ollama/llama/runner/runner.go
2024-11-27 11:00:04 -08:00

1003 lines
26 KiB
Go

package main
import (
"context"
"encoding/json"
"errors"
"flag"
"fmt"
"log"
"log/slog"
"net"
"net/http"
"os"
"path/filepath"
"regexp"
"runtime"
"strconv"
"strings"
"sync"
"time"
"unicode/utf8"
"golang.org/x/sync/semaphore"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llama"
)
// input is an element of the prompt to process, either
// a token or an image embedding (generated from a vision projector)
type input struct {
token int
// embed is an image embedding
embed []float32
}
type Sequence struct {
// batch index
iBatch int
// number of tokens predicted so far
numPredicted int
// prompt inputs left to evaluate
inputs []input
// inputs that have been added to a batch but not yet submitted to Decode
pendingInputs []input
// tokens that have been generated but not returned yet (e.g. for stop sequences)
pendingResponses []string
// input cache being used by this sequence
cache *InputCacheSlot
// does this sequence require cross-attention layers to be processed? - if we have seen
// an image for certain multi-modal models
crossAttention bool
// channel to send responses over
responses chan string
// channel to stop decoding (such as if the remote connection is closed)
quit chan bool
// number of tokens to predict
numPredict int
samplingCtx *llama.SamplingContext
// channel to send back the embedding if embedding only
embedding chan []float32
// stop sequences
stop []string
// number of inputs to keep at the beginning when shifting context window
numKeep int
// true if an embedding are to be returned instead of text generation
embeddingOnly bool
doneReason string
// Metrics
startProcessingTime time.Time
startGenerationTime time.Time
numDecoded int
numPromptInputs int
}
type NewSequenceParams struct {
numPredict int
stop []string
numKeep int
samplingParams *llama.SamplingParams
embedding bool
}
func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequenceParams) (*Sequence, error) {
s.ready.Wait()
startTime := time.Now()
inputs, err := s.inputs(prompt, images)
if err != nil {
return nil, fmt.Errorf("failed to process inputs: %w", err)
} else if len(inputs) == 0 {
return nil, errors.New("no input provided")
}
if params.numKeep < 0 {
params.numKeep = len(inputs)
}
if s.model.AddBOSToken() {
params.numKeep += 1
}
// Ensure that at least 1 input can be discarded during shift
params.numKeep = min(params.numKeep, s.cache.numCtx-1)
if len(inputs) > s.cache.numCtx {
discard := len(inputs) - s.cache.numCtx
newInputs := inputs[:params.numKeep]
newInputs = append(newInputs, inputs[params.numKeep+discard:]...)
slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
inputs = newInputs
}
var sc *llama.SamplingContext
if params.samplingParams != nil {
sc, err = llama.NewSamplingContext(s.model, *params.samplingParams)
if err != nil {
return nil, err
}
for _, input := range inputs {
if input.embed == nil {
sc.Accept(input.token, false)
}
}
}
return &Sequence{
inputs: inputs,
numPromptInputs: len(inputs),
startProcessingTime: startTime,
numPredict: params.numPredict,
pendingResponses: make([]string, 0),
responses: make(chan string, 100),
quit: make(chan bool, 1),
embedding: make(chan []float32, 1),
samplingCtx: sc,
embeddingOnly: params.embedding,
stop: params.stop,
numKeep: params.numKeep,
}, nil
}
// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
// generating image embeddings for each image
func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
var inputs []input
var parts []string
var matches [][]string
if s.image != nil {
re := regexp.MustCompile(`\[img-(\d+)\]`)
parts = re.Split(prompt, -1)
matches = re.FindAllStringSubmatch(prompt, -1)
} else {
parts = []string{prompt}
}
for i, part := range parts {
// text - tokenize
tokens, err := s.lc.Model().Tokenize(part, i == 0, true)
if err != nil {
return nil, err
}
for _, t := range tokens {
inputs = append(inputs, input{token: t})
}
// image - generate image embedding
if i < len(matches) {
n, _ := strconv.Atoi(matches[i][1])
imageIndex := -1
for j := range images {
if images[j].ID == n {
imageIndex = j
break
}
}
if imageIndex < 0 {
return nil, fmt.Errorf("invalid image index: %d", n)
}
embed, err := s.image.NewEmbed(s.lc, images[imageIndex].Data, images[imageIndex].AspectRatioID)
if err != nil {
return nil, err
}
for _, e := range embed {
inputs = append(inputs, input{embed: e})
}
}
}
return inputs, nil
}
type Server struct {
// is the server ready to process requests?
// protects access to model and image
ready sync.WaitGroup
// loaded model
model *llama.Model
// image model context for multi-modal models
image *ImageContext
// status for external health reporting - loading, ready to serve, etc.
status ServerStatus
// current progress on loading the model
progress float32
// number of simultaneous requests to handle
parallel int
// maximum number of elements in a batch (per sequence)
// TODO (jmorganca): make this n_batch
batchSize int
// protects access to everything below this line
// this is context state needed for decoding
mu sync.Mutex
// indicates that data is ready for processing
cond *sync.Cond
// decoding state
lc *llama.Context
// the list of simultaneous sequences being evaluated
seqs []*Sequence
// seqs can have a maximum of parallel entries, which
// is enfoced by seqSem
seqsSem *semaphore.Weighted
// KV cache
cache *InputCache
// next sequence for prompt processing to avoid starvation
nextSeq int
}
func (s *Server) allNil() bool {
for _, item := range s.seqs {
if item != nil {
return false
}
}
return true
}
func flushPending(seq *Sequence) bool {
joined := strings.Join(seq.pendingResponses, "")
seq.pendingResponses = []string{}
// Check if there are any partial UTF-8 characters remaining.
// We already check and queue as we are generating but some may
// still make it here:
// - Sequence is ending, e.g. generation limit has been hit
// - Invalid characters in the middle of a string
// This is a stricter check to ensure we never output invalid Unicode.
for !utf8.ValidString(joined) {
joined = joined[:len(joined)-1]
}
if len(joined) == 0 {
return true
}
select {
case seq.responses <- joined:
return true
case <-seq.quit:
return false
}
}
func (s *Server) removeSequence(seqIndex int, reason string) {
seq := s.seqs[seqIndex]
flushPending(seq)
seq.doneReason = reason
close(seq.responses)
close(seq.embedding)
seq.cache.InUse = false
s.seqs[seqIndex] = nil
s.seqsSem.Release(1)
}
func (s *Server) run(ctx context.Context) {
s.ready.Wait()
// Logically these batches are used only within the context of processBatch
// but it is better for performance to allocate them once here
tokenBatch, err := llama.NewBatch(s.batchSize, len(s.seqs), 0)
if err != nil {
panic(err)
}
defer tokenBatch.Free()
var embedBatch *llama.Batch
embedBatchSize := s.image.BatchSize(s.batchSize)
if embedBatchSize != 0 {
embedBatch, err = llama.NewBatch(embedBatchSize, len(s.seqs), s.image.EmbedSize(s.lc))
if err != nil {
panic(err)
}
defer embedBatch.Free()
} else {
embedBatch = &llama.Batch{}
}
for {
select {
case <-ctx.Done():
return
default:
err := s.processBatch(tokenBatch, embedBatch)
if err != nil {
panic(err)
}
tokenBatch.Clear()
embedBatch.Clear()
}
}
}
// TODO (jmorganca): processBatch should be simplified, removing:
// * sampling
// * stop token checking
// * metrics
// these should instead be handled by the handlers
// it should only be responsible for accepting tokens or embeddings and
// processing batches as fast as possible
func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch) error {
s.mu.Lock()
for s.allNil() {
s.cond.Wait() // Wait until an item is added
}
defer s.mu.Unlock()
var batch *llama.Batch
crossAttention := false
seqIdx := s.nextSeq - 1
for range s.seqs {
seqIdx = (seqIdx + 1) % len(s.seqs)
seq := s.seqs[seqIdx]
if seq == nil {
continue
}
// if past the num predict limit
if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
s.removeSequence(seqIdx, "limit")
continue
}
for i, input := range seq.inputs {
if len(seq.cache.Inputs)+len(seq.pendingInputs)+1 > s.cache.numCtx {
if len(seq.pendingInputs) == 0 {
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
if err != nil {
return err
}
} else {
break
}
}
embedding := input.embed != nil
// If we don't currently have a batch, use one of the correct type and
// fill it up as much as possible across all sequences. If we encounter an
// input of the opppsite type, stop for that sequence but then pick up from
// there for the next batch, ensuring that we alternate types
if batch == nil {
if !embedding {
batch = tokenBatch
} else {
batch = embedBatch
seq.crossAttention = s.image.NeedCrossAttention(input)
}
} else if embedding != batch.IsEmbedding() || crossAttention != seq.crossAttention {
s.nextSeq = seqIdx
break
}
if i >= batch.Size() {
break
}
crossAttention = seq.crossAttention
batch.Add(input.token, input.embed, len(seq.cache.Inputs)+len(seq.pendingInputs), i+1 == len(seq.inputs), seq.cache.Id)
seq.pendingInputs = append(seq.pendingInputs, input)
seq.iBatch = batch.NumTokens() - 1
}
seq.inputs = seq.inputs[len(seq.pendingInputs):]
}
if batch == nil || batch.NumTokens() == 0 {
return nil
}
s.lc.SetCrossAttention(crossAttention)
err := s.lc.Decode(batch)
if err != nil {
if errors.Is(err, llama.ErrKvCacheFull) {
slog.Debug("defragmenting kv cache")
s.cache.lc.KvCacheDefrag()
err = s.lc.Decode(batch)
}
if err != nil {
return fmt.Errorf("failed to decode batch: %w", err)
}
}
if crossAttention {
// synchronize state to ensure the cross attention batch is complete.
// needed specifically for multi-GPU systems otherwise an inflight
// task may be incorrectly invalidated causing a crash
s.lc.Synchronize()
}
for i, seq := range s.seqs {
if seq == nil {
continue
}
// After calling Decode, pending inputs are now in the cache
if len(seq.pendingInputs) > 0 {
seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
seq.pendingInputs = []input{}
}
// don't sample prompt processing
if len(seq.inputs) != 0 {
continue
}
seq.numDecoded += 1
if seq.numDecoded == 1 {
seq.startGenerationTime = time.Now()
}
// if done processing the prompt, generate an embedding and return
if seq.embeddingOnly {
embed := s.lc.GetEmbeddingsSeq(seq.cache.Id)
if embed == nil {
embed = s.lc.GetEmbeddingsIth(seq.iBatch)
}
seq.embedding <- embed
s.removeSequence(i, "")
continue
}
// sample a token
token := seq.samplingCtx.Sample(s.lc, seq.iBatch)
seq.samplingCtx.Accept(token, true)
piece := s.model.TokenToPiece(token)
seq.numPredicted++
// if it's an end of sequence token, break
if s.model.TokenIsEog(token) {
// TODO (jmorganca): we should send this back
// as it's important for the /api/generate context
// seq.responses <- piece
s.removeSequence(i, "stop")
continue
}
seq.inputs = []input{{token: token}}
seq.pendingResponses = append(seq.pendingResponses, piece)
sequence := strings.Join(seq.pendingResponses, "")
if ok, stop := findStop(sequence, seq.stop); ok {
slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)
var tokenTruncated bool
origLen := len(seq.pendingResponses)
seq.pendingResponses, tokenTruncated = truncateStop(seq.pendingResponses, stop)
newLen := len(seq.pendingResponses)
// Update the cache based on the tokens that will be returned:
// - We have 1 token more than is currently in the cache because
// the last one generated wasn't submitted to Decode
// - Remove any stop sequences that we stripped out
// - If truncateStop removed a portion of a token, drop that
// - As defense-in-depth, if truncatedToken didn't find a stop token
// remove the extra one that we added to the cache len
tokenLen := len(seq.cache.Inputs) + 1
tokenLen -= origLen - newLen
if tokenTruncated || origLen == newLen {
tokenLen--
}
seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
s.removeSequence(i, "stop")
continue
}
if containsStopSuffix(sequence, seq.stop) {
continue
}
if incompleteUnicode(sequence) {
continue
}
if !flushPending(seq) {
s.removeSequence(i, "connection")
}
}
return nil
}
// TODO (jmorganca): use structs from the api package to avoid duplication
// this way the api acts as a proxy instead of using a different api for the
// runner
type Options struct {
api.Runner
NumKeep int `json:"n_keep"`
Seed int `json:"seed"`
NumPredict int `json:"n_predict"`
TopK int `json:"top_k"`
TopP float32 `json:"top_p"`
MinP float32 `json:"min_p"`
TFSZ float32 `json:"tfs_z"`
TypicalP float32 `json:"typical_p"`
RepeatLastN int `json:"repeat_last_n"`
Temperature float32 `json:"temperature"`
RepeatPenalty float32 `json:"repeat_penalty"`
PresencePenalty float32 `json:"presence_penalty"`
FrequencyPenalty float32 `json:"frequency_penalty"`
Mirostat int `json:"mirostat"`
MirostatTau float32 `json:"mirostat_tau"`
MirostatEta float32 `json:"mirostat_eta"`
PenalizeNewline bool `json:"penalize_nl"`
Stop []string `json:"stop"`
}
type ImageData struct {
Data []byte `json:"data"`
ID int `json:"id"`
AspectRatioID int `json:"aspect_ratio_id"`
}
type CompletionRequest struct {
Prompt string `json:"prompt"`
Images []ImageData `json:"image_data"`
Grammar string `json:"grammar"`
CachePrompt bool `json:"cache_prompt"`
Options
}
type Timings struct {
PredictedN int `json:"predicted_n"`
PredictedMS float64 `json:"predicted_ms"`
PromptN int `json:"prompt_n"`
PromptMS float64 `json:"prompt_ms"`
}
type CompletionResponse struct {
Content string `json:"content"`
Stop bool `json:"stop"`
Model string `json:"model,omitempty"`
Prompt string `json:"prompt,omitempty"`
StoppedLimit bool `json:"stopped_limit,omitempty"`
PredictedN int `json:"predicted_n,omitempty"`
PredictedMS float64 `json:"predicted_ms,omitempty"`
PromptN int `json:"prompt_n,omitempty"`
PromptMS float64 `json:"prompt_ms,omitempty"`
Timings Timings `json:"timings"`
}
func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
var req CompletionRequest
req.Options = Options(api.DefaultOptions())
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, "Bad request", http.StatusBadRequest)
return
}
// Set the headers to indicate streaming
w.Header().Set("Content-Type", "application/json")
w.Header().Set("Transfer-Encoding", "chunked")
flusher, ok := w.(http.Flusher)
if !ok {
http.Error(w, "Streaming not supported", http.StatusInternalServerError)
return
}
var samplingParams llama.SamplingParams
samplingParams.TopK = req.TopK
samplingParams.TopP = req.TopP
samplingParams.MinP = req.MinP
samplingParams.TfsZ = req.TFSZ
samplingParams.TypicalP = req.TypicalP
samplingParams.Temp = req.Temperature
samplingParams.RepeatLastN = req.RepeatLastN
samplingParams.PenaltyRepeat = req.RepeatPenalty
samplingParams.PenaltyFreq = req.FrequencyPenalty
samplingParams.PenaltyPresent = req.PresencePenalty
samplingParams.Mirostat = req.Mirostat
samplingParams.MirostatTau = req.MirostatTau
samplingParams.MirostatEta = req.MirostatEta
samplingParams.PenalizeNl = req.PenalizeNewline
samplingParams.Seed = uint32(req.Seed)
samplingParams.Grammar = req.Grammar
seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
numPredict: req.NumPredict,
stop: req.Stop,
numKeep: req.NumKeep,
samplingParams: &samplingParams,
embedding: false,
})
if err != nil {
http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
return
}
// Ensure there is a place to put the sequence, released when removed from s.seqs
if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
if errors.Is(err, context.Canceled) {
slog.Info("aborting completion request due to client closing the connection")
} else {
slog.Error("Failed to acquire semaphore", "error", err)
}
return
}
s.mu.Lock()
found := false
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
if err != nil {
s.mu.Unlock()
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
return
}
seq.crossAttention = s.image.NeedCrossAttention(seq.cache.Inputs...)
s.seqs[i] = seq
s.cond.Signal()
found = true
break
}
}
s.mu.Unlock()
if !found {
http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
return
}
for {
select {
case <-r.Context().Done():
close(seq.quit)
return
case content, ok := <-seq.responses:
if ok {
if err := json.NewEncoder(w).Encode(&CompletionResponse{
Content: content,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
close(seq.quit)
return
}
flusher.Flush()
} else {
// Send the final response
if err := json.NewEncoder(w).Encode(&CompletionResponse{
Stop: true,
StoppedLimit: seq.doneReason == "limit",
Timings: Timings{
PromptN: seq.numPromptInputs,
PromptMS: float64(seq.startGenerationTime.Sub(seq.startProcessingTime).Milliseconds()),
PredictedN: seq.numDecoded,
PredictedMS: float64(time.Since(seq.startGenerationTime).Milliseconds()),
},
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
}
return
}
}
}
}
type EmbeddingRequest struct {
Content string `json:"content"`
CachePrompt bool `json:"cache_prompt"`
}
type EmbeddingResponse struct {
Embedding []float32 `json:"embedding"`
}
func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
var req EmbeddingRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
return
}
w.Header().Set("Content-Type", "application/json")
slog.Debug("embedding request", "content", req.Content)
seq, err := s.NewSequence(req.Content, nil, NewSequenceParams{embedding: true})
if err != nil {
http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
return
}
// Ensure there is a place to put the sequence, released when removed from s.seqs
if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
if errors.Is(err, context.Canceled) {
slog.Info("aborting embeddings request due to client closing the connection")
} else {
slog.Error("Failed to acquire semaphore", "error", err)
}
return
}
s.mu.Lock()
found := false
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
if err != nil {
s.mu.Unlock()
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
return
}
s.seqs[i] = seq
s.cond.Signal()
found = true
break
}
}
s.mu.Unlock()
if !found {
http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
return
}
embedding := <-seq.embedding
if err := json.NewEncoder(w).Encode(&EmbeddingResponse{
Embedding: embedding,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
}
}
type HealthResponse struct {
Status string `json:"status"`
Progress float32 `json:"progress"`
}
type ServerStatus int
const (
ServerStatusReady ServerStatus = iota
ServerStatusLoadingModel
ServerStatusError
)
func (s ServerStatus) ToString() string {
switch s {
case ServerStatusReady:
return "ok"
case ServerStatusLoadingModel:
return "loading model"
default:
return "server error"
}
}
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Content-Type", "application/json")
if err := json.NewEncoder(w).Encode(&HealthResponse{
Status: s.status.ToString(),
Progress: s.progress,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
}
}
type multiLPath []string
func (m *multiLPath) Set(value string) error {
*m = append(*m, value)
return nil
}
func (m *multiLPath) String() string {
return strings.Join(*m, ", ")
}
func (s *Server) loadModel(
params llama.ModelParams,
mpath string,
lpath multiLPath,
ppath string,
kvSize int,
flashAttention bool,
threads int,
multiUserCache bool,
) {
llama.BackendInit()
var err error
s.model, err = llama.LoadModelFromFile(mpath, params)
if err != nil {
panic(err)
}
ctxParams := llama.NewContextParams(kvSize, s.batchSize*s.parallel, s.parallel, threads, flashAttention)
s.lc, err = llama.NewContextWithModel(s.model, ctxParams)
if err != nil {
panic(err)
}
if lpath.String() != "" {
for _, path := range lpath {
err := s.model.ApplyLoraFromFile(s.lc, path, 1.0, threads)
if err != nil {
panic(err)
}
}
}
if ppath != "" {
var err error
s.image, err = NewImageContext(s.lc, ppath)
if err != nil {
panic(err)
}
}
s.cache, err = NewInputCache(s.lc, kvSize, s.parallel, multiUserCache)
if err != nil {
panic(err)
}
s.status = ServerStatusReady
s.ready.Done()
}
func main() {
mpath := flag.String("model", "", "Path to model binary file")
ppath := flag.String("mmproj", "", "Path to projector binary file")
parallel := flag.Int("parallel", 1, "Number of sequences to handle simultaneously")
batchSize := flag.Int("batch-size", 512, "Batch size")
nGpuLayers := flag.Int("n-gpu-layers", 0, "Number of layers to offload to GPU")
mainGpu := flag.Int("main-gpu", 0, "Main GPU")
flashAttention := flag.Bool("flash-attn", false, "Enable flash attention")
kvSize := flag.Int("ctx-size", 2048, "Context (or KV cache) size")
port := flag.Int("port", 8080, "Port to expose the server on")
threads := flag.Int("threads", runtime.NumCPU(), "Number of threads to use during generation")
verbose := flag.Bool("verbose", false, "verbose output (default: disabled)")
noMmap := flag.Bool("no-mmap", false, "do not memory-map model (slower load but may reduce pageouts if not using mlock)")
mlock := flag.Bool("mlock", false, "force system to keep model in RAM rather than swapping or compressing")
tensorSplit := flag.String("tensor-split", "", "fraction of the model to offload to each GPU, comma-separated list of proportions")
multiUserCache := flag.Bool("multiuser-cache", false, "optimize input cache algorithm for multiple users")
requirements := flag.Bool("requirements", false, "print json requirement information")
var lpaths multiLPath
flag.Var(&lpaths, "lora", "Path to lora layer file (can be specified multiple times)")
flag.Parse()
if *requirements {
printRequirements(os.Stdout)
return
}
level := slog.LevelInfo
if *verbose {
level = slog.LevelDebug
}
handler := slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{
Level: level,
AddSource: true,
ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
if attr.Key == slog.SourceKey {
source := attr.Value.Any().(*slog.Source)
source.File = filepath.Base(source.File)
}
return attr
},
})
slog.SetDefault(slog.New(handler))
slog.Info("starting go runner")
slog.Info("system", "info", llama.PrintSystemInfo(), "threads", *threads)
server := &Server{
batchSize: *batchSize,
parallel: *parallel,
seqs: make([]*Sequence, *parallel),
seqsSem: semaphore.NewWeighted(int64(*parallel)),
status: ServerStatusLoadingModel,
}
var tensorSplitFloats []float32
if *tensorSplit != "" {
stringFloats := regexp.MustCompile(",").Split(*tensorSplit, -1)
tensorSplitFloats = make([]float32, 0, len(stringFloats))
for _, s := range stringFloats {
f, _ := strconv.ParseFloat(s, 32)
tensorSplitFloats = append(tensorSplitFloats, float32(f))
}
}
params := llama.ModelParams{
NumGpuLayers: *nGpuLayers,
MainGpu: *mainGpu,
UseMmap: !*noMmap && lpaths.String() == "",
UseMlock: *mlock,
TensorSplit: tensorSplitFloats,
Progress: func(progress float32) {
server.progress = progress
},
}
server.ready.Add(1)
go server.loadModel(params, *mpath, lpaths, *ppath, *kvSize, *flashAttention, *threads, *multiUserCache)
server.cond = sync.NewCond(&server.mu)
ctx, cancel := context.WithCancel(context.Background())
go server.run(ctx)
addr := "127.0.0.1:" + strconv.Itoa(*port)
listener, err := net.Listen("tcp", addr)
if err != nil {
fmt.Println("Listen error:", err)
return
}
defer listener.Close()
mux := http.NewServeMux()
mux.HandleFunc("/embedding", server.embeddings)
mux.HandleFunc("/completion", server.completion)
mux.HandleFunc("/health", server.health)
httpServer := http.Server{
Handler: mux,
}
log.Println("Server listening on", addr)
if err := httpServer.Serve(listener); err != nil {
log.Fatal("server error:", err)
}
cancel()
}