Until ROCm v6.2 ships, we wont be able to get accurate free memory
reporting on windows, which makes automatic concurrency too risky.
Users can still opt-in but will need to pay attention to model sizes otherwise they may thrash/page VRAM or cause OOM crashes.
All other platforms and GPUs have accurate VRAM reporting wired
up now, so we can turn on concurrency by default.
This adjusts our default settings to enable multiple models and parallel
requests to a single model. Users can still override these by the same
env var settings as before. Parallel has a direct impact on
num_ctx, which in turn can have a significant impact on small VRAM GPUs
so this change also refines the algorithm so that when parallel is not
explicitly set by the user, we try to find a reasonable default that fits
the model on their GPU(s). As before, multiple models will only load
concurrently if they fully fit in VRAM.
While models are loading, the VRAM metrics are dynamic, so try
to load on a GPU that doesn't have a model actively loading, or wait
to avoid races that lead to OOMs
Our default behavior today is to try to fit into a single GPU if possible.
Some users would prefer the old behavior of always spreading across
multiple GPUs even if the model can fit into one. This exposes that
tunable behavior.
The GPU drivers take a while to update their free memory reporting, so we need
to wait until the values converge with what we're expecting before proceeding
to start another runner in order to get an accurate picture.
This moves all the env var reading into one central module
and logs the loaded config once at startup which should
help in troubleshooting user server logs
Prior refactoring passes accidentally removed the logic to bypass VRAM
checks for CPU loads. This adds that back, along with test coverage.
This also fixes loaded map access in the unit test to be behind the mutex which was
likely the cause of various flakes in the tests.
This change adds support for multiple concurrent requests, as well as
loading multiple models by spawning multiple runners. The default
settings are currently set at 1 concurrent request per model and only 1
loaded model at a time, but these can be adjusted by setting
OLLAMA_NUM_PARALLEL and OLLAMA_MAX_LOADED_MODELS.