The rocm CI step for RCs was incorrectly tagging them as the latest rocm build.
The multiarch manifest was incorrectly tagged twice (with and without the
prefix "v"). Static windows artifacts weren't being carried between build
jobs. This also fixes the latest tagging script.
* Optimize container images for startup
This change adjusts how to handle runner payloads to support
container builds where we keep them extracted in the filesystem.
This makes it easier to optimize the cpu/cuda vs cpu/rocm images for
size, and should result in faster startup times for container images.
* Refactor payload logic and add buildx support for faster builds
* Move payloads around
* Review comments
* Converge to buildx based helper scripts
* Use docker buildx action for release
We're over budget for github's maximum release artifact size with rocm + 2 cuda
versions. This splits rocm back out as a discrete artifact, but keeps the layout so it can
be extracted into the same location as the main bundle.
This adjusts linux to follow a similar model to windows with a discrete archive
(zip/tgz) to cary the primary executable, and dependent libraries. Runners are
still carried as payloads inside the main binary
Darwin retain the payload model where the go binary is fully self contained.
This also adjusts our algorithm to favor our bundled ROCm.
I've confirmed VRAM reporting still doesn't work properly so we
can't yet enable concurrency by default.
This implements the release logic we want via gh cli
to support updating releases with rc tags in place and retain
release notes and other community reactions.
download-artifact path was being used incorrectly. It is where to
extract the zip not the files in the zip to extract. Default is
workspace dir which is what we want, so omit it
Now that the llm runner is an executable and not just a dll, more users are facing
problems with security policy configurations on windows that prevent users
writing to directories and then executing binaries from the same location.
This change removes payloads from the main executable on windows and shifts them
over to be packaged in the installer and discovered based on the executables location.
This also adds a new zip file for people who want to "roll their own" installation model.
This commit introduces a more friendly way to build Ollama dependencies
and the binary without abusing `go generate` and removing the
unnecessary extra steps it brings with it.
This script also provides nicer feedback to the user about what is
happening during the build process.
At the end, it prints a helpful message to the user about what to do
next (e.g. run the new local Ollama).
This should resolve a number of memory leak and stability defects by allowing
us to isolate llama.cpp in a separate process and shutdown when idle, and
gracefully restart if it has problems. This also serves as a first step to be
able to run multiple copies to support multiple models concurrently.