423 lines
15 KiB
Diff
423 lines
15 KiB
Diff
|
From 64b3fbb150d12b3ca63ac2fb4e57bc46f41d2ccd Mon Sep 17 00:00:00 2001
|
||
|
From: Daniel Hiltgen <daniel@ollama.com>
|
||
|
Date: Mon, 13 Nov 2023 12:25:58 -0800
|
||
|
Subject: [PATCH] Expose callable API for server
|
||
|
|
||
|
This adds an extern "C" interface within the example server
|
||
|
---
|
||
|
examples/server/CMakeLists.txt | 24 ++++
|
||
|
examples/server/server.cpp | 247 +++++++++++++++++++++++++++++++++
|
||
|
examples/server/server.h | 83 +++++++++++
|
||
|
ggml-cuda.cu | 1 +
|
||
|
4 files changed, 355 insertions(+)
|
||
|
create mode 100644 examples/server/server.h
|
||
|
|
||
|
diff --git a/examples/server/CMakeLists.txt b/examples/server/CMakeLists.txt
|
||
|
index 859cd12..4ea47a7 100644
|
||
|
--- a/examples/server/CMakeLists.txt
|
||
|
+++ b/examples/server/CMakeLists.txt
|
||
|
@@ -11,3 +11,27 @@ if (WIN32)
|
||
|
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
|
||
|
endif()
|
||
|
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||
|
+
|
||
|
+set(TARGET ext_server)
|
||
|
+option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
|
||
|
+add_library(${TARGET} STATIC server.cpp)
|
||
|
+target_include_directories(${TARGET} PRIVATE ../../common)
|
||
|
+target_include_directories(${TARGET} PRIVATE ../..)
|
||
|
+target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||
|
+target_compile_definitions(${TARGET} PUBLIC LLAMA_SERVER_LIBRARY=1)
|
||
|
+target_link_libraries(${TARGET} PRIVATE common llama llava ${CMAKE_THREAD_LIBS_INIT})
|
||
|
+
|
||
|
+if (BUILD_SHARED_LIBS)
|
||
|
+ set_target_properties(ext_server PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||
|
+ target_compile_definitions(ext_server PRIVATE LLAMA_SHARED LLAMA_BUILD)
|
||
|
+ add_library(ext_server_shared SHARED $<TARGET_OBJECTS:ext_server>)
|
||
|
+ target_link_libraries(ext_server_shared PRIVATE ggml llama llava common ${CMAKE_THREAD_LIBS_INIT})
|
||
|
+ install(TARGETS ext_server_shared LIBRARY)
|
||
|
+endif()
|
||
|
+
|
||
|
+if (CUDAToolkit_FOUND)
|
||
|
+ target_include_directories(${TARGET} PRIVATE ${CMAKE_CUDA_TOOLKIT_INCLUDE_DIRECTORIES})
|
||
|
+ if (WIN32)
|
||
|
+ target_link_libraries(ext_server_shared PRIVATE nvml)
|
||
|
+ endif()
|
||
|
+endif()
|
||
|
\ No newline at end of file
|
||
|
diff --git a/examples/server/server.cpp b/examples/server/server.cpp
|
||
|
index 895f751..f939590 100644
|
||
|
--- a/examples/server/server.cpp
|
||
|
+++ b/examples/server/server.cpp
|
||
|
@@ -5,6 +5,9 @@
|
||
|
#include "../llava/clip.h"
|
||
|
|
||
|
#include "stb_image.h"
|
||
|
+#if defined(LLAMA_SERVER_LIBRARY)
|
||
|
+#include "server.h"
|
||
|
+#endif
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
// crash the server in debug mode, otherwise send an http 500 error
|
||
|
@@ -2631,6 +2634,7 @@ static void append_to_generated_text_from_generated_token_probs(llama_server_con
|
||
|
}
|
||
|
}
|
||
|
|
||
|
+#ifndef LLAMA_SERVER_LIBRARY
|
||
|
int main(int argc, char **argv)
|
||
|
{
|
||
|
// own arguments required by this example
|
||
|
@@ -3065,3 +3069,246 @@ int main(int argc, char **argv)
|
||
|
llama_backend_free();
|
||
|
return 0;
|
||
|
}
|
||
|
+
|
||
|
+#else // LLAMA_SERVER_LIBRARY
|
||
|
+// Expose the llama server as a callable extern "C" API
|
||
|
+llama_server_context llama;
|
||
|
+std::atomic<bool> ext_server_running(false);
|
||
|
+std::thread ext_server_thread;
|
||
|
+inline ext_server_err makeErr(uint32_t code, std::string msg) {
|
||
|
+ if (code == 0) {
|
||
|
+ return ext_server_err{0, NULL};
|
||
|
+ }
|
||
|
+ const std::string::size_type size = msg.size();
|
||
|
+ ext_server_err ret = {
|
||
|
+ code,
|
||
|
+ new char[size + 1],
|
||
|
+ };
|
||
|
+ memcpy(ret.err, msg.c_str(), size + 1);
|
||
|
+ return ret;
|
||
|
+}
|
||
|
+
|
||
|
+ext_server_err llama_server_init(ext_server_params *sparams)
|
||
|
+{
|
||
|
+ log_set_target(stdout);
|
||
|
+ gpt_params params;
|
||
|
+ params.n_ctx = sparams->n_ctx;
|
||
|
+ params.n_batch = sparams->n_batch;
|
||
|
+ params.n_threads = sparams->n_threads;
|
||
|
+ params.n_parallel = sparams->n_parallel;
|
||
|
+ params.rope_freq_base = sparams->rope_freq_base;
|
||
|
+ params.rope_freq_scale = sparams->rope_freq_scale;
|
||
|
+
|
||
|
+ if (sparams->memory_f16) {
|
||
|
+ params.cache_type_k = "f16";
|
||
|
+ params.cache_type_v = "f16";
|
||
|
+ } else {
|
||
|
+ params.cache_type_k = "f32";
|
||
|
+ params.cache_type_v = "f32";
|
||
|
+ }
|
||
|
+
|
||
|
+ params.n_gpu_layers = sparams->n_gpu_layers;
|
||
|
+ params.main_gpu = sparams->main_gpu;
|
||
|
+ params.use_mlock = sparams->use_mlock;
|
||
|
+ params.use_mmap = sparams->use_mmap;
|
||
|
+ params.numa = sparams->numa;
|
||
|
+ params.embedding = sparams->embedding;
|
||
|
+ if (sparams->model != NULL) {
|
||
|
+ params.model = sparams->model;
|
||
|
+ }
|
||
|
+
|
||
|
+ for (ext_server_lora_adapter *la = sparams->lora_adapters; la != NULL; la = la->next) {
|
||
|
+ params.lora_adapter.push_back(std::make_tuple(la->adapter, la->scale));
|
||
|
+ }
|
||
|
+
|
||
|
+ try {
|
||
|
+ llama_backend_init(params.numa);
|
||
|
+
|
||
|
+ // load the model
|
||
|
+ if (!llama.load_model(params))
|
||
|
+ {
|
||
|
+ // TODO - consider modifying the logging logic or patching load_model so we can capture more detailed error messages
|
||
|
+ // and pass them back to the caller for better UX
|
||
|
+ return makeErr(1, "error loading model " + params.model);
|
||
|
+ }
|
||
|
+
|
||
|
+ llama.initialize();
|
||
|
+ } catch (std::exception &e) {
|
||
|
+ return makeErr(1, e.what());
|
||
|
+ } catch (...) {
|
||
|
+ return makeErr(1, "Unknown Exception initializing llama server");
|
||
|
+ }
|
||
|
+ return makeErr(0, "");
|
||
|
+}
|
||
|
+
|
||
|
+void llama_server_start()
|
||
|
+{
|
||
|
+ // TODO mutex to protect thread creation
|
||
|
+ ext_server_thread = std::thread([&]()
|
||
|
+ {
|
||
|
+ ext_server_running = true;
|
||
|
+ try {
|
||
|
+ LOG_TEE("llama server main loop starting\n");
|
||
|
+ ggml_time_init();
|
||
|
+ while (ext_server_running.load())
|
||
|
+ {
|
||
|
+ if (!llama.update_slots()) {
|
||
|
+ LOG_TEE("unexpected error in llama server update_slots - exiting main loop\n");
|
||
|
+ break;
|
||
|
+ }
|
||
|
+ }
|
||
|
+ } catch (std::exception &e) {
|
||
|
+ LOG_TEE("caught exception in llama server main loop: %s\n", e.what());
|
||
|
+ } catch (...) {
|
||
|
+ LOG_TEE("caught unknown exception in llama server main loop\n");
|
||
|
+ }
|
||
|
+ LOG_TEE("\nllama server shutting down\n");
|
||
|
+ llama_backend_free();
|
||
|
+ });
|
||
|
+}
|
||
|
+
|
||
|
+void llama_server_stop() {
|
||
|
+ // TODO - too verbose, remove once things are solid
|
||
|
+ LOG_TEE("requesting llama server shutdown\n");
|
||
|
+ ext_server_running = false;
|
||
|
+ ext_server_thread.join();
|
||
|
+ LOG_TEE("llama server shutdown complete\n");
|
||
|
+}
|
||
|
+
|
||
|
+ext_server_completion_resp llama_server_completion(const char *json_req) {
|
||
|
+ std::string msg;
|
||
|
+ ext_server_completion_resp resp = {
|
||
|
+ 0,
|
||
|
+ NULL,
|
||
|
+ };
|
||
|
+ try {
|
||
|
+ json data = json::parse(json_req);
|
||
|
+ resp.task_id = llama.request_completion(data, false, false, -1);
|
||
|
+ return resp;
|
||
|
+ } catch (std::exception &e) {
|
||
|
+ msg = e.what();
|
||
|
+ } catch (...) {
|
||
|
+ msg = "Unknown Exception during completion";
|
||
|
+ }
|
||
|
+ const std::string::size_type size = msg.size();
|
||
|
+ resp.task_id = 0;
|
||
|
+ resp.err = new char[size + 1];
|
||
|
+ memcpy(resp.err, msg.c_str(), size + 1);
|
||
|
+ return resp;
|
||
|
+}
|
||
|
+
|
||
|
+ext_task_result llama_server_completion_next_result(const int task_id) {
|
||
|
+ std::string msg;
|
||
|
+ ext_task_result resp = {-1,false,false,NULL};
|
||
|
+ try {
|
||
|
+ task_result result = llama.next_result(task_id);
|
||
|
+ std::string result_json = result.result_json.dump(-1, ' ', false, json::error_handler_t::replace);
|
||
|
+ const std::string::size_type size = result_json.size();
|
||
|
+ resp.id = result.id;
|
||
|
+ resp.stop = result.stop;
|
||
|
+ resp.error = result.error;
|
||
|
+ resp.result_json = new char[size + 1];
|
||
|
+ memcpy(resp.result_json, result_json.c_str(), size + 1);
|
||
|
+ if (result.error) {
|
||
|
+ llama.request_cancel(task_id);
|
||
|
+ } else if (result.stop) {
|
||
|
+ llama.request_cancel(task_id);
|
||
|
+ }
|
||
|
+ return resp;
|
||
|
+ } catch (std::exception &e) {
|
||
|
+ msg = e.what(); // TODO - json?
|
||
|
+ } catch (...) {
|
||
|
+ msg = "Unknown Exception during completion";
|
||
|
+ }
|
||
|
+ resp.error = true;
|
||
|
+ const std::string::size_type size = msg.size();
|
||
|
+ resp.result_json = new char[size + 1];
|
||
|
+ memcpy(resp.result_json, msg.c_str(), size + 1);
|
||
|
+ return resp;
|
||
|
+}
|
||
|
+
|
||
|
+ext_server_err llama_server_completion_cancel(const int task_id) {
|
||
|
+ try {
|
||
|
+ llama.request_cancel(task_id);
|
||
|
+ } catch (std::exception &e) {
|
||
|
+ return makeErr(1, e.what());
|
||
|
+ } catch (...) {
|
||
|
+ return makeErr(1, "Unknown Exception running llama server");
|
||
|
+ }
|
||
|
+ return makeErr(0, "");
|
||
|
+}
|
||
|
+
|
||
|
+
|
||
|
+ext_server_err llama_server_tokenize(const char *json_req, ext_server_resp *resp) {
|
||
|
+ resp->json_resp = NULL;
|
||
|
+ try {
|
||
|
+ const json body = json::parse(json_req);
|
||
|
+ std::vector<llama_token> tokens;
|
||
|
+ if (body.count("content") != 0)
|
||
|
+ {
|
||
|
+ tokens = llama.tokenize(body["content"], false);
|
||
|
+ }
|
||
|
+ const json data = format_tokenizer_response(tokens);
|
||
|
+ std::string result_json = data.dump();
|
||
|
+ const std::string::size_type size = result_json.size();
|
||
|
+ resp->json_resp = new char[size + 1];
|
||
|
+ memcpy(resp->json_resp, result_json.c_str(), size + 1);
|
||
|
+ } catch (std::exception &e) {
|
||
|
+ return makeErr(1, e.what());
|
||
|
+ } catch (...) {
|
||
|
+ return makeErr(1, "Unknown Exception during tokenize");
|
||
|
+ }
|
||
|
+ return makeErr(0, "");
|
||
|
+}
|
||
|
+
|
||
|
+ext_server_err llama_server_detokenize(const char *json_req, ext_server_resp *resp) {
|
||
|
+ resp->json_resp = NULL;
|
||
|
+ try {
|
||
|
+ const json body = json::parse(json_req);
|
||
|
+ std::string content;
|
||
|
+ if (body.count("tokens") != 0)
|
||
|
+ {
|
||
|
+ const std::vector<llama_token> tokens = body["tokens"];
|
||
|
+ content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend());
|
||
|
+ }
|
||
|
+ const json data = format_detokenized_response(content);
|
||
|
+ std::string result_json = data.dump();
|
||
|
+ const std::string::size_type size = result_json.size();
|
||
|
+ resp->json_resp = new char[size + 1];
|
||
|
+ memcpy(resp->json_resp, result_json.c_str(), size + 1);
|
||
|
+ } catch (std::exception &e) {
|
||
|
+ return makeErr(1, e.what());
|
||
|
+ } catch (...) {
|
||
|
+ return makeErr(1, "Unknown Exception during detokenize");
|
||
|
+ }
|
||
|
+ return makeErr(0, "");
|
||
|
+}
|
||
|
+
|
||
|
+ext_server_err llama_server_embedding(const char *json_req, ext_server_resp *resp) {
|
||
|
+ resp->json_resp = NULL;
|
||
|
+ try {
|
||
|
+ const json body = json::parse(json_req);
|
||
|
+ json prompt;
|
||
|
+ if (body.count("content") != 0)
|
||
|
+ {
|
||
|
+ prompt = body["content"];
|
||
|
+ }
|
||
|
+ else
|
||
|
+ {
|
||
|
+ prompt = "";
|
||
|
+ }
|
||
|
+ const int task_id = llama.request_completion({ {"prompt", prompt}, { "n_predict", 0} }, false, true, -1);
|
||
|
+ task_result result = llama.next_result(task_id);
|
||
|
+ std::string result_json = result.result_json.dump();
|
||
|
+ const std::string::size_type size = result_json.size();
|
||
|
+ resp->json_resp = new char[size + 1];
|
||
|
+ memcpy(resp->json_resp, result_json.c_str(), size + 1);
|
||
|
+ } catch (std::exception &e) {
|
||
|
+ return makeErr(1, e.what());
|
||
|
+ } catch (...) {
|
||
|
+ return makeErr(1, "Unknown Exception during detokenize");
|
||
|
+ }
|
||
|
+ return makeErr(0, "");
|
||
|
+}
|
||
|
+
|
||
|
+#endif // LLAMA_SERVER_LIBRARY
|
||
|
\ No newline at end of file
|
||
|
diff --git a/examples/server/server.h b/examples/server/server.h
|
||
|
new file mode 100644
|
||
|
index 0000000..4d03b1e
|
||
|
--- /dev/null
|
||
|
+++ b/examples/server/server.h
|
||
|
@@ -0,0 +1,83 @@
|
||
|
+#if defined(LLAMA_SERVER_LIBRARY)
|
||
|
+#ifndef LLAMA_SERVER_H
|
||
|
+#define LLAMA_SERVER_H
|
||
|
+#include <stddef.h>
|
||
|
+#include <stdint.h>
|
||
|
+#include <stdio.h>
|
||
|
+#include <stdbool.h>
|
||
|
+
|
||
|
+// This exposes extern C entrypoints into the llama_server
|
||
|
+// To enable the server compile with LLAMA_SERVER_LIBRARY
|
||
|
+
|
||
|
+#ifdef __cplusplus
|
||
|
+extern "C"
|
||
|
+{
|
||
|
+#endif
|
||
|
+ // TODO - clean the type def's up a bit for better consistency
|
||
|
+ typedef struct ext_server_err {
|
||
|
+ uint32_t code; // 0 on success, > 0 on error
|
||
|
+ char *err; // null if code == 0; else contains error message. Caller responsible for freeing memory
|
||
|
+ } ext_server_err;
|
||
|
+
|
||
|
+ typedef struct ext_server_lora_adapter {
|
||
|
+ char *adapter;
|
||
|
+ float scale;
|
||
|
+ struct ext_server_lora_adapter *next;
|
||
|
+ } ext_server_lora_adapter;
|
||
|
+ typedef struct ext_server_params
|
||
|
+ {
|
||
|
+ char *model;
|
||
|
+ uint32_t n_ctx; // text context, 0 = from model
|
||
|
+ uint32_t n_batch; // prompt processing maximum batch size
|
||
|
+ uint32_t n_threads; // number of threads to use for generation
|
||
|
+ int32_t n_parallel; // number of parallel sequences to decodewra
|
||
|
+ float rope_freq_base; // RoPE base frequency, 0 = from model
|
||
|
+ float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
|
||
|
+ bool memory_f16; // use f16 instead of f32 for memory kv
|
||
|
+ int32_t n_gpu_layers; // number of layers to store in VRAM (-1 - use default)
|
||
|
+ int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||
|
+ bool use_mlock; // force system to keep model in RAM
|
||
|
+ bool use_mmap; // use mmap if possible
|
||
|
+ bool numa; // attempt optimizations that help on some NUMA systems
|
||
|
+ bool embedding; // get only sentence embedding
|
||
|
+ ext_server_lora_adapter* lora_adapters;
|
||
|
+ } ext_server_params;
|
||
|
+
|
||
|
+ // Initialize the server once per process
|
||
|
+ ext_server_err llama_server_init(ext_server_params *sparams);
|
||
|
+
|
||
|
+ // Run the main loop
|
||
|
+ void llama_server_start();
|
||
|
+ // Stop the main loop
|
||
|
+ void llama_server_stop();
|
||
|
+
|
||
|
+ typedef struct ext_task_result
|
||
|
+ {
|
||
|
+ int id;
|
||
|
+ bool stop;
|
||
|
+ bool error;
|
||
|
+ char* result_json; // caller responsible to free this memory
|
||
|
+ } ext_task_result;
|
||
|
+
|
||
|
+ typedef struct ext_server_completion_resp {
|
||
|
+ int task_id; // < 0 on error, >= 0 on success
|
||
|
+ char *err; // null if task_id >= 0; else contains error message. Caller responsible for freeing memory
|
||
|
+ } ext_server_completion_resp;
|
||
|
+ ext_server_completion_resp llama_server_completion(const char *json_req);
|
||
|
+ ext_task_result llama_server_completion_next_result(const int task_id);
|
||
|
+ ext_server_err llama_server_completion_cancel(const int task_id);
|
||
|
+
|
||
|
+ // Caller responsible for freeing json_resp
|
||
|
+ typedef struct ext_server_resp {
|
||
|
+ char *json_resp; // Caller responsible for freeing string
|
||
|
+ } ext_server_resp;
|
||
|
+ ext_server_err llama_server_tokenize(const char *json_req, ext_server_resp *resp);
|
||
|
+ ext_server_err llama_server_detokenize(const char *json_req, ext_server_resp *resp);
|
||
|
+ ext_server_err llama_server_embedding(const char *json_req, ext_server_resp *resp);
|
||
|
+
|
||
|
+#ifdef __cplusplus
|
||
|
+}
|
||
|
+#endif
|
||
|
+
|
||
|
+#endif
|
||
|
+#endif // LLAMA_SERVER_LIBRARY
|
||
|
\ No newline at end of file
|
||
|
diff --git a/ggml-cuda.cu b/ggml-cuda.cu
|
||
|
index 85f7a29..ce51364 100644
|
||
|
--- a/ggml-cuda.cu
|
||
|
+++ b/ggml-cuda.cu
|
||
|
@@ -6410,6 +6410,7 @@ static cudaError_t ggml_cuda_cpy_tensor_2d(
|
||
|
CUDA_CHECK(cudaGetDevice(&id));
|
||
|
src_ptr = (char *) extra->data_device[id];
|
||
|
} else {
|
||
|
+ fprintf(stderr, "ggml_cuda_cpy_tensor_2d assert: backend: %d\n", src->backend);
|
||
|
GGML_ASSERT(false);
|
||
|
}
|
||
|
char * dst_ptr = (char *) dst;
|
||
|
--
|
||
|
2.39.3 (Apple Git-145)
|
||
|
|