Previously, some costly things were causing the loading of GGUF files
and their metadata and tensor information to be VERY slow:
* Too many allocations when decoding strings
* Hitting disk for each read of each key and value, resulting in a
not-okay amount of syscalls/disk I/O.
The show API is now down to 33ms from 800ms+ for llama3 on a macbook pro
m3.
This commit also prevents collecting large arrays of values when
decoding GGUFs (if desired). When such keys are encountered, their
values are null, and are encoded as such in JSON.
Also, this fixes a broken test that was not encoding valid GGUF.
While models are loading, the VRAM metrics are dynamic, so try
to load on a GPU that doesn't have a model actively loading, or wait
to avoid races that lead to OOMs
Our default behavior today is to try to fit into a single GPU if possible.
Some users would prefer the old behavior of always spreading across
multiple GPUs even if the model can fit into one. This exposes that
tunable behavior.
The GPU drivers take a while to update their free memory reporting, so we need
to wait until the values converge with what we're expecting before proceeding
to start another runner in order to get an accurate picture.
This moves all the env var reading into one central module
and logs the loaded config once at startup which should
help in troubleshooting user server logs
Prior refactoring passes accidentally removed the logic to bypass VRAM
checks for CPU loads. This adds that back, along with test coverage.
This also fixes loaded map access in the unit test to be behind the mutex which was
likely the cause of various flakes in the tests.
This change adds support for multiple concurrent requests, as well as
loading multiple models by spawning multiple runners. The default
settings are currently set at 1 concurrent request per model and only 1
loaded model at a time, but these can be adjusted by setting
OLLAMA_NUM_PARALLEL and OLLAMA_MAX_LOADED_MODELS.