support for Go server (#7217)
This adds support for the Jetson JetPack variants into the Go runner
2024-11-12 10:31:52 -08:00
Daniel Hiltgen
ac07160c8d
doc: capture numeric group requirement (#6941)
Docker uses the container filesystem for name resolution, so we can't guide users
to use the name of the host group.  Instead they must specify the numeric ID.
2024-11-12 09:13:23 -08:00
Daniel Hiltgen
6606e4243c
docs: Capture docker cgroup workaround (#7519)
GPU support can break on some systems after a while.  This captures a
known workaround to solve the problem.
2024-11-12 09:12:50 -08:00
Jesse Gross
65973ceb64 runner.go: Make KV entry accounting more robust
The structure of the accounting for KV cache shifting was carried
over from the old runner but it now doesn't feel natural with the new
runner. There are a number of invariants that should hold true but
are difficult to reason about. There is at least one bug report
that would imply that the invariants are not holding.

This reduces the number of implicit assumptions and is more forgiving
of unexpected situations. It also improves behavior around which input
tokens are kept when truncation occurs.

Bug #7545
2024-11-11 20:23:03 -08:00
Joey Zheng
bebef1e50d
readme: add aichat terminal app to community integrations (#7418) 2024-11-11 16:44:46 -08:00
Evan
d48c1c5a44
api: fix typos in Go Doc comments (#7620) 2024-11-11 16:21:58 -08:00
Prasad Bhalerao
36a8372b28
readme: add GoLamify to community integrations (#7521) 2024-11-10 22:38:18 -08:00
Ivo Stoykov
4e94227b5d
readme: add browser extension that enables using Ollama for interacting with web pages (#5827) 2024-11-10 22:14:22 -08:00
frances720
479d551766
docs: add mentions of Llama 3.2 (#7517) 2024-11-10 19:04:23 -08:00
Evan
76b2b723b2
api: fix typo in python ClientFromEnvironment docs (#7604) 2024-11-10 17:30:27 -08:00
Arhan Busam
b8d77cdeab
readme: add llama3.2-vision to model list (#7580) 2024-11-10 13:36:25 -08:00
54 changed files with 1413 additions and 726 deletions

View file

@ -281,7 +281,7 @@ jobs:
shell: bash
- uses: golangci/golangci-lint-action@v6
with:
args: --timeout 8m0s -v
args: --timeout 10m0s -v
test:
strategy:
matrix:

108
README.md
View file

@ -47,26 +47,28 @@ Ollama supports a list of models available on [ollama.com/library](https://ollam
Here are some example models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | ------------------------------ |
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
| Llama 3.1 | 70B | 40GB | `ollama run llama3.1:70b` |
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
| Mistral | 7B | 4.1GB | `ollama run mistral` |
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
| Starling | 7B | 4.1GB | `ollama run starling-lm` |
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
| LLaVA | 7B | 4.5GB | `ollama run llava` |
| Solar | 10.7B | 6.1GB | `ollama run solar` |
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | -------------------------------- |
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
| Llama 3.2 Vision | 11B | 7.9GB | `ollama run llama3.2-vision` |
| Llama 3.2 Vision | 90B | 55GB | `ollama run llama3.2-vision:90b` |
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
| Llama 3.1 | 70B | 40GB | `ollama run llama3.1:70b` |
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
| Mistral | 7B | 4.1GB | `ollama run mistral` |
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
| Starling | 7B | 4.1GB | `ollama run starling-lm` |
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
| LLaVA | 7B | 4.5GB | `ollama run llava` |
| Solar | 10.7B | 6.1GB | `ollama run solar` |
> [!NOTE]
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
@ -296,7 +298,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [AnythingLLM (Docker + MacOs/Windows/Linux native app)](https://github.com/Mintplex-Labs/anything-llm)
- [Ollama Basic Chat: Uses HyperDiv Reactive UI](https://github.com/rapidarchitect/ollama_basic_chat)
- [Ollama-chats RPG](https://github.com/drazdra/ollama-chats)
- [QA-Pilot](https://github.com/reid41/QA-Pilot) (Chat with Code Repository)
- [QA-Pilot](https://github.com/reid41/QA-Pilot) (Interactive chat tool that can leverage Ollama models for rapid understanding and navigation of GitHub code repositories)
- [ChatOllama](https://github.com/sugarforever/chat-ollama) (Open Source Chatbot based on Ollama with Knowledge Bases)
- [CRAG Ollama Chat](https://github.com/Nagi-ovo/CRAG-Ollama-Chat) (Simple Web Search with Corrective RAG)
- [RAGFlow](https://github.com/infiniflow/ragflow) (Open-source Retrieval-Augmented Generation engine based on deep document understanding)
@ -306,11 +308,17 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Ollama RAG Chatbot](https://github.com/datvodinh/rag-chatbot.git) (Local Chat with multiple PDFs using Ollama and RAG)
- [BrainSoup](https://www.nurgo-software.com/products/brainsoup) (Flexible native client with RAG & multi-agent automation)
- [macai](https://github.com/Renset/macai) (macOS client for Ollama, ChatGPT, and other compatible API back-ends)
- [RWKV-Runner](https://github.com/josStorer/RWKV-Runner) (RWKV offline LLM deployment tool, also usable as a client for ChatGPT and Ollama)
- [Ollama Grid Search](https://github.com/dezoito/ollama-grid-search) (app to evaluate and compare models)
- [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama)
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
- [Shinkai Desktop](https://github.com/dcSpark/shinkai-apps) (Two click install Local AI using Ollama + Files + RAG)
- [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in discord )
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
- [R2R](https://github.com/SciPhi-AI/R2R) (Open-source RAG engine)
- [Ollama-Kis](https://github.com/elearningshow/ollama-kis) (A simple easy to use GUI with sample custom LLM for Drivers Education)
- [OpenGPA](https://opengpa.org) (Open-source offline-first Enterprise Agentic Application)
- [Painting Droid](https://github.com/mateuszmigas/painting-droid) (Painting app with AI integrations)
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
- [AI Studio](https://github.com/MindWorkAI/AI-Studio)
@ -318,6 +326,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows)
- [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac)
- [Harbor](https://github.com/av/harbor) (Containerized LLM Toolkit with Ollama as default backend)
- [PyGPT](https://github.com/szczyglis-dev/py-gpt) (AI desktop assistant for Linux, Windows and Mac)
- [AutoGPT](https://github.com/Significant-Gravitas/AutoGPT/blob/master/docs/content/platform/ollama.md) (AutoGPT Ollama integration)
- [Go-CREW](https://www.jonathanhecl.com/go-crew/) (Powerful Offline RAG in Golang)
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot and Ollama4j
@ -327,12 +337,34 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
- [crewAI with Mesop](https://github.com/rapidarchitect/ollama-crew-mesop) (Mesop Web Interface to run crewAI with Ollama)
- [Tkinter-based client](https://github.com/chyok/ollama-gui) (Python tkinter-based Client for Ollama)
- [LLMChat](https://github.com/trendy-design/llmchat) (Privacy focused, 100% local, intuitive all-in-one chat interface)
- [Local Multimodal AI Chat](https://github.com/Leon-Sander/Local-Multimodal-AI-Chat) (Ollama-based LLM Chat with support for multiple features, including PDF RAG, voice chat, image-based interactions, and integration with OpenAI.)
- [ARGO](https://github.com/xark-argo/argo) (Locally download and run Ollama and Huggingface models with RAG on Mac/Windows/Linux)
- [OrionChat](https://github.com/EliasPereirah/OrionChat) - OrionChat is a web interface for chatting with different AI providers
- [G1](https://github.com/bklieger-groq/g1) (Prototype of using prompting strategies to improve the LLM's reasoning through o1-like reasoning chains.)
- [Web management](https://github.com/lemonit-eric-mao/ollama-web-management) (Web management page)
- [Promptery](https://github.com/promptery/promptery) (desktop client for Ollama.)
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
- [SpaceLlama](https://github.com/tcsenpai/spacellama) (Firefox and Chrome extension to quickly summarize web pages with ollama in a sidebar)
- [YouLama](https://github.com/tcsenpai/youlama) (Webapp to quickly summarize any YouTube video, supporting Invidious as well)
- [DualMind](https://github.com/tcsenpai/dualmind) (Experimental app allowing two models to talk to each other in the terminal or in a web interface)
- [ollamarama-matrix](https://github.com/h1ddenpr0cess20/ollamarama-matrix) (Ollama chatbot for the Matrix chat protocol)
- [ollama-chat-app](https://github.com/anan1213095357/ollama-chat-app) (Flutter-based chat app)
- [Perfect Memory AI](https://www.perfectmemory.ai/) (Productivity AI assists personalized by what you have seen on your screen, heard and said in the meetings)
- [Hexabot](https://github.com/hexastack/hexabot) (A conversational AI builder)
- [Reddit Rate]((https://github.com/rapidarchitect/reddit_analyzer)) (Search and Rate Reddit topics with a weighted summation)
- [Reddit Rate](https://github.com/rapidarchitect/reddit_analyzer) (Search and Rate Reddit topics with a weighted summation)
- [OpenTalkGpt](https://github.com/adarshM84/OpenTalkGpt) (Chrome Extension to manage open-source models supported by Ollama, create custom models, and chat with models from a user-friendly UI)
- [VT](https://github.com/vinhnx/vt.ai) (A minimal multimodal AI chat app, with dynamic conversation routing. Supports local models via Ollama)
- [Nosia](https://github.com/nosia-ai/nosia) (Easy to install and use RAG platform based on Ollama)
- [Witsy](https://github.com/nbonamy/witsy) (An AI Desktop application avaiable for Mac/Windows/Linux)
- [Abbey](https://github.com/US-Artificial-Intelligence/abbey) (A configurable AI interface server with notebooks, document storage, and YouTube support)
### Cloud
- [Google Cloud](https://cloud.google.com/run/docs/tutorials/gpu-gemma2-with-ollama)
- [Fly.io](https://fly.io/docs/python/do-more/add-ollama/)
- [Koyeb](https://www.koyeb.com/deploy/ollama)
### Terminal
@ -348,7 +380,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Oatmeal](https://github.com/dustinblackman/oatmeal)
- [cmdh](https://github.com/pgibler/cmdh)
- [ooo](https://github.com/npahlfer/ooo)
- [shell-pilot](https://github.com/reid41/shell-pilot)
- [shell-pilot](https://github.com/reid41/shell-pilot)(Interact with models via pure shell scripts on Linux or macOS)
- [tenere](https://github.com/pythops/tenere)
- [llm-ollama](https://github.com/taketwo/llm-ollama) for [Datasette's LLM CLI](https://llm.datasette.io/en/stable/).
- [typechat-cli](https://github.com/anaisbetts/typechat-cli)
@ -356,11 +388,19 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [tlm](https://github.com/yusufcanb/tlm)
- [podman-ollama](https://github.com/ericcurtin/podman-ollama)
- [gollama](https://github.com/sammcj/gollama)
- [ParLlama](https://github.com/paulrobello/parllama)
- [Ollama eBook Summary](https://github.com/cognitivetech/ollama-ebook-summary/)
- [Ollama Mixture of Experts (MOE) in 50 lines of code](https://github.com/rapidarchitect/ollama_moe)
- [vim-intelligence-bridge](https://github.com/pepo-ec/vim-intelligence-bridge) Simple interaction of "Ollama" with the Vim editor
- [x-cmd ollama](https://x-cmd.com/mod/ollama)
- [bb7](https://github.com/drunkwcodes/bb7)
- [SwollamaCLI](https://github.com/marcusziade/Swollama) bundled with the Swollama Swift package. [Demo](https://github.com/marcusziade/Swollama?tab=readme-ov-file#cli-usage)
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
- [PowershAI](https://github.com/rrg92/powershai) PowerShell module that brings AI to terminal on Windows, including support for Ollama
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
### Apple Vision Pro
- [Enchanted](https://github.com/AugustDev/enchanted)
### Database
@ -382,9 +422,11 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama)
- [crewAI](https://github.com/crewAIInc/crewAI)
- [Spring AI](https://github.com/spring-projects/spring-ai) with [reference](https://docs.spring.io/spring-ai/reference/api/chat/ollama-chat.html) and [example](https://github.com/tzolov/ollama-tools)
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
- [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java)
- [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs)
- [LLPhant](https://github.com/theodo-group/LLPhant?tab=readme-ov-file#ollama)
- [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/ollama/) and [LlamaIndexTS](https://ts.llamaindex.ai/modules/llms/available_llms/ollama)
- [LiteLLM](https://github.com/BerriAI/litellm)
- [OllamaFarm for Go](https://github.com/presbrey/ollamafarm)
@ -409,12 +451,20 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Portkey](https://portkey.ai/docs/welcome/integration-guides/ollama)
- [PromptingTools.jl](https://github.com/svilupp/PromptingTools.jl) with an [example](https://svilupp.github.io/PromptingTools.jl/dev/examples/working_with_ollama)
- [LlamaScript](https://github.com/Project-Llama/llamascript)
- [llm-axe](https://github.com/emirsahin1/llm-axe) (Python Toolkit for Building LLM Powered Apps)
- [Gollm](https://docs.gollm.co/examples/ollama-example)
- [Gollama for Golang](https://github.com/jonathanhecl/gollama)
- [Ollamaclient for Golang](https://github.com/xyproto/ollamaclient)
- [High-level function abstraction in Go](https://gitlab.com/tozd/go/fun)
- [Ollama PHP](https://github.com/ArdaGnsrn/ollama-php)
- [Agents-Flex for Java](https://github.com/agents-flex/agents-flex) with [example](https://github.com/agents-flex/agents-flex/tree/main/agents-flex-llm/agents-flex-llm-ollama/src/test/java/com/agentsflex/llm/ollama)
- [Parakeet](https://github.com/parakeet-nest/parakeet) is a GoLang library, made to simplify the development of small generative AI applications with Ollama.
- [Haverscript](https://github.com/andygill/haverscript) with [examples](https://github.com/andygill/haverscript/tree/main/examples)
- [Ollama for Swift](https://github.com/mattt/ollama-swift)
- [Swollama for Swift](https://github.com/marcusziade/Swollama) with [DocC](https://marcusziade.github.io/Swollama/documentation/swollama/)
- [GoLamify](https://github.com/prasad89/golamify)
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in unified API)
### Mobile
@ -428,6 +478,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Raycast extension](https://github.com/MassimilianoPasquini97/raycast_ollama)
- [Discollama](https://github.com/mxyng/discollama) (Discord bot inside the Ollama discord channel)
- [Continue](https://github.com/continuedev/continue)
- [Vibe](https://github.com/thewh1teagle/vibe) (Transcribe and analyze meetings with Ollama)
- [Obsidian Ollama plugin](https://github.com/hinterdupfinger/obsidian-ollama)
- [Logseq Ollama plugin](https://github.com/omagdy7/ollama-logseq)
- [NotesOllama](https://github.com/andersrex/notesollama) (Apple Notes Ollama plugin)
@ -450,15 +501,24 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [AI Telegram Bot](https://github.com/tusharhero/aitelegrambot) (Telegram bot using Ollama in backend)
- [AI ST Completion](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (Sublime Text 4 AI assistant plugin with Ollama support)
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
- [ChatGPTBox: All in one browser extension](https://github.com/josStorer/chatGPTBox) with [Integrating Tutorial](https://github.com/josStorer/chatGPTBox/issues/616#issuecomment-1975186467)
- [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depends on ollama server)
- [vnc-lm](https://github.com/jk011ru/vnc-lm) (A containerized Discord bot with support for attachments and web links)
- [Terraform AWS Ollama & Open WebUI](https://github.com/xuyangbocn/terraform-aws-self-host-llm) (A Terraform module to deploy on AWS a ready-to-use Ollama service, together with its front end Open WebUI service.)
- [node-red-contrib-ollama](https://github.com/jakubburkiewicz/node-red-contrib-ollama)
- [Local AI Helper](https://github.com/ivostoykov/localAI) (Chrome and Firefox extensions that enable interactions with the active tab and customisable API endpoints. Includes secure storage for user prompts.)
- [vnc-lm](https://github.com/jake83741/vnc-lm) (Discord bot for messaging with LLMs through Ollama and LiteLLM. Seamlessly move between local and flagship models.)
- [LSP-AI](https://github.com/SilasMarvin/lsp-ai) (Open-source language server for AI-powered functionality)
- [QodeAssist](https://github.com/Palm1r/QodeAssist) (AI-powered coding assistant plugin for Qt Creator)
- [Obsidian Quiz Generator plugin](https://github.com/ECuiDev/obsidian-quiz-generator)
- [TextCraft](https://github.com/suncloudsmoon/TextCraft) (Copilot in Word alternative using Ollama)
- [Alfred Ollama](https://github.com/zeitlings/alfred-ollama) (Alfred Workflow)
### Supported backends
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
### Observability
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.

View file

@ -55,7 +55,7 @@ func checkError(resp *http.Response, body []byte) error {
// ClientFromEnvironment creates a new [Client] using configuration from the
// environment variable OLLAMA_HOST, which points to the network host and
// port on which the ollama service is listenting. The format of this variable
// port on which the ollama service is listening. The format of this variable
// is:
//
// <scheme>://<host>:<port>

View file

@ -12,7 +12,7 @@ import (
"time"
)
// StatusError is an error with and HTTP status code.
// StatusError is an error with an HTTP status code and message.
type StatusError struct {
StatusCode int
Status string
@ -57,7 +57,7 @@ type GenerateRequest struct {
Template string `json:"template"`
// Context is the context parameter returned from a previous call to
// Generate call. It can be used to keep a short conversational memory.
// [Client.Generate]. It can be used to keep a short conversational memory.
Context []int `json:"context,omitempty"`
// Stream specifies whether the response is streaming; it is true by default.
@ -90,14 +90,14 @@ type ChatRequest struct {
// Messages is the messages of the chat - can be used to keep a chat memory.
Messages []Message `json:"messages"`
// Stream enable streaming of returned response; true by default.
// Stream enables streaming of returned responses; true by default.
Stream *bool `json:"stream,omitempty"`
// Format is the format to return the response in (e.g. "json").
Format string `json:"format"`
// KeepAlive controls how long the model will stay loaded into memory
// followin the request.
// following the request.
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Tools is an optional list of tools the model has access to.
@ -146,6 +146,7 @@ type ToolCall struct {
}
type ToolCallFunction struct {
Index int `json:"index,omitempty"`
Name string `json:"name"`
Arguments ToolCallFunctionArguments `json:"arguments"`
}
@ -203,8 +204,8 @@ type Metrics struct {
EvalDuration time.Duration `json:"eval_duration,omitempty"`
}
// Options specified in [GenerateRequest], if you add a new option here add it
// to the API docs also.
// Options specified in [GenerateRequest]. If you add a new option here, also
// add it to the API docs.
type Options struct {
Runner

View file

@ -64,7 +64,7 @@ func initStore() {
slog.Debug(fmt.Sprintf("unexpected error searching for store: %s", err))
}
slog.Debug("initializing new store")
store.ID = uuid.New().String()
store.ID = uuid.NewString()
writeStore(getStorePath())
}

View file

@ -39,7 +39,7 @@ func (t *winTray) UpdateAvailable(ver string) error {
if err := t.addOrUpdateMenuItem(updateAvailableMenuID, 0, updateAvailableMenuTitle, true); err != nil {
return fmt.Errorf("unable to create menu entries %w", err)
}
if err := t.addOrUpdateMenuItem(updateMenuID, 0, updateMenutTitle, false); err != nil {
if err := t.addOrUpdateMenuItem(updateMenuID, 0, updateMenuTitle, false); err != nil {
return fmt.Errorf("unable to create menu entries %w", err)
}
if err := t.addSeparatorMenuItem(separatorMenuID, 0); err != nil {

View file

@ -10,6 +10,6 @@ const (
quitMenuTitle = "Quit Ollama"
updateAvailableMenuTitle = "An update is available"
updateMenutTitle = "Restart to update"
updateMenuTitle = "Restart to update"
diagLogsMenuTitle = "View logs"
)

View file

@ -361,7 +361,7 @@ func (t *winTray) showMenu() error {
boolRet, _, err = pTrackPopupMenu.Call(
uintptr(t.menus[0]),
TPM_BOTTOMALIGN|TPM_LEFTALIGN,
TPM_BOTTOMALIGN|TPM_LEFTALIGN|TPM_RIGHTBUTTON,
uintptr(p.X),
uintptr(p.Y),
0,

View file

@ -67,6 +67,7 @@ const (
SW_HIDE = 0
TPM_BOTTOMALIGN = 0x0020
TPM_LEFTALIGN = 0x0000
TPM_RIGHTBUTTON = 0x0002
WM_CLOSE = 0x0010
WM_USER = 0x0400
WS_CAPTION = 0x00C00000

View file

@ -19,7 +19,6 @@ import (
"os"
"os/signal"
"path/filepath"
"regexp"
"runtime"
"strconv"
"strings"
@ -35,13 +34,11 @@ import (
"golang.org/x/term"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/auth"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/server"
"github.com/ollama/ollama/types/errtypes"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/version"
)
@ -456,6 +453,10 @@ func RunHandler(cmd *cobra.Command, args []string) error {
if len(prompts) > 0 {
interactive = false
}
// Be quiet if we're redirecting to a pipe or file
if !term.IsTerminal(int(os.Stdout.Fd())) {
interactive = false
}
nowrap, err := cmd.Flags().GetBool("nowordwrap")
if err != nil {
@ -512,47 +513,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return generate(cmd, opts)
}
func errFromUnknownKey(unknownKeyErr error) error {
// find SSH public key in the error message
sshKeyPattern := `ssh-\w+ [^\s"]+`
re := regexp.MustCompile(sshKeyPattern)
matches := re.FindStringSubmatch(unknownKeyErr.Error())
if len(matches) > 0 {
serverPubKey := matches[0]
localPubKey, err := auth.GetPublicKey()
if err != nil {
return unknownKeyErr
}
if runtime.GOOS == "linux" && serverPubKey != localPubKey {
// try the ollama service public key
svcPubKey, err := os.ReadFile("/usr/share/ollama/.ollama/id_ed25519.pub")
if err != nil {
return unknownKeyErr
}
localPubKey = strings.TrimSpace(string(svcPubKey))
}
// check if the returned public key matches the local public key, this prevents adding a remote key to the user's account
if serverPubKey != localPubKey {
return unknownKeyErr
}
var msg strings.Builder
msg.WriteString(unknownKeyErr.Error())
msg.WriteString("\n\nYour ollama key is:\n")
msg.WriteString(localPubKey)
msg.WriteString("\nAdd your key at:\n")
msg.WriteString("https://ollama.com/settings/keys")
return errors.New(msg.String())
}
return unknownKeyErr
}
func PushHandler(cmd *cobra.Command, args []string) error {
client, err := api.ClientFromEnvironment()
if err != nil {
@ -599,6 +559,8 @@ func PushHandler(cmd *cobra.Command, args []string) error {
}
request := api.PushRequest{Name: args[0], Insecure: insecure}
n := model.ParseName(args[0])
if err := client.Push(cmd.Context(), &request, fn); err != nil {
if spinner != nil {
spinner.Stop()
@ -606,18 +568,19 @@ func PushHandler(cmd *cobra.Command, args []string) error {
if strings.Contains(err.Error(), "access denied") {
return errors.New("you are not authorized to push to this namespace, create the model under a namespace you own")
}
host := model.ParseName(args[0]).Host
isOllamaHost := strings.HasSuffix(host, ".ollama.ai") || strings.HasSuffix(host, ".ollama.com")
if strings.Contains(err.Error(), errtypes.UnknownOllamaKeyErrMsg) && isOllamaHost {
// the user has not added their ollama key to ollama.com
// re-throw an error with a more user-friendly message
return errFromUnknownKey(err)
}
return err
}
p.Stop()
spinner.Stop()
destination := n.String()
if strings.HasSuffix(n.Host, ".ollama.ai") || strings.HasSuffix(n.Host, ".ollama.com") {
destination = "https://ollama.com/" + strings.TrimSuffix(n.DisplayShortest(), ":latest")
}
fmt.Printf("\nYou can find your model at:\n\n")
fmt.Printf("\t%s\n", destination)
return nil
}
@ -800,9 +763,9 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
case "parameters":
fmt.Println(resp.Parameters)
case "system":
fmt.Println(resp.System)
fmt.Print(resp.System)
case "template":
fmt.Println(resp.Template)
fmt.Print(resp.Template)
}
return nil

View file

@ -4,6 +4,7 @@ import (
"bytes"
"context"
"encoding/json"
"io"
"net/http"
"net/http/httptest"
"os"
@ -369,3 +370,127 @@ func TestGetModelfileName(t *testing.T) {
})
}
}
func TestPushHandler(t *testing.T) {
tests := []struct {
name string
modelName string
serverResponse map[string]func(w http.ResponseWriter, r *http.Request)
expectedError string
expectedOutput string
}{
{
name: "successful push",
modelName: "test-model",
serverResponse: map[string]func(w http.ResponseWriter, r *http.Request){
"/api/push": func(w http.ResponseWriter, r *http.Request) {
if r.Method != http.MethodPost {
t.Errorf("expected POST request, got %s", r.Method)
}
var req api.PushRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, err.Error(), http.StatusBadRequest)
return
}
if req.Name != "test-model" {
t.Errorf("expected model name 'test-model', got %s", req.Name)
}
// Simulate progress updates
responses := []api.ProgressResponse{
{Status: "preparing manifest"},
{Digest: "sha256:abc123456789", Total: 100, Completed: 50},
{Digest: "sha256:abc123456789", Total: 100, Completed: 100},
}
for _, resp := range responses {
if err := json.NewEncoder(w).Encode(resp); err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
return
}
w.(http.Flusher).Flush()
}
},
},
expectedOutput: "\nYou can find your model at:\n\n\thttps://ollama.com/test-model\n",
},
{
name: "unauthorized push",
modelName: "unauthorized-model",
serverResponse: map[string]func(w http.ResponseWriter, r *http.Request){
"/api/push": func(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusUnauthorized)
err := json.NewEncoder(w).Encode(map[string]string{
"error": "access denied",
})
if err != nil {
t.Fatal(err)
}
},
},
expectedError: "you are not authorized to push to this namespace, create the model under a namespace you own",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if handler, ok := tt.serverResponse[r.URL.Path]; ok {
handler(w, r)
return
}
http.Error(w, "not found", http.StatusNotFound)
}))
defer mockServer.Close()
t.Setenv("OLLAMA_HOST", mockServer.URL)
cmd := &cobra.Command{}
cmd.Flags().Bool("insecure", false, "")
cmd.SetContext(context.TODO())
// Redirect stderr to capture progress output
oldStderr := os.Stderr
r, w, _ := os.Pipe()
os.Stderr = w
// Capture stdout for the "Model pushed" message
oldStdout := os.Stdout
outR, outW, _ := os.Pipe()
os.Stdout = outW
err := PushHandler(cmd, []string{tt.modelName})
// Restore stderr
w.Close()
os.Stderr = oldStderr
// drain the pipe
if _, err := io.ReadAll(r); err != nil {
t.Fatal(err)
}
// Restore stdout and get output
outW.Close()
os.Stdout = oldStdout
stdout, _ := io.ReadAll(outR)
if tt.expectedError == "" {
if err != nil {
t.Errorf("expected no error, got %v", err)
}
if tt.expectedOutput != "" {
if got := string(stdout); got != tt.expectedOutput {
t.Errorf("expected output %q, got %q", tt.expectedOutput, got)
}
}
} else {
if err == nil || !strings.Contains(err.Error(), tt.expectedError) {
t.Errorf("expected error containing %q, got %v", tt.expectedError, err)
}
}
})
}
}

View file

@ -319,8 +319,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
opts.Messages = append(opts.Messages, newMessage)
}
fmt.Println("Set system message.")
sb.Reset()
sb.Reset()
continue
default:
@ -516,7 +514,7 @@ func extractFileNames(input string) []string {
// Regex to match file paths starting with optional drive letter, / ./ \ or .\ and include escaped or unescaped spaces (\ or %20)
// and followed by more characters and a file extension
// This will capture non filename strings, but we'll check for file existence to remove mismatches
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png|svg)\b`
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png)\b`
re := regexp.MustCompile(regexPattern)
return re.FindAllString(input, -1)

View file

@ -12,44 +12,45 @@ import (
func TestExtractFilenames(t *testing.T) {
// Unix style paths
input := ` some preamble
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.svg`
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2 ./1.svg
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG`
res := extractFileNames(input)
assert.Len(t, res, 5)
assert.Contains(t, res[0], "one.png")
assert.Contains(t, res[1], "two.jpg")
assert.Contains(t, res[2], "three.jpeg")
assert.Contains(t, res[3], "four.png")
assert.Contains(t, res[4], "five.svg")
assert.Contains(t, res[4], "five.JPG")
assert.NotContains(t, res[4], '"')
assert.NotContains(t, res, "inbtween")
assert.NotContains(t, res, "inbetween1")
assert.NotContains(t, res, "./1.svg")
// Windows style paths
input = ` some preamble
c:/users/jdoe/one.png inbetween1 c:/program files/someplace/two.jpg inbetween2
/absolute/nospace/three.jpeg inbetween3 /absolute/with space/four.png inbetween4
./relative\ path/five.svg inbetween5 "./relative with/spaces/six.png inbetween6
d:\path with\spaces\seven.svg inbetween7 c:\users\jdoe\eight.png inbetween8
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.svg some ending
./relative\ path/five.JPG inbetween5 "./relative with/spaces/six.png inbetween6
d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG some ending
`
res = extractFileNames(input)
assert.Len(t, res, 10)
assert.NotContains(t, res, "inbtween")
assert.NotContains(t, res, "inbetween2")
assert.Contains(t, res[0], "one.png")
assert.Contains(t, res[0], "c:")
assert.Contains(t, res[1], "two.jpg")
assert.Contains(t, res[1], "c:")
assert.Contains(t, res[2], "three.jpeg")
assert.Contains(t, res[3], "four.png")
assert.Contains(t, res[4], "five.svg")
assert.Contains(t, res[4], "five.JPG")
assert.Contains(t, res[5], "six.png")
assert.Contains(t, res[6], "seven.svg")
assert.Contains(t, res[6], "seven.JPEG")
assert.Contains(t, res[6], "d:")
assert.Contains(t, res[7], "eight.png")
assert.Contains(t, res[7], "c:")
assert.Contains(t, res[8], "nine.png")
assert.Contains(t, res[8], "d:")
assert.Contains(t, res[9], "ten.svg")
assert.Contains(t, res[9], "ten.PNG")
assert.Contains(t, res[9], "E:")
}

View file

@ -350,7 +350,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
return nil, err
}
}
gpuInfo.DependencyPath = libDir
gpuInfo.DependencyPath = []string{libDir}
if gfxOverride == "" {
// Only load supported list once

View file

@ -111,7 +111,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
UnreliableFreeMemory: true,
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
DependencyPath: libDir,
DependencyPath: []string{libDir},
MinimumMemory: rocmMinimumMemory,
Name: name,
Compute: gfx,

View file

@ -240,7 +240,7 @@ func GetGPUInfo() GpuInfoList {
Library: "cpu",
Variant: cpuCapability.String(),
ID: "0",
DependencyPath: depPath,
DependencyPath: []string{depPath},
},
CPUs: details,
},
@ -293,11 +293,11 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.DriverMinor = driverMinor
variant := cudaVariant(gpuInfo)
if depPath != "" {
gpuInfo.DependencyPath = depPath
gpuInfo.DependencyPath = []string{depPath}
// Check for variant specific directory
if variant != "" {
if _, err := os.Stat(filepath.Join(depPath, "cuda_"+variant)); err == nil {
gpuInfo.DependencyPath = filepath.Join(depPath, "cuda_"+variant)
gpuInfo.DependencyPath = []string{filepath.Join(depPath, "cuda_"+variant), depPath}
}
}
}
@ -370,7 +370,7 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.DependencyPath = depPath
gpuInfo.DependencyPath = []string{depPath}
oneapiGPUs = append(oneapiGPUs, gpuInfo)
}
}

View file

@ -25,7 +25,7 @@ type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
MinimumMemory uint64 `json:"-"`
// Any extra PATH/LD_LIBRARY_PATH dependencies required for the Library to operate properly
DependencyPath string `json:"lib_path,omitempty"`
DependencyPath []string `json:"lib_path,omitempty"`
// Extra environment variables specific to the GPU as list of [key,value]
EnvWorkarounds [][2]string `json:"envs,omitempty"`

View file

@ -830,10 +830,30 @@ Create a model from a [`Modelfile`](./modelfile.md). It is recommended to set `m
### Parameters
- `name`: name of the model to create
- `model`: name of the model to create
- `modelfile` (optional): contents of the Modelfile
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
- `path` (optional): path to the Modelfile
- `quantize` (optional): quantize a non-quantized (e.g. float16) model
#### Quantization types
| Type | Recommended |
| --- | :-: |
| q2_K | |
| q3_K_L | |
| q3_K_M | |
| q3_K_S | |
| q4_0 | |
| q4_1 | |
| q4_K_M | * |
| q4_K_S | |
| q5_0 | |
| q5_1 | |
| q5_K_M | |
| q5_K_S | |
| q6_K | |
| q8_0 | * |
### Examples
@ -845,14 +865,14 @@ Create a new model from a `Modelfile`.
```shell
curl http://localhost:11434/api/create -d '{
"name": "mario",
"model": "mario",
"modelfile": "FROM llama3\nSYSTEM You are mario from Super Mario Bros."
}'
```
##### Response
A stream of JSON objects. Notice that the final JSON object shows a `"status": "success"`.
A stream of JSON objects is returned:
```json
{"status":"reading model metadata"}
@ -868,13 +888,43 @@ A stream of JSON objects. Notice that the final JSON object shows a `"status": "
{"status":"success"}
```
#### Quantize a model
Quantize a non-quantized model.
##### Request
```shell
curl http://localhost:11434/api/create -d '{
"model": "llama3.1:quantized",
"modelfile": "FROM llama3.1:8b-instruct-fp16",
"quantize": "q4_K_M"
}'
```
##### Response
A stream of JSON objects is returned:
```
{"status":"quantizing F16 model to Q4_K_M"}
{"status":"creating new layer sha256:667b0c1932bc6ffc593ed1d03f895bf2dc8dc6df21db3042284a6f4416b06a29"}
{"status":"using existing layer sha256:11ce4ee3e170f6adebac9a991c22e22ab3f8530e154ee669954c4bc73061c258"}
{"status":"using existing layer sha256:0ba8f0e314b4264dfd19df045cde9d4c394a52474bf92ed6a3de22a4ca31a177"}
{"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}
{"status":"creating new layer sha256:455f34728c9b5dd3376378bfb809ee166c145b0b4c1f1a6feca069055066ef9a"}
{"status":"writing manifest"}
{"status":"success"}
```
### Check if a Blob Exists
```shell
HEAD /api/blobs/:digest
```
Ensures that the file blob used for a FROM or ADAPTER field exists on the server. This is checking your Ollama server and not Ollama.ai.
Ensures that the file blob used for a FROM or ADAPTER field exists on the server. This is checking your Ollama server and not ollama.com.
#### Query Parameters
@ -979,7 +1029,7 @@ Show information about a model including details, modelfile, template, parameter
### Parameters
- `name`: name of the model to show
- `model`: name of the model to show
- `verbose`: (optional) if set to `true`, returns full data for verbose response fields
### Examples
@ -988,7 +1038,7 @@ Show information about a model including details, modelfile, template, parameter
```shell
curl http://localhost:11434/api/show -d '{
"name": "llama3.2"
"model": "llama3.2"
}'
```
@ -1068,7 +1118,7 @@ Delete a model and its data.
### Parameters
- `name`: model name to delete
- `model`: model name to delete
### Examples
@ -1076,7 +1126,7 @@ Delete a model and its data.
```shell
curl -X DELETE http://localhost:11434/api/delete -d '{
"name": "llama3:13b"
"model": "llama3:13b"
}'
```
@ -1094,7 +1144,7 @@ Download a model from the ollama library. Cancelled pulls are resumed from where
### Parameters
- `name`: name of the model to pull
- `model`: name of the model to pull
- `insecure`: (optional) allow insecure connections to the library. Only use this if you are pulling from your own library during development.
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
@ -1104,7 +1154,7 @@ Download a model from the ollama library. Cancelled pulls are resumed from where
```shell
curl http://localhost:11434/api/pull -d '{
"name": "llama3.2"
"model": "llama3.2"
}'
```
@ -1166,7 +1216,7 @@ Upload a model to a model library. Requires registering for ollama.ai and adding
### Parameters
- `name`: name of the model to push in the form of `<namespace>/<model>:<tag>`
- `model`: name of the model to push in the form of `<namespace>/<model>:<tag>`
- `insecure`: (optional) allow insecure connections to the library. Only use this if you are pushing to your library during development.
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
@ -1176,7 +1226,7 @@ Upload a model to a model library. Requires registering for ollama.ai and adding
```shell
curl http://localhost:11434/api/push -d '{
"name": "mattw/pygmalion:latest"
"model": "mattw/pygmalion:latest"
}'
```

View file

@ -50,6 +50,9 @@ sudo systemctl restart docker
docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
```
> [!NOTE]
> If you're running on an NVIDIA JetPack system, Ollama can't automatically discover the correct JetPack version. Pass the environment variable JETSON_JETPACK=5 or JETSON_JETPACK=6 to the container to select version 5 or 6.
### AMD GPU
To run Ollama using Docker with AMD GPUs, use the `rocm` tag and the following command:

View file

@ -32,7 +32,7 @@ ollama run my-model
Ollama supports importing adapters based on several different model architectures including:
* Llama (including Llama 2, Llama 3, and Llama 3.1);
* Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2);
* Mistral (including Mistral 1, Mistral 2, and Mixtral); and
* Gemma (including Gemma 1 and Gemma 2)
@ -67,14 +67,12 @@ ollama run my-model
Ollama supports importing models for several different architectures including:
* Llama (including Llama 2, Llama 3, and Llama 3.1);
* Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2);
* Mistral (including Mistral 1, Mistral 2, and Mixtral);
* Gemma (including Gemma 1 and Gemma 2); and
* Phi3
This includes importing foundation models as well as any fine tuned models which which have been _fused_ with a foundation model.
This includes importing foundation models as well as any fine tuned models which have been _fused_ with a foundation model.
## Importing a GGUF based model or adapter
If you have a GGUF based model or adapter it is possible to import it into Ollama. You can obtain a GGUF model or adapter by:
@ -83,7 +81,7 @@ If you have a GGUF based model or adapter it is possible to import it into Ollam
* converting a Safetensors adapter with the `convert_lora_to_gguf.py` from Llama.cpp; or
* downloading a model or adapter from a place such as HuggingFace
To import a GGUF model, create a `Modelfile` containg:
To import a GGUF model, create a `Modelfile` containing:
```dockerfile
FROM /path/to/file.gguf

View file

@ -112,6 +112,21 @@ sudo systemctl status ollama
> https://www.amd.com/en/support/linux-drivers for best support of your Radeon
> GPU.
## Customizing
To customize the installation of Ollama, you can edit the systemd service file or the environment variables by running:
```
sudo systemctl edit ollama
```
Alternatively, create an override file manually in `/etc/systemd/system/ollama.service.d/override.conf`:
```ini
[Service]
Environment="OLLAMA_DEBUG=1"
```
## Updating
Update Ollama by running the install script again:

View file

@ -120,7 +120,7 @@ FROM <model directory>
The model directory should contain the Safetensors weights for a supported architecture.
Currently supported model architectures:
* Llama (including Llama 2, Llama 3, and Llama 3.1)
* Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2)
* Mistral (including Mistral 1, Mistral 2, and Mixtral)
* Gemma (including Gemma 1 and Gemma 2)
* Phi3

View file

@ -95,13 +95,21 @@ If none of those resolve the problem, gather additional information and file an
On linux, AMD GPU access typically requires `video` and/or `render` group membership to access the `/dev/kfd` device. If permissions are not set up correctly, Ollama will detect this and report an error in the server log.
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -ld /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the group assignments on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices.
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -lnd /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the **numeric** group IDs on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices. For example, in the following output `crw-rw---- 1 0 44 226, 0 Sep 16 16:55 /dev/dri/card0` the group ID column is `44`
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.
If you are experiencing problems getting Ollama to correctly discover or use your GPU for inference, the following may help isolate the failure.
- `AMD_LOG_LEVEL=3` Enable info log levels in the AMD HIP/ROCm libraries. This can help show more detailed error codes that can help troubleshoot problems
- `OLLAMA_DEBUG=1` During GPU discovery additional information will be reported
- Check dmesg for any errors from amdgpu or kfd drivers `sudo dmesg | grep -i amdgpu` and `sudo dmesg | grep -i kfd`
## Multiple AMD GPUs
If you experience gibberish responses when models load across multiple AMD GPUs on Linux, see the following guide.
- https://rocm.docs.amd.com/projects/radeon/en/latest/docs/install/native_linux/mgpu.html#mgpu-known-issues-and-limitations
## Windows Terminal Errors
Older versions of Windows 10 (e.g., 21H1) are known to have a bug where the standard terminal program does not display control characters correctly. This can result in a long string of strings like `←[?25h←[?25l` being displayed, sometimes erroring with `The parameter is incorrect` To resolve this problem, please update to Win 10 22H1 or newer.

View file

@ -1,83 +0,0 @@
# Running Ollama on Fly.io GPU Instances
Ollama runs with little to no configuration on [Fly.io GPU instances](https://fly.io/docs/gpus/gpu-quickstart/). If you don't have access to GPUs yet, you'll need to [apply for access](https://fly.io/gpu/) on the waitlist. Once you're accepted, you'll get an email with instructions on how to get started.
Create a new app with `fly apps create`:
```bash
fly apps create
```
Then create a `fly.toml` file in a new folder that looks like this:
```toml
app = "sparkling-violet-709"
primary_region = "ord"
vm.size = "a100-40gb" # see https://fly.io/docs/gpus/gpu-quickstart/ for more info
[build]
image = "ollama/ollama"
[http_service]
internal_port = 11434
force_https = false
auto_stop_machines = true
auto_start_machines = true
min_machines_running = 0
processes = ["app"]
[mounts]
source = "models"
destination = "/root/.ollama"
initial_size = "100gb"
```
Then create a [new private IPv6 address](https://fly.io/docs/reference/private-networking/#flycast-private-load-balancing) for your app:
```bash
fly ips allocate-v6 --private
```
Then deploy your app:
```bash
fly deploy
```
And finally you can access it interactively with a new Fly.io Machine:
```
fly machine run -e OLLAMA_HOST=http://your-app-name.flycast --shell ollama/ollama
```
```bash
$ ollama run openchat:7b-v3.5-fp16
>>> How do I bake chocolate chip cookies?
To bake chocolate chip cookies, follow these steps:
1. Preheat the oven to 375°F (190°C) and line a baking sheet with parchment paper or silicone baking mat.
2. In a large bowl, mix together 1 cup of unsalted butter (softened), 3/4 cup granulated sugar, and 3/4
cup packed brown sugar until light and fluffy.
3. Add 2 large eggs, one at a time, to the butter mixture, beating well after each addition. Stir in 1
teaspoon of pure vanilla extract.
4. In a separate bowl, whisk together 2 cups all-purpose flour, 1/2 teaspoon baking soda, and 1/2 teaspoon
salt. Gradually add the dry ingredients to the wet ingredients, stirring until just combined.
5. Fold in 2 cups of chocolate chips (or chunks) into the dough.
6. Drop rounded tablespoons of dough onto the prepared baking sheet, spacing them about 2 inches apart.
7. Bake for 10-12 minutes, or until the edges are golden brown. The centers should still be slightly soft.
8. Allow the cookies to cool on the baking sheet for a few minutes before transferring them to a wire rack
to cool completely.
Enjoy your homemade chocolate chip cookies!
```
When you set it up like this, it will automatically turn off when you're done using it. Then when you access it again, it will automatically turn back on. This is a great way to save money on GPU instances when you're not using them. If you want a persistent wake-on-use connection to your Ollama instance, you can set up a [connection to your Fly network using WireGuard](https://fly.io/docs/reference/private-networking/#discovering-apps-through-dns-on-a-wireguard-connection). Then you can access your Ollama instance at `http://your-app-name.flycast`.
And that's it!

View file

@ -1,77 +0,0 @@
# Using LangChain with Ollama using JavaScript
In this tutorial, we are going to use JavaScript with LangChain and Ollama to learn about something just a touch more recent. In August 2023, there was a series of wildfires on Maui. There is no way an LLM trained before that time can know about this, since their training data would not include anything as recent as that. So we can find the [Wikipedia article about the fires](https://en.wikipedia.org/wiki/2023_Hawaii_wildfires) and ask questions about the contents.
To get started, let's just use **LangChain** to ask a simple question to a model. To do this with JavaScript, we need to install **LangChain**:
```bash
npm install @langchain/community
```
Now we can start building out our JavaScript:
```javascript
import { Ollama } from "@langchain/community/llms/ollama";
const ollama = new Ollama({
baseUrl: "http://localhost:11434",
model: "llama3.2",
});
const answer = await ollama.invoke(`why is the sky blue?`);
console.log(answer);
```
That will get us the same thing as if we ran `ollama run llama3.2 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
```bash
npm install cheerio
```
```javascript
import { CheerioWebBaseLoader } from "langchain/document_loaders/web/cheerio";
const loader = new CheerioWebBaseLoader("https://en.wikipedia.org/wiki/2023_Hawaii_wildfires");
const data = await loader.load();
```
That will load the document. Although this page is smaller than the Odyssey, it is certainly bigger than the context size for most LLMs. So we are going to need to split into smaller pieces, and then select just the pieces relevant to our question. This is a great use for a vector datastore. In this example, we will use the **MemoryVectorStore** that is part of **LangChain**. But there is one more thing we need to get the content into the datastore. We have to run an embeddings process that converts the tokens in the text into a series of vectors. And for that, we are going to use **Tensorflow**. There is a lot of stuff going on in this one. First, install the **Tensorflow** components that we need.
```javascript
npm install @tensorflow/tfjs-core@3.6.0 @tensorflow/tfjs-converter@3.6.0 @tensorflow-models/universal-sentence-encoder@1.3.3 @tensorflow/tfjs-node@4.10.0
```
If you just install those components without the version numbers, it will install the latest versions, but there are conflicts within **Tensorflow**, so you need to install the compatible versions.
```javascript
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
import { MemoryVectorStore } from "langchain/vectorstores/memory";
import "@tensorflow/tfjs-node";
import { TensorFlowEmbeddings } from "langchain/embeddings/tensorflow";
// Split the text into 500 character chunks. And overlap each chunk by 20 characters
const textSplitter = new RecursiveCharacterTextSplitter({
chunkSize: 500,
chunkOverlap: 20
});
const splitDocs = await textSplitter.splitDocuments(data);
// Then use the TensorFlow Embedding to store these chunks in the datastore
const vectorStore = await MemoryVectorStore.fromDocuments(splitDocs, new TensorFlowEmbeddings());
```
To connect the datastore to a question asked to a LLM, we need to use the concept at the heart of **LangChain**: the chain. Chains are a way to connect a number of activities together to accomplish a particular tasks. There are a number of chain types available, but for this tutorial we are using the **RetrievalQAChain**.
```javascript
import { RetrievalQAChain } from "langchain/chains";
const retriever = vectorStore.asRetriever();
const chain = RetrievalQAChain.fromLLM(ollama, retriever);
const result = await chain.call({query: "When was Hawaii's request for a major disaster declaration approved?"});
console.log(result.text)
```
So we created a retriever, which is a way to return the chunks that match a query from a datastore. And then connect the retriever and the model via a chain. Finally, we send a query to the chain, which results in an answer using our document as a source. The answer it returned was correct, August 10, 2023.
And that is a simple introduction to what you can do with **LangChain** and **Ollama.**

View file

@ -1,85 +0,0 @@
# Using LangChain with Ollama in Python
Let's imagine we are studying the classics, such as **the Odyssey** by **Homer**. We might have a question about Neleus and his family. If you ask llama2 for that info, you may get something like:
> I apologize, but I'm a large language model, I cannot provide information on individuals or families that do not exist in reality. Neleus is not a real person or character, and therefore does not have a family or any other personal details. My apologies for any confusion. Is there anything else I can help you with?
This sounds like a typical censored response, but even llama2-uncensored gives a mediocre answer:
> Neleus was a legendary king of Pylos and the father of Nestor, one of the Argonauts. His mother was Clymene, a sea nymph, while his father was Neptune, the god of the sea.
So let's figure out how we can use **LangChain** with Ollama to ask our question to the actual document, the Odyssey by Homer, using Python.
Let's start by asking a simple question that we can get an answer to from the **Llama3** model using **Ollama**. First, we need to install the **LangChain** package:
`pip install langchain_community`
Then we can create a model and ask the question:
```python
from langchain_community.llms import Ollama
ollama = Ollama(
base_url='http://localhost:11434',
model="llama3"
)
print(ollama.invoke("why is the sky blue"))
```
Notice that we are defining the model and the base URL for Ollama.
Now let's load a document to ask questions against. I'll load up the Odyssey by Homer, which you can find at Project Gutenberg. We will need **WebBaseLoader** which is part of **LangChain** and loads text from any webpage. On my machine, I also needed to install **bs4** to get that to work, so run `pip install bs4`.
```python
from langchain.document_loaders import WebBaseLoader
loader = WebBaseLoader("https://www.gutenberg.org/files/1727/1727-h/1727-h.htm")
data = loader.load()
```
This file is pretty big. Just the preface is 3000 tokens. Which means the full document won't fit into the context for the model. So we need to split it up into smaller pieces.
```python
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter=RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)
```
It's split up, but we have to find the relevant splits and then submit those to the model. We can do this by creating embeddings and storing them in a vector database. We can use Ollama directly to instantiate an embedding model. We will use ChromaDB in this example for a vector database. `pip install chromadb`
We also need to pull embedding model: `ollama pull nomic-embed-text`
```python
from langchain.embeddings import OllamaEmbeddings
from langchain.vectorstores import Chroma
oembed = OllamaEmbeddings(base_url="http://localhost:11434", model="nomic-embed-text")
vectorstore = Chroma.from_documents(documents=all_splits, embedding=oembed)
```
Now let's ask a question from the document. **Who was Neleus, and who is in his family?** Neleus is a character in the Odyssey, and the answer can be found in our text.
```python
question="Who is Neleus and who is in Neleus' family?"
docs = vectorstore.similarity_search(question)
len(docs)
```
This will output the number of matches for chunks of data similar to the search.
The next thing is to send the question and the relevant parts of the docs to the model to see if we can get a good answer. But we are stitching two parts of the process together, and that is called a chain. This means we need to define a chain:
```python
from langchain.chains import RetrievalQA
qachain=RetrievalQA.from_chain_type(ollama, retriever=vectorstore.as_retriever())
res = qachain.invoke({"query": question})
print(res['result'])
```
The answer received from this chain was:
> Neleus is a character in Homer's "Odyssey" and is mentioned in the context of Penelope's suitors. Neleus is the father of Chloris, who is married to Neleus and bears him several children, including Nestor, Chromius, Periclymenus, and Pero. Amphinomus, the son of Nisus, is also mentioned as a suitor of Penelope and is known for his good natural disposition and agreeable conversation.
It's not a perfect answer, as it implies Neleus married his daughter when actually Chloris "was the youngest daughter to Amphion son of Iasus and king of Minyan Orchomenus, and was Queen in Pylos".
I updated the chunk_overlap for the text splitter to 20 and tried again and got a much better answer:
> Neleus is a character in Homer's epic poem "The Odyssey." He is the husband of Chloris, who is the youngest daughter of Amphion son of Iasus and king of Minyan Orchomenus. Neleus has several children with Chloris, including Nestor, Chromius, Periclymenus, and Pero.
And that is a much better answer.

View file

@ -1,15 +0,0 @@
# Running Ollama on NVIDIA Jetson Devices
Ollama runs well on [NVIDIA Jetson Devices](https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/) and should run out of the box with the standard installation instructions.
The following has been tested on [JetPack 5.1.2](https://developer.nvidia.com/embedded/jetpack), but should also work on JetPack 6.0.
- Install Ollama via standard Linux command (ignore the 404 error): `curl https://ollama.com/install.sh | sh`
- Pull the model you want to use (e.g. mistral): `ollama pull mistral`
- Start an interactive session: `ollama run mistral`
And that's it!
# Running Ollama in Docker
When running GPU accelerated applications in Docker, it is highly recommended to use [dusty-nv jetson-containers repo](https://github.com/dusty-nv/jetson-containers).

View file

@ -1,6 +1,6 @@
from langchain.llms import Ollama
input = input("What is your question?")
input = input("What is your question?\n> ")
llm = Ollama(model="llama3.2")
res = llm.predict(input)
res = llm.invoke(input)
print (res)

10
go.mod
View file

@ -7,12 +7,12 @@ require (
github.com/emirpasic/gods v1.18.1
github.com/gin-gonic/gin v1.10.0
github.com/golang/protobuf v1.5.4 // indirect
github.com/google/uuid v1.1.2
github.com/google/uuid v1.6.0
github.com/olekukonko/tablewriter v0.0.5
github.com/spf13/cobra v1.7.0
github.com/stretchr/testify v1.9.0
github.com/x448/float16 v0.8.4
golang.org/x/sync v0.3.0
golang.org/x/sync v0.9.0
)
require (
@ -22,14 +22,14 @@ require (
github.com/mattn/go-runewidth v0.0.14
github.com/nlpodyssey/gopickle v0.3.0
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
golang.org/x/image v0.14.0
golang.org/x/image v0.22.0
)
require (
github.com/apache/arrow/go/arrow v0.0.0-20211112161151-bc219186db40 // indirect
github.com/bytedance/sonic/loader v0.1.1 // indirect
github.com/chewxy/hm v1.0.0 // indirect
github.com/chewxy/math32 v1.10.1 // indirect
github.com/chewxy/math32 v1.11.0 // indirect
github.com/cloudwego/base64x v0.1.4 // indirect
github.com/cloudwego/iasm v0.2.0 // indirect
github.com/davecgh/go-spew v1.1.1 // indirect
@ -73,7 +73,7 @@ require (
golang.org/x/net v0.25.0 // indirect
golang.org/x/sys v0.20.0
golang.org/x/term v0.20.0
golang.org/x/text v0.15.0
golang.org/x/text v0.20.0
google.golang.org/protobuf v1.34.1
gopkg.in/yaml.v3 v3.0.1 // indirect
)

19
go.sum
View file

@ -21,8 +21,8 @@ github.com/census-instrumentation/opencensus-proto v0.2.1/go.mod h1:f6KPmirojxKA
github.com/chewxy/hm v1.0.0 h1:zy/TSv3LV2nD3dwUEQL2VhXeoXbb9QkpmdRAVUFiA6k=
github.com/chewxy/hm v1.0.0/go.mod h1:qg9YI4q6Fkj/whwHR1D+bOGeF7SniIP40VweVepLjg0=
github.com/chewxy/math32 v1.0.0/go.mod h1:Miac6hA1ohdDUTagnvJy/q+aNnEk16qWUdb8ZVhvCN0=
github.com/chewxy/math32 v1.10.1 h1:LFpeY0SLJXeaiej/eIp2L40VYfscTvKh/FSEZ68uMkU=
github.com/chewxy/math32 v1.10.1/go.mod h1:dOB2rcuFrCn6UHrze36WSLVPKtzPMRAQvBvUwkSsLqs=
github.com/chewxy/math32 v1.11.0 h1:8sek2JWqeaKkVnHa7bPVqCEOUPbARo4SGxs6toKyAOo=
github.com/chewxy/math32 v1.11.0/go.mod h1:dOB2rcuFrCn6UHrze36WSLVPKtzPMRAQvBvUwkSsLqs=
github.com/client9/misspell v0.3.4/go.mod h1:qj6jICC3Q7zFZvVWo7KLAzC3yx5G7kyvSDkc90ppPyw=
github.com/cloudwego/base64x v0.1.4 h1:jwCgWpFanWmN8xoIUHa2rtzmkd5J2plF/dnLS6Xd/0Y=
github.com/cloudwego/base64x v0.1.4/go.mod h1:0zlkT4Wn5C6NdauXdJRhSKRlJvmclQ1hhJgA0rcu/8w=
@ -113,8 +113,9 @@ github.com/google/go-cmp v0.5.6/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/
github.com/google/go-cmp v0.6.0 h1:ofyhxvXcZhMsU5ulbFiLKl/XBFqE1GSq7atu8tAmTRI=
github.com/google/go-cmp v0.6.0/go.mod h1:17dUlkBOakJ0+DkrSSNjCkIjxS6bF9zb3elmeNGIjoY=
github.com/google/gofuzz v1.0.0/go.mod h1:dBl0BpW6vV/+mYPU4Po3pmUjxk6FQPldtuIdl/M65Eg=
github.com/google/uuid v1.1.2 h1:EVhdT+1Kseyi1/pUmXKaFxYsDNy9RQYkMWRH68J/W7Y=
github.com/google/uuid v1.1.2/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=
github.com/google/uuid v1.6.0 h1:NIvaJDMOsjHA8n1jAhLSgzrAzy1Hgr+hNrb57e+94F0=
github.com/google/uuid v1.6.0/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=
github.com/grpc-ecosystem/grpc-gateway v1.16.0/go.mod h1:BDjrQk3hbvj6Nolgz8mAMFbcEtjT1g+wF4CSlocrBnw=
github.com/inconshreveable/mousetrap v1.1.0 h1:wN+x4NVGpMsO7ErUn/mUI3vEoE6Jt13X2s0bqwp9tc8=
github.com/inconshreveable/mousetrap v1.1.0/go.mod h1:vpF70FUmC8bwa3OWnCshd2FqLfsEA9PFc4w1p2J65bw=
@ -230,8 +231,8 @@ golang.org/x/image v0.0.0-20200430140353-33d19683fad8/go.mod h1:FeLwcggjj3mMvU+o
golang.org/x/image v0.0.0-20200618115811-c13761719519/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
golang.org/x/image v0.0.0-20201208152932-35266b937fa6/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
golang.org/x/image v0.0.0-20210216034530-4410531fe030/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
golang.org/x/image v0.14.0 h1:tNgSxAFe3jC4uYqvZdTr84SZoM1KfwdC9SKIFrLjFn4=
golang.org/x/image v0.14.0/go.mod h1:HUYqC05R2ZcZ3ejNQsIHQDQiwWM4JBqmm6MKANTp4LE=
golang.org/x/image v0.22.0 h1:UtK5yLUzilVrkjMAZAZ34DXGpASN8i8pj8g+O+yd10g=
golang.org/x/image v0.22.0/go.mod h1:9hPFhljd4zZ1GNSIZJ49sqbp45GKK9t6w+iXvGqZUz4=
golang.org/x/lint v0.0.0-20181026193005-c67002cb31c3/go.mod h1:UVdnD1Gm6xHRNCYTkRU2/jEulfH38KcIWyp/GAMgvoE=
golang.org/x/lint v0.0.0-20190227174305-5b3e6a55c961/go.mod h1:wehouNa3lNwaWXcvxsM5YxQ5yQlVC4a0KAMCusXpPoU=
golang.org/x/lint v0.0.0-20190313153728-d0100b6bd8b3/go.mod h1:6SW0HCj/g11FgYtHlgUYUwCkIfeOF89ocIRzGO/8vkc=
@ -265,8 +266,8 @@ golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJ
golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20210220032951-036812b2e83c/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.3.0 h1:ftCYgMx6zT/asHUrPw8BLLscYtGznsLAnjq5RH9P66E=
golang.org/x/sync v0.3.0/go.mod h1:FU7BRWz2tNW+3quACPkgCx/L+uEAv1htQ0V83Z9Rj+Y=
golang.org/x/sync v0.9.0 h1:fEo0HyrW1GIgZdpbhCRO0PkJajUS5H9IFUztCgEo2jQ=
golang.org/x/sync v0.9.0/go.mod h1:Czt+wKu1gCyEFDUtn0jG5QVvpJ6rzVqr5aXyt9drQfk=
golang.org/x/sys v0.0.0-20180830151530-49385e6e1522/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190312061237-fead79001313/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
@ -291,8 +292,8 @@ golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.5/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.15.0 h1:h1V/4gjBv8v9cjcR6+AR5+/cIYK5N/WAgiv4xlsEtAk=
golang.org/x/text v0.15.0/go.mod h1:18ZOQIKpY8NJVqYksKHtTdi31H5itFRjB5/qKTNYzSU=
golang.org/x/text v0.20.0 h1:gK/Kv2otX8gz+wn7Rmb3vT96ZwuoxnQlY+HlJVj7Qug=
golang.org/x/text v0.20.0/go.mod h1:D4IsuqiFMhST5bX19pQ9ikHC2GsaKyk/oF+pn3ducp4=
golang.org/x/tools v0.0.0-20180525024113-a5b4c53f6e8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20190114222345-bf090417da8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=

View file

@ -10,7 +10,38 @@ import (
"github.com/ollama/ollama/api"
)
func TestLongInputContext(t *testing.T) {
// Setting NUM_PARALLEL to 1 ensures the allocated context is exactly what
// we asked for and there is nothing extra that we could spill over into
t.Setenv("OLLAMA_NUM_PARALLEL", "1")
// Longer needed for small footprint GPUs
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Minute)
defer cancel()
// Set up the test data
req := api.GenerateRequest{
Model: "llama2",
Prompt: "Oh, dont speak to me of Austria. Perhaps I dont understand things, but Austria never has wished, and does not wish, for war. She is betraying us! Russia alone must save Europe. Our gracious sovereign recognizes his high vocation and will be true to it. That is the one thing I have faith in! Our good and wonderful sovereign has to perform the noblest role on earth, and he is so virtuous and noble that God will not forsake him. He will fulfill his vocation and crush the hydra of revolution, which has become more terrible than ever in the person of this murderer and villain! We alone must avenge the blood of the just one.... Whom, I ask you, can we rely on?... England with her commercial spirit will not and cannot understand the Emperor Alexanders loftiness of soul. She has refused to evacuate Malta. She wanted to find, and still seeks, some secret motive in our actions. What answer did Novosíltsev get? None. The English have not understood and cannot understand the self-abnegation of our Emperor who wants nothing for himself, but only desires the good of mankind. And what have they promised? Nothing! And what little they have promised they will not perform! Prussia has always declared that Buonaparte is invincible, and that all Europe is powerless before him.... And I dont believe a word that Hardenburg says, or Haugwitz either. This famous Prussian neutrality is just a trap. I have faith only in God and the lofty destiny of our adored monarch. He will save Europe! What country is this referring to?",
Stream: &stream,
Options: map[string]interface{}{
"temperature": 0,
"seed": 123,
"num_ctx": 128,
},
}
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("PullIfMissing failed: %v", err)
}
DoGenerate(ctx, t, client, req, []string{"russia", "germany", "france", "england", "austria", "prussia"}, 120*time.Second, 10*time.Second)
}
func TestContextExhaustion(t *testing.T) {
// Setting NUM_PARALLEL to 1 ensures the allocated context is exactly what
// we asked for and there is nothing extra that we could spill over into
t.Setenv("OLLAMA_NUM_PARALLEL", "1")
// Longer needed for small footprint GPUs
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Minute)
defer cancel()

View file

@ -16,7 +16,6 @@ import (
"github.com/stretchr/testify/require"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
)
func TestMaxQueue(t *testing.T) {
@ -27,12 +26,8 @@ func TestMaxQueue(t *testing.T) {
// Note: This test can be quite slow when running in CPU mode, so keep the threadCount low unless your on GPU
// Also note that by default Darwin can't sustain > ~128 connections without adjusting limits
threadCount := 32
if maxQueue := envconfig.MaxQueue(); maxQueue != 0 {
threadCount = int(maxQueue)
} else {
t.Setenv("OLLAMA_MAX_QUEUE", strconv.Itoa(threadCount))
}
threadCount := 16
t.Setenv("OLLAMA_MAX_QUEUE", strconv.Itoa(threadCount))
req := api.GenerateRequest{
Model: "orca-mini",

View file

@ -55,7 +55,7 @@ go build -tags avx,cuda .
### ROCm
Install the [CUDA toolkit v11.3.1](https://developer.nvidia.com/cuda-11-3-1-download-archive):
Install [ROCm](https://rocm.docs.amd.com/en/latest/).
```shell
make ggml_hipblas.so
@ -77,7 +77,7 @@ go build -tags avx,cuda .
### ROCm
Install [ROCm 5.7.1](https://rocm.docs.amd.com/en/docs-5.7.1/).
Install [ROCm](https://rocm.docs.amd.com/en/latest/).
```shell
make ggml_hipblas.dll
@ -93,7 +93,7 @@ make -j
## Vendoring
Ollama currently vendors [llama.cpp](https://github.com/ggerganov/llama.cpp/) and [ggml](https://github.com/ggerganov/ggml) through a vendoring model. While we generally strive to contribute changes back upstream to avoid drift, we cary a small set of patches which are applied to the tracking commit. A set of make targets are available to aid developers in updating to a newer tracking commit, or to work on changes.
Ollama currently vendors [llama.cpp](https://github.com/ggerganov/llama.cpp/) and [ggml](https://github.com/ggerganov/ggml) through a vendoring model. While we generally strive to contribute changes back upstream to avoid drift, we cary a small set of patches which are applied to the tracking commit. A set of make targets are available to aid developers in updating to a newer tracking commit, or to work on changes.
If you update the vendoring code, start by running the following command to establish the tracking llama.cpp repo in the `./vendor/` directory.
@ -105,35 +105,35 @@ make apply-patches
**Pin to new base commit**
To update to a newer base commit, select the upstream git tag or commit and update `llama/vendoring.env`
To update to a newer base commit, select the upstream git tag or commit and update `llama/vendoring`
#### Applying patches
When updating to a newer base commit, the existing patches may not apply cleanly and require manual merge resolution.
Start by applying the patches. If any of the patches have conflicts, the `git am` will stop at the first failure.
Start by applying the patches. If any of the patches have conflicts, the `git am` will stop at the first failure.
```
make apply-patches
```
If you see an error message about a conflict, go into the `./vendor/` directory, and perform merge resolution using your preferred tool to the patch commit which failed. Save the file(s) and continue the patch series with `git am --continue` . If any additional patches fail, follow the same pattern until the full patch series is applied. Once finished, run a final `create-patches` and `sync` target to ensure everything is updated.
If you see an error message about a conflict, go into the `./vendor/` directory, and perform merge resolution using your preferred tool to the patch commit which failed. Save the file(s) and continue the patch series with `git am --continue` . If any additional patches fail, follow the same pattern until the full patch series is applied. Once finished, run a final `create-patches` and `sync` target to ensure everything is updated.
```
make create-patches sync
```
Build and test Ollama, and make any necessary changes to the Go code based on the new base commit. Submit your PR to the Ollama repo.
Build and test Ollama, and make any necessary changes to the Go code based on the new base commit. Submit your PR to the Ollama repo.
### Generating Patches
When working on new fixes or features that impact vendored code, use the following model. First get a clean tracking repo with all current patches applied:
When working on new fixes or features that impact vendored code, use the following model. First get a clean tracking repo with all current patches applied:
```
make apply-patches
```
Now edit the upstream native code in the `./vendor/` directory. You do not need to commit every change in order to build, a dirty working tree in the tracking repo is OK while developing. Simply save in your editor, and run the following to refresh the vendored code with your changes, build the backend(s) and build ollama:
Now edit the upstream native code in the `./vendor/` directory. You do not need to commit every change in order to build, a dirty working tree in the tracking repo is OK while developing. Simply save in your editor, and run the following to refresh the vendored code with your changes, build the backend(s) and build ollama:
```
make sync
@ -142,9 +142,9 @@ go build .
```
> [!IMPORTANT]
> Do **NOT** run `apply-patches` while you're iterating as that will reset the tracking repo. It will detect a dirty tree and abort, but if your tree is clean and you accidentally ran this target, use `git reflog` to recover your commit(s).
> Do **NOT** run `apply-patches` while you're iterating as that will reset the tracking repo. It will detect a dirty tree and abort, but if your tree is clean and you accidentally ran this target, use `git reflog` to recover your commit(s).
Iterate until you're ready to submit PRs. Once your code is ready, commit a change in the `./vendor/` directory, then generate the patches for ollama with
Iterate until you're ready to submit PRs. Once your code is ready, commit a change in the `./vendor/` directory, then generate the patches for ollama with
```
make create-patches

View file

@ -21,6 +21,8 @@ package llama
#cgo cuda CFLAGS: -fPIE -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo cuda_jetpack5 LDFLAGS: -lggml_cuda_jetpack5 -L/usr/local/cuda-11/lib64
#cgo cuda_jetpack6 LDFLAGS: -lggml_cuda_jetpack6 -L/usr/local/cuda-12/lib64
#cgo cuda_v11 LDFLAGS: -lggml_cuda_v11 -L/usr/local/cuda-11/lib64
#cgo cuda_v12 LDFLAGS: -lggml_cuda_v12 -L/usr/local/cuda-12/lib64
#cgo darwin,amd64 CFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
@ -36,8 +38,8 @@ package llama
#cgo linux CXXFLAGS: -D_GNU_SOURCE
#cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64
#cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64
#cgo linux,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA -D__ARM_FEATURE_MATMUL_INT8
#cgo linux,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA -D__ARM_FEATURE_MATMUL_INT8
#cgo linux,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
#cgo linux,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
#cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/Linux/arm64
#cgo linux,arm64,sve CFLAGS: -march=armv8.6-a+sve
#cgo linux,arm64,sve CXXFLAGS: -march=armv8.6-a+sve
@ -155,9 +157,7 @@ type Context struct {
numThreads int
}
func (c *Context) KvCacheClear() {
C.llama_kv_cache_clear(c.c)
}
var ErrKvCacheFull = errors.New("could not find a kv cache slot")
func (c *Context) Decode(batch *Batch) error {
// Positive return values does not mean a fatal error, but rather a warning.
@ -171,7 +171,7 @@ func (c *Context) Decode(batch *Batch) error {
}
if code > 0 {
return fmt.Errorf("could not find a KV slot for the batch - try reducing the size of the batch or increase the context. code: %d", code)
return ErrKvCacheFull
}
return nil
@ -193,6 +193,14 @@ func (c *Context) KvCacheSeqCp(srcSeqId int, dstSeqId int, p0 int, p1 int) {
C.llama_kv_cache_seq_cp(c.c, C.int(srcSeqId), C.int(dstSeqId), C.int(p0), C.int(p1))
}
func (c *Context) KvCacheClear() {
C.llama_kv_cache_clear(c.c)
}
func (c *Context) KvCacheDefrag() {
C.llama_kv_cache_defrag(c.c)
}
// Get the embeddings for a sequence id
func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
embeddings := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
@ -382,6 +390,8 @@ func (b *Batch) Add(token int, embed []float32, pos int, logits bool, seqIds ...
if logits {
unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 1
} else {
unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 0
}
b.c.n_tokens += 1
@ -598,6 +608,10 @@ func (c *Context) SetCrossAttention(state bool) {
C.llama_set_cross_attention(c.c, C.bool(state))
}
func (c *Context) Synchronize() {
C.llama_synchronize(c.c)
}
// sampling
// TODO: this is a temporary wrapper to allow calling C++ code from CGo
type SamplingContext struct {

View file

@ -20,7 +20,7 @@ GPU_COMPILER_CFLAGS_LINUX = $(CFLAGS) -Xcompiler -fPIC -D_GNU_SOURCE
GPU_COMPILER_CXXFLAGS_WIN = $(CXXFLAGS) -D_WIN32_WINNT=0x602
GPU_COMPILER_CXXFLAGS_LINUX = $(CXXFLAGS) -Xcompiler -fPIC -D_GNU_SOURCE
GPU_LIBS = $(sort $(wildcard $(addsuffix *.$(SHARED_EXT)*,$(addprefix $(GPU_LIB_DIR)/$(SHARED_PREFIX),$(GPU_RUNNER_LIBS_SHORT)))))
GPU_DIST_DEPS_LIBS= $(sort $(addprefix $(DIST_LIB_DIR)/,$(notdir $(GPU_LIBS))))
GPU_DIST_DEPS_LIBS= $(sort $(addprefix $(DIST_GPU_RUNNER_DEPS_DIR)/,$(notdir $(GPU_LIBS))))
ifeq ($(OS),linux)
CUDA_PATH?=/usr/local/cuda

View file

@ -2,6 +2,7 @@ package main
import (
"errors"
"fmt"
"log/slog"
"reflect"
"time"
@ -22,7 +23,11 @@ type InputCache struct {
lc *llama.Context
}
func NewInputCache(lc *llama.Context, kvSize int, numSlots int, multiUserCache bool) *InputCache {
func NewInputCache(lc *llama.Context, kvSize int, numSlots int, multiUserCache bool) (*InputCache, error) {
if kvSize/numSlots < 1 {
return nil, fmt.Errorf("must have at least one kv cache entry per parallel sequence (kv: %v parallel: %v)", kvSize, numSlots)
}
slots := make([]InputCacheSlot, numSlots)
for i := range slots {
@ -37,7 +42,7 @@ func NewInputCache(lc *llama.Context, kvSize int, numSlots int, multiUserCache b
slots: slots,
multiUserCache: multiUserCache,
lc: lc,
}
}, nil
}
// Locking: Operations on InputCacheSlot (including finding one
@ -58,7 +63,7 @@ type InputCacheSlot struct {
lastUsed time.Time
}
func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCacheSlot, []input, int, error) {
func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCacheSlot, []input, error) {
var slot *InputCacheSlot
var numPast int
var err error
@ -75,7 +80,7 @@ func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCach
slot, numPast, err = c.findBestCacheSlot(prompt)
}
if err != nil {
return nil, nil, 0, err
return nil, nil, err
}
if !cachePrompt {
@ -102,7 +107,7 @@ func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCach
prompt = prompt[numPast:]
slot.Inputs = slot.Inputs[:numPast]
return slot, prompt, numPast, nil
return slot, prompt, nil
}
func (c *InputCache) findLongestCacheSlot(prompt []input) (*InputCacheSlot, int, error) {
@ -194,14 +199,48 @@ func countCommonPrefix(a []input, b []input) int {
return count
}
func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int, numDiscard int, numPast int) {
// TODO (jessegross): KV cache removal can fail for certain types of models
// server.cpp doesn't handle this, though we can be more graceful
c.lc.KvCacheSeqRm(slot.Id, numKeep, numKeep+numDiscard)
c.lc.KvCacheSeqAdd(slot.Id, numKeep+numDiscard, numPast, -numDiscard)
func (c *InputCache) ShiftDiscard(inputLen int, numKeep int) int {
targetFree := (c.numCtx - numKeep) / 2
targetFree = max(targetFree, 1)
for i := numKeep + numDiscard; i < len(slot.Inputs); i++ {
slot.Inputs[i-numDiscard] = slot.Inputs[i]
currentFree := c.numCtx - inputLen
discard := targetFree - currentFree
if discard < 0 {
discard = 0
}
slot.Inputs = slot.Inputs[:len(slot.Inputs)-numDiscard]
return discard
}
// Frees up space in the KV cache by deleting the oldest half of history and shifting
// the newest half into that space (saving numKeep inputs at the beginning).
//
// Assumes that at least 1 entry can be freed up by shifting (i.e. numKeep < numCtx)
func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int) error {
if numKeep >= c.numCtx {
return fmt.Errorf("unable to shift context - keep exceeds context (keep: %v context: %v)", numKeep, c.numCtx)
}
discard := c.ShiftDiscard(len(slot.Inputs), numKeep)
if discard <= 0 {
return nil
}
slog.Debug("context limit hit - shifting", "id", slot.Id, "limit", c.numCtx, "input", len(slot.Inputs),
"keep", numKeep, "discard", discard)
// TODO (jessegross): KV cache removal can fail for certain types of models
if !c.lc.KvCacheSeqRm(slot.Id, numKeep, numKeep+discard) {
return fmt.Errorf("unable to remove old kv cache entries (id: %v, keep: %v discard: %v)", slot.Id, numKeep, discard)
}
c.lc.KvCacheSeqAdd(slot.Id, numKeep+discard, len(slot.Inputs), -discard)
for i := numKeep + discard; i < len(slot.Inputs); i++ {
slot.Inputs[i-discard] = slot.Inputs[i]
}
slot.Inputs = slot.Inputs[:len(slot.Inputs)-discard]
return nil
}

View file

@ -227,3 +227,66 @@ func TestFindCacheSlot(t *testing.T) {
})
}
}
func TestShiftDiscard(t *testing.T) {
tests := []struct {
name string
numCtx int
numKeep int
inputLen int
expected int
}{
{
name: "Shift",
numCtx: 2048,
numKeep: 5,
inputLen: 2048,
expected: 1021,
},
{
name: "Max Keep",
numCtx: 2048,
numKeep: 2047,
inputLen: 2048,
expected: 1,
},
{
name: "No Keep",
numCtx: 2048,
numKeep: 0,
inputLen: 2048,
expected: 1024,
},
{
name: "Truncate",
numCtx: 2048,
numKeep: 5,
inputLen: 5000,
expected: 3973,
},
{
name: "Truncate Keep",
numCtx: 2048,
numKeep: 2047,
inputLen: 5000,
expected: 2953,
},
{
name: "No Op",
numCtx: 2048,
numKeep: 5,
inputLen: 512,
expected: 0,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
c := InputCache{numCtx: tt.numCtx}
result := c.ShiftDiscard(tt.inputLen, tt.numKeep)
if result != tt.expected {
t.Errorf("shiftDiscard(ctx: %v, keep: %v input: %v): have %v; want %v", tt.numCtx, tt.numKeep, tt.inputLen, result, tt.expected)
}
})
}
}

View file

@ -20,6 +20,8 @@ import (
"time"
"unicode/utf8"
"golang.org/x/sync/semaphore"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llama"
)
@ -34,9 +36,6 @@ type input struct {
}
type Sequence struct {
// number of inputs evaluated
numPast int
// batch index
iBatch int
@ -46,6 +45,9 @@ type Sequence struct {
// prompt inputs left to evaluate
inputs []input
// inputs that have been added to a batch but not yet submitted to Decode
pendingInputs []input
// tokens that have been generated but not returned yet (e.g. for stop sequences)
pendingResponses []string
@ -112,20 +114,19 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
params.numKeep = len(inputs)
}
if !params.embedding {
// Subtracting 4 ensures that at least 1 input can be discarded during shift
params.numKeep = min(params.numKeep, s.cache.numCtx-4)
params.numKeep += s.bosToken
} else {
// Embeddings are 1 shot - just truncate to the context window, without ever shifting
params.numKeep = min(params.numKeep, s.cache.numCtx)
if s.model.AddBOSToken() {
params.numKeep += 1
}
// truncate to fit in context window
// Ensure that at least 1 input can be discarded during shift
params.numKeep = min(params.numKeep, s.cache.numCtx-1)
if len(inputs) > s.cache.numCtx {
slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "numKeep", params.numKeep)
discard := len(inputs) - s.cache.numCtx
newInputs := inputs[:params.numKeep]
newInputs = append(newInputs, inputs[len(inputs)-s.cache.numCtx+params.numKeep:]...)
newInputs = append(newInputs, inputs[params.numKeep+discard:]...)
slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
inputs = newInputs
}
@ -163,22 +164,26 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
// generating image embeddings for each image
func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
var inputs []input
var parts []string
var matches [][]string
re := regexp.MustCompile(`\[img-(\d+)\]`)
parts := re.Split(prompt, -1)
matches := re.FindAllStringSubmatch(prompt, -1)
if s.image != nil {
re := regexp.MustCompile(`\[img-(\d+)\]`)
parts = re.Split(prompt, -1)
matches = re.FindAllStringSubmatch(prompt, -1)
} else {
parts = []string{prompt}
}
for i, part := range parts {
// text - tokenize
if strings.TrimSpace(part) != "" {
tokens, err := s.lc.Model().Tokenize(part, i == 0, true)
if err != nil {
return nil, err
}
tokens, err := s.lc.Model().Tokenize(part, i == 0, true)
if err != nil {
return nil, err
}
for _, t := range tokens {
inputs = append(inputs, input{token: t})
}
for _, t := range tokens {
inputs = append(inputs, input{token: t})
}
// image - generate image embedding
@ -212,41 +217,51 @@ func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
}
type Server struct {
model *llama.Model
lc *llama.Context
// is the server ready to process requests?
// protects access to model and image
ready sync.WaitGroup
// required for image embeddings
// loaded model
model *llama.Model
// image model context for multi-modal models
image *ImageContext
// status for external health reporting - loading, ready to serve, etc.
status ServerStatus
// current progress on loading the model
progress float32
// number of simultaneous requests to handle
parallel int
// maximum number of elements in a batch (per sequence)
// TODO (jmorganca): make this n_batch
batchSize int
// parallel is the number of parallel requests to handle
parallel int
// protects access to everything below this line
// this is context state needed for decoding
mu sync.Mutex
// seqs is the list of parallel sequences being evaluated
// TODO (jmorganca): this can probably be moved into run()
// indicates that data is ready for processing
cond *sync.Cond
// decoding state
lc *llama.Context
// the list of simultaneous sequences being evaluated
seqs []*Sequence
// seqs can have a maximum of parallel entries, which
// is enfoced by seqSem
seqsSem *semaphore.Weighted
// KV cache
cache *InputCache
// does this model require a beginning of sequence token?
bosToken int
// next sequence for prompt processing to avoid starvation
nextSeq int
// is the server ready to process requests?
ready sync.WaitGroup
mu sync.Mutex
cond *sync.Cond
progress float32
status ServerStatus
}
func (s *Server) allNil() bool {
@ -258,18 +273,6 @@ func (s *Server) allNil() bool {
return true
}
func (s *Server) shiftContext(seq *Sequence) {
numLeft := seq.numPast - seq.numKeep
numDiscard := numLeft / 2
slog.Debug("context limit hit - shifting", "limit", s.cache.numCtx, "numPast", seq.numPast,
"numKeep", seq.numKeep, "numLeft", numLeft, "numDiscard", numDiscard)
s.cache.ShiftCacheSlot(seq.cache, seq.numKeep, numDiscard, seq.numPast)
seq.numPast -= numDiscard
}
func flushPending(seq *Sequence) bool {
joined := strings.Join(seq.pendingResponses, "")
seq.pendingResponses = []string{}
@ -305,6 +308,7 @@ func (s *Server) removeSequence(seqIndex int, reason string) {
close(seq.embedding)
seq.cache.InUse = false
s.seqs[seqIndex] = nil
s.seqsSem.Release(1)
}
func (s *Server) run(ctx context.Context) {
@ -335,7 +339,11 @@ func (s *Server) run(ctx context.Context) {
case <-ctx.Done():
return
default:
s.processBatch(tokenBatch, embedBatch)
err := s.processBatch(tokenBatch, embedBatch)
if err != nil {
panic(err)
}
tokenBatch.Clear()
embedBatch.Clear()
}
@ -349,7 +357,7 @@ func (s *Server) run(ctx context.Context) {
// these should instead be handled by the handlers
// it should only be responsible for accepting tokens or embeddings and
// processing batches as fast as possible
func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch) {
func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch) error {
s.mu.Lock()
for s.allNil() {
s.cond.Wait() // Wait until an item is added
@ -369,17 +377,23 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
}
// if past the num predict limit
if seq.numPredict > 0 && seq.numPredicted > seq.numPredict {
if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
s.removeSequence(seqIdx, "limit")
continue
}
if seq.numPast+len(seq.inputs) > s.cache.numCtx {
s.shiftContext(seq)
}
var numInputsProcessed int
for i, input := range seq.inputs {
if len(seq.cache.Inputs)+len(seq.pendingInputs)+1 > s.cache.numCtx {
if len(seq.pendingInputs) == 0 {
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
if err != nil {
return err
}
} else {
break
}
}
embedding := input.embed != nil
// If we don't currently have a batch, use one of the correct type and
@ -403,28 +417,37 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
}
crossAttention = seq.crossAttention
batch.Add(input.token, input.embed, seq.numPast, numInputsProcessed+1 == len(seq.inputs), seq.cache.Id)
seq.numPast++
numInputsProcessed++
}
if numInputsProcessed > 0 {
seq.cache.Inputs = append(seq.cache.Inputs, seq.inputs[:numInputsProcessed]...)
seq.inputs = seq.inputs[numInputsProcessed:]
batch.Add(input.token, input.embed, len(seq.cache.Inputs)+len(seq.pendingInputs), i+1 == len(seq.inputs), seq.cache.Id)
seq.pendingInputs = append(seq.pendingInputs, input)
seq.iBatch = batch.NumTokens() - 1
}
seq.inputs = seq.inputs[len(seq.pendingInputs):]
}
if batch == nil || batch.NumTokens() == 0 {
return
return nil
}
s.lc.SetCrossAttention(crossAttention)
err := s.lc.Decode(batch)
if err != nil {
slog.Error("failed to decode batch", "error", err)
return
if errors.Is(err, llama.ErrKvCacheFull) {
slog.Debug("defragmenting kv cache")
s.cache.lc.KvCacheDefrag()
err = s.lc.Decode(batch)
}
if err != nil {
return fmt.Errorf("failed to decode batch: %w", err)
}
}
if crossAttention {
// synchronize state to ensure the cross attention batch is complete.
// needed specifically for multi-GPU systems otherwise an inflight
// task may be incorrectly invalidated causing a crash
s.lc.Synchronize()
}
for i, seq := range s.seqs {
@ -432,6 +455,12 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
continue
}
// After calling Decode, pending inputs are now in the cache
if len(seq.pendingInputs) > 0 {
seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
seq.pendingInputs = []input{}
}
// don't sample prompt processing
if len(seq.inputs) != 0 {
continue
@ -444,7 +473,7 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
// if done processing the prompt, generate an embedding and return
if seq.embeddingOnly {
embed := s.lc.GetEmbeddingsSeq(i)
embed := s.lc.GetEmbeddingsSeq(seq.cache.Id)
if embed == nil {
embed = s.lc.GetEmbeddingsIth(seq.iBatch)
}
@ -514,6 +543,8 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
s.removeSequence(i, "connection")
}
}
return nil
}
// TODO (jmorganca): use structs from the api package to avoid duplication
@ -627,12 +658,21 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
return
}
// TODO (jmorganca): add to sequence queue instead of
// failing if a slot isn't available
// Ensure there is a place to put the sequence, released when removed from s.seqs
if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
if errors.Is(err, context.Canceled) {
slog.Info("aborting completion request due to client closing the connection")
} else {
slog.Error("Failed to acquire semaphore", "error", err)
}
return
}
s.mu.Lock()
found := false
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, seq.numPast, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
if err != nil {
s.mu.Unlock()
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
@ -643,11 +683,17 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
s.seqs[i] = seq
s.cond.Signal()
found = true
break
}
}
s.mu.Unlock()
if !found {
http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
return
}
for {
select {
case <-r.Context().Done():
@ -711,11 +757,21 @@ func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
return
}
// TODO (jessegross): Wait for a free slot instead of failing and blocking forever
// Ensure there is a place to put the sequence, released when removed from s.seqs
if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
if errors.Is(err, context.Canceled) {
slog.Info("aborting embeddings request due to client closing the connection")
} else {
slog.Error("Failed to acquire semaphore", "error", err)
}
return
}
s.mu.Lock()
found := false
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, seq.numPast, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
if err != nil {
s.mu.Unlock()
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
@ -723,11 +779,17 @@ func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
}
s.seqs[i] = seq
s.cond.Signal()
found = true
break
}
}
s.mu.Unlock()
if !found {
http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
return
}
embedding := <-seq.embedding
if err := json.NewEncoder(w).Encode(&EmbeddingResponse{
@ -771,10 +833,21 @@ func (s *Server) health(w http.ResponseWriter, r *http.Request) {
}
}
type multiLPath []string
func (m *multiLPath) Set(value string) error {
*m = append(*m, value)
return nil
}
func (m *multiLPath) String() string {
return strings.Join(*m, ", ")
}
func (s *Server) loadModel(
params llama.ModelParams,
mpath string,
lpath string,
lpath multiLPath,
ppath string,
kvSize int,
flashAttention bool,
@ -795,17 +868,15 @@ func (s *Server) loadModel(
panic(err)
}
if lpath != "" {
err := s.model.ApplyLoraFromFile(s.lc, lpath, 1.0, threads)
if err != nil {
panic(err)
if lpath.String() != "" {
for _, path := range lpath {
err := s.model.ApplyLoraFromFile(s.lc, path, 1.0, threads)
if err != nil {
panic(err)
}
}
}
if s.model.AddBOSToken() {
s.bosToken = 1
}
if ppath != "" {
var err error
s.image, err = NewImageContext(s.lc, ppath)
@ -814,7 +885,10 @@ func (s *Server) loadModel(
}
}
s.cache = NewInputCache(s.lc, kvSize, s.parallel, multiUserCache)
s.cache, err = NewInputCache(s.lc, kvSize, s.parallel, multiUserCache)
if err != nil {
panic(err)
}
s.status = ServerStatusReady
s.ready.Done()
@ -829,7 +903,6 @@ func main() {
mainGpu := flag.Int("main-gpu", 0, "Main GPU")
flashAttention := flag.Bool("flash-attn", false, "Enable flash attention")
kvSize := flag.Int("ctx-size", 2048, "Context (or KV cache) size")
lpath := flag.String("lora", "", "Path to lora layer file")
port := flag.Int("port", 8080, "Port to expose the server on")
threads := flag.Int("threads", runtime.NumCPU(), "Number of threads to use during generation")
verbose := flag.Bool("verbose", false, "verbose output (default: disabled)")
@ -839,6 +912,9 @@ func main() {
multiUserCache := flag.Bool("multiuser-cache", false, "optimize input cache algorithm for multiple users")
requirements := flag.Bool("requirements", false, "print json requirement information")
var lpaths multiLPath
flag.Var(&lpaths, "lora", "Path to lora layer file (can be specified multiple times)")
flag.Parse()
if *requirements {
printRequirements(os.Stdout)
@ -867,6 +943,7 @@ func main() {
batchSize: *batchSize,
parallel: *parallel,
seqs: make([]*Sequence, *parallel),
seqsSem: semaphore.NewWeighted(int64(*parallel)),
status: ServerStatusLoadingModel,
}
@ -884,7 +961,7 @@ func main() {
params := llama.ModelParams{
NumGpuLayers: *nGpuLayers,
MainGpu: *mainGpu,
UseMmap: !*noMmap && *lpath == "",
UseMmap: !*noMmap && lpaths.String() == "",
UseMlock: *mlock,
TensorSplit: tensorSplitFloats,
Progress: func(progress float32) {
@ -893,7 +970,7 @@ func main() {
}
server.ready.Add(1)
go server.loadModel(params, *mpath, *lpath, *ppath, *kvSize, *flashAttention, *threads, *multiUserCache)
go server.loadModel(params, *mpath, lpaths, *ppath, *kvSize, *flashAttention, *threads, *multiUserCache)
server.cond = sync.NewCond(&server.mu)

View file

@ -32,9 +32,10 @@ const (
fileTypeIQ1_S
fileTypeIQ4_NL
fileTypeIQ3_S
fileTypeIQ3_M
fileTypeIQ2_S
fileTypeIQ4_XS
fileTypeIQ2_M
fileTypeIQ4_XS
fileTypeIQ1_M
fileTypeBF16
@ -93,6 +94,8 @@ func ParseFileType(s string) (fileType, error) {
return fileTypeIQ4_NL, nil
case "IQ3_S":
return fileTypeIQ3_S, nil
case "IQ3_M":
return fileTypeIQ3_M, nil
case "IQ2_S":
return fileTypeIQ2_S, nil
case "IQ4_XS":
@ -160,6 +163,8 @@ func (t fileType) String() string {
return "IQ4_NL"
case fileTypeIQ3_S:
return "IQ3_S"
case fileTypeIQ3_M:
return "IQ3_M"
case fileTypeIQ2_S:
return "IQ2_S"
case fileTypeIQ4_XS:

View file

@ -144,10 +144,6 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter
// Loop through potential servers
finalErr := errors.New("no suitable llama servers found")
if len(adapters) > 1 {
return nil, errors.New("ollama supports only one lora adapter, but multiple were provided")
}
rDir, err := runners.Refresh(build.EmbedFS)
if err != nil {
return nil, err
@ -201,8 +197,9 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter
}
if len(adapters) > 0 {
// TODO: applying multiple adapters is not supported by the llama.cpp server yet
params = append(params, "--lora", adapters[0])
for _, adapter := range adapters {
params = append(params, "--lora", adapter)
}
}
if len(projectors) > 0 {
@ -306,9 +303,9 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter
// Note: we always put the dependency path first
// since this was the exact version we compiled/linked against
if gpus[0].DependencyPath != "" {
if gpus[0].DependencyPath != nil {
// assume gpus from the same library have the same dependency path
libraryPaths = append([]string{gpus[0].DependencyPath}, libraryPaths...)
libraryPaths = append(gpus[0].DependencyPath, libraryPaths...)
}
server := filepath.Join(dir, "ollama_llama_server")
@ -687,7 +684,11 @@ type CompletionResponse struct {
func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error {
if err := s.sem.Acquire(ctx, 1); err != nil {
slog.Error("Failed to acquire semaphore", "error", err)
if errors.Is(err, context.Canceled) {
slog.Info("aborting completion request due to client closing the connection")
} else {
slog.Error("Failed to acquire semaphore", "error", err)
}
return err
}
defer s.sem.Release(1)
@ -838,13 +839,15 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
}
if err := scanner.Err(); err != nil {
if strings.Contains(err.Error(), "unexpected EOF") {
if strings.Contains(err.Error(), "unexpected EOF") || strings.Contains(err.Error(), "forcibly closed") {
s.Close()
msg := ""
var msg string
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
} else {
msg = err.Error()
}
return fmt.Errorf("an unknown error was encountered while running the model %s", msg)
return fmt.Errorf("an error was encountered while running the model: %s", msg)
}
return fmt.Errorf("error reading llm response: %v", err)
@ -863,7 +866,11 @@ type EmbeddingResponse struct {
func (s *llmServer) Embedding(ctx context.Context, input string) ([]float32, error) {
if err := s.sem.Acquire(ctx, 1); err != nil {
slog.Error("Failed to acquire semaphore", "error", err)
if errors.Is(err, context.Canceled) {
slog.Info("aborting embedding request due to client closing the connection")
} else {
slog.Error("Failed to acquire semaphore", "error", err)
}
return nil, err
}
defer s.sem.Release(1)
@ -1092,7 +1099,9 @@ func (s *llmServer) EstimatedTotal() uint64 {
func (s *llmServer) EstimatedVRAMByGPU(gpuID string) uint64 {
for i, gpu := range s.gpus {
if gpu.ID == gpuID {
return s.estimate.GPUSizes[i]
if i < len(s.estimate.GPUSizes) {
return s.estimate.GPUSizes[i]
}
}
}
return 0

View file

@ -27,6 +27,7 @@ var errorPrefixes = []string{
"\"ERR\"",
"error loading model",
"GGML_ASSERT",
"Deepseek2 does not support K-shift",
}
func (w *StatusWriter) Write(b []byte) (int, error) {

View file

@ -140,6 +140,7 @@ type CompletionChunk struct {
type ToolCall struct {
ID string `json:"id"`
Index int `json:"index"`
Type string `json:"type"`
Function struct {
Name string `json:"name"`
@ -200,12 +201,13 @@ func toolCallId() string {
return "call_" + strings.ToLower(string(b))
}
func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
toolCalls := make([]ToolCall, len(r.Message.ToolCalls))
for i, tc := range r.Message.ToolCalls {
func toToolCalls(tc []api.ToolCall) []ToolCall {
toolCalls := make([]ToolCall, len(tc))
for i, tc := range tc {
toolCalls[i].ID = toolCallId()
toolCalls[i].Type = "function"
toolCalls[i].Function.Name = tc.Function.Name
toolCalls[i].Index = tc.Function.Index
args, err := json.Marshal(tc.Function.Arguments)
if err != nil {
@ -215,7 +217,11 @@ func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
toolCalls[i].Function.Arguments = string(args)
}
return toolCalls
}
func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
toolCalls := toToolCalls(r.Message.ToolCalls)
return ChatCompletion{
Id: id,
Object: "chat.completion",
@ -244,6 +250,7 @@ func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
}
func toChunk(id string, r api.ChatResponse) ChatCompletionChunk {
toolCalls := toToolCalls(r.Message.ToolCalls)
return ChatCompletionChunk{
Id: id,
Object: "chat.completion.chunk",
@ -252,7 +259,7 @@ func toChunk(id string, r api.ChatResponse) ChatCompletionChunk {
SystemFingerprint: "fp_ollama",
Choices: []ChunkChoice{{
Index: 0,
Delta: Message{Role: "assistant", Content: r.Message.Content},
Delta: Message{Role: "assistant", Content: r.Message.Content, ToolCalls: toolCalls},
FinishReason: func(reason string) *string {
if len(reason) > 0 {
return &reason
@ -571,7 +578,7 @@ type EmbedWriter struct {
model string
}
func (w *BaseWriter) writeError(code int, data []byte) (int, error) {
func (w *BaseWriter) writeError(data []byte) (int, error) {
var serr api.StatusError
err := json.Unmarshal(data, &serr)
if err != nil {
@ -630,7 +637,7 @@ func (w *ChatWriter) writeResponse(data []byte) (int, error) {
func (w *ChatWriter) Write(data []byte) (int, error) {
code := w.ResponseWriter.Status()
if code != http.StatusOK {
return w.writeError(code, data)
return w.writeError(data)
}
return w.writeResponse(data)
@ -679,7 +686,7 @@ func (w *CompleteWriter) writeResponse(data []byte) (int, error) {
func (w *CompleteWriter) Write(data []byte) (int, error) {
code := w.ResponseWriter.Status()
if code != http.StatusOK {
return w.writeError(code, data)
return w.writeError(data)
}
return w.writeResponse(data)
@ -704,7 +711,7 @@ func (w *ListWriter) writeResponse(data []byte) (int, error) {
func (w *ListWriter) Write(data []byte) (int, error) {
code := w.ResponseWriter.Status()
if code != http.StatusOK {
return w.writeError(code, data)
return w.writeError(data)
}
return w.writeResponse(data)
@ -730,7 +737,7 @@ func (w *RetrieveWriter) writeResponse(data []byte) (int, error) {
func (w *RetrieveWriter) Write(data []byte) (int, error) {
code := w.ResponseWriter.Status()
if code != http.StatusOK {
return w.writeError(code, data)
return w.writeError(data)
}
return w.writeResponse(data)
@ -755,7 +762,7 @@ func (w *EmbedWriter) writeResponse(data []byte) (int, error) {
func (w *EmbedWriter) Write(data []byte) (int, error) {
code := w.ResponseWriter.Status()
if code != http.StatusOK {
return w.writeError(code, data)
return w.writeError(data)
}
return w.writeResponse(data)

View file

@ -195,7 +195,86 @@ func TestChatMiddleware(t *testing.T) {
Stream: &False,
},
},
{
name: "chat handler with streaming tools",
body: `{
"model": "test-model",
"messages": [
{"role": "user", "content": "What's the weather like in Paris?"}
],
"stream": true,
"tools": [{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather",
"parameters": {
"type": "object",
"required": ["location"],
"properties": {
"location": {
"type": "string",
"description": "The city and state"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
}
}
}
}]
}`,
req: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{
Role: "user",
Content: "What's the weather like in Paris?",
},
},
Tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the current weather",
Parameters: struct {
Type string `json:"type"`
Required []string `json:"required"`
Properties map[string]struct {
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
} `json:"properties"`
}{
Type: "object",
Required: []string{"location"},
Properties: map[string]struct {
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
}{
"location": {
Type: "string",
Description: "The city and state",
},
"unit": {
Type: "string",
Enum: []string{"celsius", "fahrenheit"},
},
},
},
},
},
},
Options: map[string]any{
"temperature": 1.0,
"top_p": 1.0,
},
Stream: &True,
},
},
{
name: "chat handler error forwarding",
body: `{

View file

@ -65,9 +65,22 @@ var (
errInvalidCommand = errors.New("command must be one of \"from\", \"license\", \"template\", \"system\", \"adapter\", \"parameter\", or \"message\"")
)
type ParserError struct {
LineNumber int
Msg string
}
func (e *ParserError) Error() string {
if e.LineNumber > 0 {
return fmt.Sprintf("(line %d): %s", e.LineNumber, e.Msg)
}
return e.Msg
}
func ParseFile(r io.Reader) (*File, error) {
var cmd Command
var curr state
var currLine int = 1
var b bytes.Buffer
var role string
@ -84,11 +97,18 @@ func ParseFile(r io.Reader) (*File, error) {
return nil, err
}
if isNewline(r) {
currLine++
}
next, r, err := parseRuneForState(r, curr)
if errors.Is(err, io.ErrUnexpectedEOF) {
return nil, fmt.Errorf("%w: %s", err, b.String())
} else if err != nil {
return nil, err
return nil, &ParserError{
LineNumber: currLine,
Msg: err.Error(),
}
}
// process the state transition, some transitions need to be intercepted and redirected
@ -96,7 +116,10 @@ func ParseFile(r io.Reader) (*File, error) {
switch curr {
case stateName:
if !isValidCommand(b.String()) {
return nil, errInvalidCommand
return nil, &ParserError{
LineNumber: currLine,
Msg: errInvalidCommand.Error(),
}
}
// next state sometimes depends on the current buffer value
@ -117,7 +140,10 @@ func ParseFile(r io.Reader) (*File, error) {
cmd.Name = b.String()
case stateMessage:
if !isValidMessageRole(b.String()) {
return nil, errInvalidMessageRole
return nil, &ParserError{
LineNumber: currLine,
Msg: errInvalidMessageRole.Error(),
}
}
role = b.String()

View file

@ -3,6 +3,7 @@ package parser
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"io"
"strings"
@ -180,8 +181,15 @@ func TestParseFileBadCommand(t *testing.T) {
FROM foo
BADCOMMAND param1 value1
`
parserError := &ParserError{
LineNumber: 3,
Msg: errInvalidCommand.Error(),
}
_, err := ParseFile(strings.NewReader(input))
require.ErrorIs(t, err, errInvalidCommand)
if !errors.As(err, &parserError) {
t.Errorf("unexpected error: expected: %s, actual: %s", parserError.Error(), err.Error())
}
}
func TestParseFileMessages(t *testing.T) {
@ -245,7 +253,10 @@ FROM foo
MESSAGE badguy I'm a bad guy!
`,
nil,
errInvalidMessageRole,
&ParserError{
LineNumber: 3,
Msg: errInvalidMessageRole.Error(),
},
},
{
`
@ -264,13 +275,35 @@ MESSAGE system`,
},
}
for _, c := range cases {
for _, tt := range cases {
t.Run("", func(t *testing.T) {
modelfile, err := ParseFile(strings.NewReader(c.input))
require.ErrorIs(t, err, c.err)
modelfile, err := ParseFile(strings.NewReader(tt.input))
if modelfile != nil {
assert.Equal(t, c.expected, modelfile.Commands)
assert.Equal(t, tt.expected, modelfile.Commands)
}
if tt.err == nil {
if err != nil {
t.Fatalf("expected no error, but got %v", err)
}
return
}
switch tt.err.(type) {
case *ParserError:
var pErr *ParserError
if errors.As(err, &pErr) {
// got the correct type of error
return
}
}
if errors.Is(err, tt.err) {
return
}
t.Fatalf("unexpected error: expected: %v, actual: %v", tt.err, err)
})
}
}

View file

@ -5,7 +5,6 @@ export GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=$V
# TODO - consider `docker buildx ls --format=json` to autodiscover platform capability
PLATFORM=${PLATFORM:-"linux/arm64,linux/amd64"}
DOCKER_ORG=${DOCKER_ORG:-"ollama"}
RELEASE_IMAGE_REPO=${RELEASE_IMAGE_REPO:-"${DOCKER_ORG}/release"}
FINAL_IMAGE_REPO=${FINAL_IMAGE_REPO:-"${DOCKER_ORG}/ollama"}
OLLAMA_COMMON_BUILD_ARGS="--build-arg=VERSION \
--build-arg=GOFLAGS \

View file

@ -4,9 +4,12 @@
set -eu
red="$( (/usr/bin/tput bold || :; /usr/bin/tput setaf 1 || :) 2>&-)"
plain="$( (/usr/bin/tput sgr0 || :) 2>&-)"
status() { echo ">>> $*" >&2; }
error() { echo "ERROR $*"; exit 1; }
warning() { echo "WARNING: $*"; }
error() { echo "${red}ERROR:${plain} $*"; exit 1; }
warning() { echo "${red}WARNING:${plain} $*"; }
TEMP_DIR=$(mktemp -d)
cleanup() { rm -rf $TEMP_DIR; }
@ -93,6 +96,22 @@ else
fi
fi
# Check for NVIDIA JetPack systems with additional downloads
if [ -f /etc/nv_tegra_release ] ; then
if grep R36 /etc/nv_tegra_release > /dev/null ; then
status "Downloading JetPack 6 components"
curl --fail --show-error --location --progress-bar \
"https://ollama.com/download/ollama-linux-${ARCH}-jetpack6.tgz${VER_PARAM}" | \
$SUDO tar -xzf - -C "$OLLAMA_INSTALL_DIR"
elif grep R35 /etc/nv_tegra_release > /dev/null ; then
status "Downloading JetPack 5 components"
curl --fail --show-error --location --progress-bar \
"https://ollama.com/download/ollama-linux-${ARCH}-jetpack5.tgz${VER_PARAM}" | \
$SUDO tar -xzf - -C "$OLLAMA_INSTALL_DIR"
else
warning "Unsupported JetPack version detected. GPU may not be supported"
fi
fi
install_success() {
status 'The Ollama API is now available at 127.0.0.1:11434.'
@ -146,6 +165,12 @@ EOF
start_service() { $SUDO systemctl restart ollama; }
trap start_service EXIT
;;
*)
warning "systemd is not running"
if [ "$IS_WSL2" = true ]; then
warning "see https://learn.microsoft.com/en-us/windows/wsl/systemd#how-to-enable-systemd to enable it"
fi
;;
esac
}
@ -163,6 +188,13 @@ if [ "$IS_WSL2" = true ]; then
exit 0
fi
# Don't attempt to install drivers on Jetson systems
if [ -f /etc/nv_tegra_release ] ; then
status "NVIDIA JetPack ready."
install_success
exit 0
fi
# Install GPU dependencies on Linux
if ! available lspci && ! available lshw; then
warning "Unable to detect NVIDIA/AMD GPU. Install lspci or lshw to automatically detect and install GPU dependencies."

View file

@ -5,7 +5,6 @@ import (
"cmp"
"context"
"crypto/sha256"
"encoding/base64"
"encoding/hex"
"encoding/json"
"errors"
@ -13,6 +12,7 @@ import (
"io"
"log"
"log/slog"
"net"
"net/http"
"net/url"
"os"
@ -23,14 +23,12 @@ import (
"strings"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/auth"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/llama"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/types/errtypes"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/version"
)
@ -984,37 +982,7 @@ func GetSHA256Digest(r io.Reader) (string, int64) {
var errUnauthorized = errors.New("unauthorized: access denied")
// getTokenSubject returns the subject of a JWT token, it does not validate the token
func getTokenSubject(token string) string {
parts := strings.Split(token, ".")
if len(parts) != 3 {
return ""
}
payload := parts[1]
payloadBytes, err := base64.RawURLEncoding.DecodeString(payload)
if err != nil {
slog.Error(fmt.Sprintf("failed to decode jwt payload: %v", err))
return ""
}
var payloadMap map[string]interface{}
if err := json.Unmarshal(payloadBytes, &payloadMap); err != nil {
slog.Error(fmt.Sprintf("failed to unmarshal payload JSON: %v", err))
return ""
}
sub, ok := payloadMap["sub"]
if !ok {
slog.Error("jwt does not contain 'sub' field")
return ""
}
return fmt.Sprintf("%s", sub)
}
func makeRequestWithRetry(ctx context.Context, method string, requestURL *url.URL, headers http.Header, body io.ReadSeeker, regOpts *registryOptions) (*http.Response, error) {
anonymous := true // access will default to anonymous if no user is found associated with the public key
for range 2 {
resp, err := makeRequest(ctx, method, requestURL, headers, body, regOpts)
if err != nil {
@ -1035,7 +1003,6 @@ func makeRequestWithRetry(ctx context.Context, method string, requestURL *url.UR
if err != nil {
return nil, err
}
anonymous = getTokenSubject(token) == "anonymous"
regOpts.Token = token
if body != nil {
_, err = body.Seek(0, io.SeekStart)
@ -1058,19 +1025,24 @@ func makeRequestWithRetry(ctx context.Context, method string, requestURL *url.UR
}
}
if anonymous {
// no user is associated with the public key, and the request requires non-anonymous access
pubKey, nestedErr := auth.GetPublicKey()
if nestedErr != nil {
slog.Error(fmt.Sprintf("couldn't get public key: %v", nestedErr))
return nil, errUnauthorized
}
return nil, &errtypes.UnknownOllamaKey{Key: pubKey}
}
// user is associated with the public key, but is not authorized to make the request
return nil, errUnauthorized
}
// testMakeRequestDialContext specifies the dial function for the http client in
// makeRequest. It can be used to resolve hosts in model names to local
// addresses for testing. For example, the model name ("example.com/my/model")
// can be directed to push/pull from "127.0.0.1:1234".
//
// This is not safe to set across goroutines. It should be set in
// the main test goroutine, and not by tests marked to run in parallel with
// t.Parallel().
//
// It should be cleared after use, otherwise it will affect other tests.
//
// Ideally we would have some set this up the stack, but the code is not
// structured in a way that makes this easy, so this will have to do for now.
var testMakeRequestDialContext func(ctx context.Context, network, addr string) (net.Conn, error)
func makeRequest(ctx context.Context, method string, requestURL *url.URL, headers http.Header, body io.Reader, regOpts *registryOptions) (*http.Response, error) {
if requestURL.Scheme != "http" && regOpts != nil && regOpts.Insecure {
requestURL.Scheme = "http"
@ -1104,14 +1076,15 @@ func makeRequest(ctx context.Context, method string, requestURL *url.URL, header
req.ContentLength = contentLength
}
resp, err := (&http.Client{
c := &http.Client{
CheckRedirect: regOpts.CheckRedirect,
}).Do(req)
if err != nil {
return nil, err
}
return resp, nil
if testMakeRequestDialContext != nil {
tr := http.DefaultTransport.(*http.Transport).Clone()
tr.DialContext = testMakeRequestDialContext
c.Transport = tr
}
return c.Do(req)
}
func getValue(header, key string) string {

View file

@ -39,6 +39,7 @@ func TestExecuteWithTools(t *testing.T) {
{"mistral", `[TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]
The temperature in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.`, true},
{"mistral", `[TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"To }]`, false},
{"mistral", `I'm not aware of that information. However, I can suggest searching for the weather using the "get_current_weather" function:
[{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]`, true},

View file

@ -32,7 +32,7 @@ func TestChatPrompt(t *testing.T) {
mllamaModel := Model{Template: tmpl, ProjectorPaths: []string{"vision"}, Config: ConfigV2{ModelFamilies: []string{"mllama"}}}
createImg := func(width, height int) ([]byte, error) {
img := image.NewRGBA(image.Rect(0, 0, 5, 5))
img := image.NewRGBA(image.Rect(0, 0, width, height))
var buf bytes.Buffer
if err := png.Encode(&buf, img); err != nil {

View file

@ -507,7 +507,7 @@ func (s *Server) EmbeddingsHandler(c *gin.Context) {
embedding, err := r.Embedding(c.Request.Context(), req.Prompt)
if err != nil {
slog.Info(fmt.Sprintf("embedding generation failed: %v", err))
c.JSON(http.StatusInternalServerError, gin.H{"error": "failed to generate embedding"})
c.JSON(http.StatusInternalServerError, gin.H{"error": fmt.Errorf("failed to generate embedding: %v", err)})
return
}
@ -540,7 +540,8 @@ func (s *Server) PullHandler(c *gin.Context) {
return
}
if err := checkNameExists(name); err != nil {
name, err = getExistingName(name)
if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": err.Error()})
return
}
@ -621,19 +622,20 @@ func (s *Server) PushHandler(c *gin.Context) {
streamResponse(c, ch)
}
func checkNameExists(name model.Name) error {
names, err := Manifests(true)
// getExistingName returns the original, on disk name if the input name is a
// case-insensitive match, otherwise it returns the input name.
func getExistingName(n model.Name) (model.Name, error) {
var zero model.Name
existing, err := Manifests(true)
if err != nil {
return err
return zero, err
}
for n := range names {
if strings.EqualFold(n.Filepath(), name.Filepath()) && n != name {
return errors.New("a model with that name already exists")
for e := range existing {
if n.EqualFold(e) {
return e, nil
}
}
return nil
return n, nil
}
func (s *Server) CreateHandler(c *gin.Context) {
@ -652,7 +654,8 @@ func (s *Server) CreateHandler(c *gin.Context) {
return
}
if err := checkNameExists(name); err != nil {
name, err := getExistingName(name)
if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": err.Error()})
return
}
@ -958,14 +961,19 @@ func (s *Server) CopyHandler(c *gin.Context) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("source %q is invalid", r.Source)})
return
}
src, err := getExistingName(src)
if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": err.Error()})
return
}
dst := model.ParseName(r.Destination)
if !dst.IsValid() {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("destination %q is invalid", r.Destination)})
return
}
if err := checkNameExists(dst); err != nil {
dst, err = getExistingName(dst)
if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": err.Error()})
return
}
@ -1133,7 +1141,7 @@ func (s *Server) GenerateRoutes() http.Handler {
config.AllowWildcard = true
config.AllowBrowserExtensions = true
config.AllowHeaders = []string{"Authorization", "Content-Type", "User-Agent", "Accept", "X-Requested-With"}
openAIProperties := []string{"lang", "package-version", "os", "arch", "runtime", "runtime-version", "async"}
openAIProperties := []string{"lang", "package-version", "os", "arch", "retry-count", "runtime", "runtime-version", "async"}
for _, prop := range openAIProperties {
config.AllowHeaders = append(config.AllowHeaders, "x-stainless-"+prop)
}
@ -1450,6 +1458,7 @@ func (s *Server) ChatHandler(c *gin.Context) {
prompt, images, err := chatPrompt(c.Request.Context(), m, r.Tokenize, opts, msgs, req.Tools)
if err != nil {
slog.Error("chat prompt error", "error", err)
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
@ -1459,6 +1468,8 @@ func (s *Server) ChatHandler(c *gin.Context) {
ch := make(chan any)
go func() {
defer close(ch)
var sb strings.Builder
var toolCallIndex int = 0
if err := r.Completion(c.Request.Context(), llm.CompletionRequest{
Prompt: prompt,
Images: images,
@ -1484,7 +1495,37 @@ func (s *Server) ChatHandler(c *gin.Context) {
res.LoadDuration = checkpointLoaded.Sub(checkpointStart)
}
ch <- res
// TODO: tool call checking and filtering should be moved outside of this callback once streaming
// however this was a simple change for now without reworking streaming logic of this (and other)
// handlers
if req.Stream != nil && !*req.Stream || len(req.Tools) == 0 {
ch <- res
return
}
// Streaming tool calls:
// If tools are recognized, use a flag to track the sending of a tool downstream
// This ensures that content is cleared from the message on the last chunk sent
sb.WriteString(r.Content)
if toolCalls, ok := m.parseToolCalls(sb.String()); ok {
res.Message.ToolCalls = toolCalls
for i := range toolCalls {
toolCalls[i].Function.Index = toolCallIndex
toolCallIndex++
}
res.Message.Content = ""
sb.Reset()
ch <- res
return
}
if r.Done {
// Send any remaining content if no tool calls were detected
if toolCallIndex == 0 {
res.Message.Content = sb.String()
}
ch <- res
}
}); err != nil {
ch <- gin.H{"error": err.Error()}
}

View file

@ -8,6 +8,7 @@ import (
"io"
"net/http"
"strings"
"sync"
"testing"
"time"
@ -25,10 +26,14 @@ type mockRunner struct {
// CompletionRequest is only valid until the next call to Completion
llm.CompletionRequest
llm.CompletionResponse
CompletionFn func(context.Context, llm.CompletionRequest, func(llm.CompletionResponse)) error
}
func (m *mockRunner) Completion(_ context.Context, r llm.CompletionRequest, fn func(r llm.CompletionResponse)) error {
func (m *mockRunner) Completion(ctx context.Context, r llm.CompletionRequest, fn func(r llm.CompletionResponse)) error {
m.CompletionRequest = r
if m.CompletionFn != nil {
return m.CompletionFn(ctx, r, fn)
}
fn(m.CompletionResponse)
return nil
}
@ -88,9 +93,14 @@ func TestGenerateChat(t *testing.T) {
Model: "test",
Modelfile: fmt.Sprintf(`FROM %s
TEMPLATE """
{{- if .System }}System: {{ .System }} {{ end }}
{{- if .Prompt }}User: {{ .Prompt }} {{ end }}
{{- if .Response }}Assistant: {{ .Response }} {{ end }}"""
{{- if .Tools }}
{{ .Tools }}
{{ end }}
{{- range .Messages }}
{{- .Role }}: {{ .Content }}
{{- range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
{{- end }}
{{ end }}"""
`, createBinFile(t, llm.KV{
"general.architecture": "llama",
"llama.block_count": uint32(1),
@ -263,7 +273,7 @@ func TestGenerateChat(t *testing.T) {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "User: Hello! "); diff != "" {
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "user: Hello!\n"); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
@ -292,7 +302,7 @@ func TestGenerateChat(t *testing.T) {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "System: You are a helpful assistant. User: Hello! "); diff != "" {
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "system: You are a helpful assistant.\nuser: Hello!\n"); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
@ -314,7 +324,7 @@ func TestGenerateChat(t *testing.T) {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "System: You can perform magic tricks. User: Hello! "); diff != "" {
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "system: You can perform magic tricks.\nuser: Hello!\n"); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
@ -337,12 +347,242 @@ func TestGenerateChat(t *testing.T) {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "System: You are a helpful assistant. User: Hello! Assistant: I can help you with that. System: You can perform magic tricks. User: Help me write tests. "); diff != "" {
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "system: You are a helpful assistant.\nuser: Hello!\nassistant: I can help you with that.\nsystem: You can perform magic tricks.\nuser: Help me write tests.\n"); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
checkChatResponse(t, w.Body, "test-system", "Abra kadabra!")
})
t.Run("messages with tools (non-streaming)", func(t *testing.T) {
if w.Code != http.StatusOK {
t.Fatalf("failed to create test-system model: %d", w.Code)
}
tools := []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the current weather",
Parameters: struct {
Type string `json:"type"`
Required []string `json:"required"`
Properties map[string]struct {
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
} `json:"properties"`
}{
Type: "object",
Required: []string{"location"},
Properties: map[string]struct {
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
}{
"location": {
Type: "string",
Description: "The city and state",
},
"unit": {
Type: "string",
Enum: []string{"celsius", "fahrenheit"},
},
},
},
},
},
}
mock.CompletionResponse = llm.CompletionResponse{
Content: `{"name":"get_weather","arguments":{"location":"Seattle, WA","unit":"celsius"}}`,
Done: true,
DoneReason: "done",
PromptEvalCount: 1,
PromptEvalDuration: 1,
EvalCount: 1,
EvalDuration: 1,
}
streamRequest := true
w := createRequest(t, s.ChatHandler, api.ChatRequest{
Model: "test-system",
Messages: []api.Message{
{Role: "user", Content: "What's the weather in Seattle?"},
},
Tools: tools,
Stream: &streamRequest,
})
if w.Code != http.StatusOK {
var errResp struct {
Error string `json:"error"`
}
if err := json.NewDecoder(w.Body).Decode(&errResp); err != nil {
t.Logf("Failed to decode error response: %v", err)
} else {
t.Logf("Error response: %s", errResp.Error)
}
}
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
var resp api.ChatResponse
if err := json.NewDecoder(w.Body).Decode(&resp); err != nil {
t.Fatal(err)
}
if resp.Message.ToolCalls == nil {
t.Error("expected tool calls, got nil")
}
expectedToolCall := api.ToolCall{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Seattle, WA",
"unit": "celsius",
},
},
}
if diff := cmp.Diff(resp.Message.ToolCalls[0], expectedToolCall); diff != "" {
t.Errorf("tool call mismatch (-got +want):\n%s", diff)
}
})
t.Run("messages with tools (streaming)", func(t *testing.T) {
tools := []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the current weather",
Parameters: struct {
Type string `json:"type"`
Required []string `json:"required"`
Properties map[string]struct {
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
} `json:"properties"`
}{
Type: "object",
Required: []string{"location"},
Properties: map[string]struct {
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
}{
"location": {
Type: "string",
Description: "The city and state",
},
"unit": {
Type: "string",
Enum: []string{"celsius", "fahrenheit"},
},
},
},
},
},
}
// Simulate streaming response with multiple chunks
var wg sync.WaitGroup
wg.Add(1)
mock.CompletionFn = func(ctx context.Context, r llm.CompletionRequest, fn func(r llm.CompletionResponse)) error {
defer wg.Done()
// Send chunks with small delays to simulate streaming
responses := []llm.CompletionResponse{
{
Content: `{"name":"get_`,
Done: false,
PromptEvalCount: 1,
PromptEvalDuration: 1,
},
{
Content: `weather","arguments":{"location":"Seattle`,
Done: false,
PromptEvalCount: 2,
PromptEvalDuration: 1,
},
{
Content: `, WA","unit":"celsius"}}`,
Done: true,
DoneReason: "tool_call",
PromptEvalCount: 3,
PromptEvalDuration: 1,
},
}
for _, resp := range responses {
select {
case <-ctx.Done():
return ctx.Err()
default:
fn(resp)
time.Sleep(10 * time.Millisecond) // Small delay between chunks
}
}
return nil
}
w := createRequest(t, s.ChatHandler, api.ChatRequest{
Model: "test-system",
Messages: []api.Message{
{Role: "user", Content: "What's the weather in Seattle?"},
},
Tools: tools,
Stream: &stream,
})
wg.Wait()
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
// Read and validate the streamed responses
decoder := json.NewDecoder(w.Body)
var finalToolCall api.ToolCall
for {
var resp api.ChatResponse
if err := decoder.Decode(&resp); err == io.EOF {
break
} else if err != nil {
t.Fatal(err)
}
if resp.Done {
if len(resp.Message.ToolCalls) != 1 {
t.Errorf("expected 1 tool call in final response, got %d", len(resp.Message.ToolCalls))
}
finalToolCall = resp.Message.ToolCalls[0]
}
}
expectedToolCall := api.ToolCall{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Seattle, WA",
"unit": "celsius",
},
},
}
if diff := cmp.Diff(finalToolCall, expectedToolCall); diff != "" {
t.Errorf("final tool call mismatch (-got +want):\n%s", diff)
}
})
}
func TestGenerate(t *testing.T) {

View file

@ -7,13 +7,18 @@ import (
"encoding/json"
"fmt"
"io"
"io/fs"
"math"
"math/rand/v2"
"net"
"net/http"
"net/http/httptest"
"os"
"path/filepath"
"sort"
"strings"
"testing"
"unicode"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llm"
@ -473,83 +478,129 @@ func Test_Routes(t *testing.T) {
}
}
func TestCase(t *testing.T) {
func casingShuffle(s string) string {
rr := []rune(s)
for i := range rr {
if rand.N(2) == 0 {
rr[i] = unicode.ToUpper(rr[i])
} else {
rr[i] = unicode.ToLower(rr[i])
}
}
return string(rr)
}
func TestManifestCaseSensitivity(t *testing.T) {
t.Setenv("OLLAMA_MODELS", t.TempDir())
cases := []string{
"mistral",
"llama3:latest",
"library/phi3:q4_0",
"registry.ollama.ai/library/gemma:q5_K_M",
// TODO: host:port currently fails on windows (#4107)
// "localhost:5000/alice/bob:latest",
r := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
w.WriteHeader(http.StatusOK)
io.WriteString(w, `{}`) //nolint:errcheck
}))
defer r.Close()
nameUsed := make(map[string]bool)
name := func() string {
const fqmn = "example/namespace/model:tag"
for {
v := casingShuffle(fqmn)
if nameUsed[v] {
continue
}
nameUsed[v] = true
return v
}
}
wantStableName := name()
// checkManifestList tests that there is strictly one manifest in the
// models directory, and that the manifest is for the model under test.
checkManifestList := func() {
t.Helper()
mandir := filepath.Join(os.Getenv("OLLAMA_MODELS"), "manifests/")
var entries []string
t.Logf("dir entries:")
fsys := os.DirFS(mandir)
err := fs.WalkDir(fsys, ".", func(path string, info fs.DirEntry, err error) error {
if err != nil {
return err
}
t.Logf(" %s", fs.FormatDirEntry(info))
if info.IsDir() {
return nil
}
path = strings.TrimPrefix(path, mandir)
entries = append(entries, path)
return nil
})
if err != nil {
t.Fatalf("failed to walk directory: %v", err)
}
if len(entries) != 1 {
t.Errorf("len(got) = %d, want 1", len(entries))
return // do not use Fatal so following steps run
}
g := entries[0] // raw path
g = filepath.ToSlash(g)
w := model.ParseName(wantStableName).Filepath()
w = filepath.ToSlash(w)
if g != w {
t.Errorf("\ngot: %s\nwant: %s", g, w)
}
}
checkOK := func(w *httptest.ResponseRecorder) {
t.Helper()
if w.Code != http.StatusOK {
t.Errorf("code = %d, want 200", w.Code)
t.Logf("body: %s", w.Body.String())
}
}
var s Server
for _, tt := range cases {
t.Run(tt, func(t *testing.T) {
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Name: tt,
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, nil, nil)),
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200 got %d", w.Code)
}
expect, err := json.Marshal(map[string]string{"error": "a model with that name already exists"})
if err != nil {
t.Fatal(err)
}
t.Run("create", func(t *testing.T) {
w = createRequest(t, s.CreateHandler, api.CreateRequest{
Name: strings.ToUpper(tt),
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, nil, nil)),
Stream: &stream,
})
if w.Code != http.StatusBadRequest {
t.Fatalf("expected status 500 got %d", w.Code)
}
if !bytes.Equal(w.Body.Bytes(), expect) {
t.Fatalf("expected error %s got %s", expect, w.Body.String())
}
})
t.Run("pull", func(t *testing.T) {
w := createRequest(t, s.PullHandler, api.PullRequest{
Name: strings.ToUpper(tt),
Stream: &stream,
})
if w.Code != http.StatusBadRequest {
t.Fatalf("expected status 500 got %d", w.Code)
}
if !bytes.Equal(w.Body.Bytes(), expect) {
t.Fatalf("expected error %s got %s", expect, w.Body.String())
}
})
t.Run("copy", func(t *testing.T) {
w := createRequest(t, s.CopyHandler, api.CopyRequest{
Source: tt,
Destination: strings.ToUpper(tt),
})
if w.Code != http.StatusBadRequest {
t.Fatalf("expected status 500 got %d", w.Code)
}
if !bytes.Equal(w.Body.Bytes(), expect) {
t.Fatalf("expected error %s got %s", expect, w.Body.String())
}
})
})
testMakeRequestDialContext = func(ctx context.Context, _, _ string) (net.Conn, error) {
var d net.Dialer
return d.DialContext(ctx, "tcp", r.Listener.Addr().String())
}
t.Cleanup(func() { testMakeRequestDialContext = nil })
t.Logf("creating")
checkOK(createRequest(t, s.CreateHandler, api.CreateRequest{
// Start with the stable name, and later use a case-shuffled
// version.
Name: wantStableName,
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, nil, nil)),
Stream: &stream,
}))
checkManifestList()
t.Logf("creating (again)")
checkOK(createRequest(t, s.CreateHandler, api.CreateRequest{
Name: name(),
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, nil, nil)),
Stream: &stream,
}))
checkManifestList()
t.Logf("pulling")
checkOK(createRequest(t, s.PullHandler, api.PullRequest{
Name: name(),
Stream: &stream,
Insecure: true,
}))
checkManifestList()
t.Logf("copying")
checkOK(createRequest(t, s.CopyHandler, api.CopyRequest{
Source: name(),
Destination: name(),
}))
checkManifestList()
}
func TestShow(t *testing.T) {

View file

@ -298,6 +298,13 @@ func (n Name) LogValue() slog.Value {
return slog.StringValue(n.String())
}
func (n Name) EqualFold(o Name) bool {
return strings.EqualFold(n.Host, o.Host) &&
strings.EqualFold(n.Namespace, o.Namespace) &&
strings.EqualFold(n.Model, o.Model) &&
strings.EqualFold(n.Tag, o.Tag)
}
func isValidLen(kind partKind, s string) bool {
switch kind {
case kindHost: