This also adjusts our algorithm to favor our bundled ROCm.
I've confirmed VRAM reporting still doesn't work properly so we
can't yet enable concurrency by default.
This implements the release logic we want via gh cli
to support updating releases with rc tags in place and retain
release notes and other community reactions.
download-artifact path was being used incorrectly. It is where to
extract the zip not the files in the zip to extract. Default is
workspace dir which is what we want, so omit it
Now that the llm runner is an executable and not just a dll, more users are facing
problems with security policy configurations on windows that prevent users
writing to directories and then executing binaries from the same location.
This change removes payloads from the main executable on windows and shifts them
over to be packaged in the installer and discovered based on the executables location.
This also adds a new zip file for people who want to "roll their own" installation model.
This commit introduces a more friendly way to build Ollama dependencies
and the binary without abusing `go generate` and removing the
unnecessary extra steps it brings with it.
This script also provides nicer feedback to the user about what is
happening during the build process.
At the end, it prints a helpful message to the user about what to do
next (e.g. run the new local Ollama).
This should resolve a number of memory leak and stability defects by allowing
us to isolate llama.cpp in a separate process and shutdown when idle, and
gracefully restart if it has problems. This also serves as a first step to be
able to run multiple copies to support multiple models concurrently.
This refines where we extract the LLM libraries to by adding a new
OLLAMA_HOME env var, that defaults to `~/.ollama` The logic was already
idempotenent, so this should speed up startups after the first time a
new release is deployed. It also cleans up after itself.
We now build only a single ROCm version (latest major) on both windows
and linux. Given the large size of ROCms tensor files, we split the
dependency out. It's bundled into the installer on windows, and a
separate download on windows. The linux install script is now smart and
detects the presence of AMD GPUs and looks to see if rocm v6 is already
present, and if not, then downloads our dependency tar file.
For Linux discovery, we now use sysfs and check each GPU against what
ROCm supports so we can degrade to CPU gracefully instead of having
llama.cpp+rocm assert/crash on us. For Windows, we now use go's windows
dynamic library loading logic to access the amdhip64.dll APIs to query
the GPU information.