ollama/gpu/gpu.go

376 lines
11 KiB
Go
Raw Normal View History

//go:build linux || windows
package gpu
/*
#cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
#cgo windows LDFLAGS: -lpthread
#include "gpu_info.h"
*/
import "C"
import (
"fmt"
"log/slog"
"os"
"path/filepath"
"runtime"
"strings"
"sync"
"unsafe"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/server/envconfig"
)
type handles struct {
deviceCount int
cudart *C.cudart_handle_t
nvcuda *C.nvcuda_handle_t
}
const (
cudaMinimumMemory = 457 * format.MebiByte
rocmMinimumMemory = 457 * format.MebiByte
)
var gpuMutex sync.Mutex
// With our current CUDA compile flags, older than 5.0 will not work properly
var CudaComputeMin = [2]C.int{5, 0}
var RocmComputeMin = 9
// TODO find a better way to detect iGPU instead of minimum memory
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
var CudartLinuxGlobs = []string{
"/usr/local/cuda/lib64/libcudart.so*",
"/usr/lib/x86_64-linux-gnu/nvidia/current/libcudart.so*",
"/usr/lib/x86_64-linux-gnu/libcudart.so*",
"/usr/lib/wsl/lib/libcudart.so*",
"/usr/lib/wsl/drivers/*/libcudart.so*",
"/opt/cuda/lib64/libcudart.so*",
"/usr/local/cuda*/targets/aarch64-linux/lib/libcudart.so*",
"/usr/lib/aarch64-linux-gnu/nvidia/current/libcudart.so*",
"/usr/lib/aarch64-linux-gnu/libcudart.so*",
"/usr/local/cuda/lib*/libcudart.so*",
"/usr/lib*/libcudart.so*",
"/usr/local/lib*/libcudart.so*",
}
var CudartWindowsGlobs = []string{
"c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
}
var NvcudaLinuxGlobs = []string{
"/usr/local/cuda*/targets/*/lib/libcuda.so*",
"/usr/lib/*-linux-gnu/nvidia/current/libcuda.so*",
"/usr/lib/*-linux-gnu/libcuda.so*",
"/usr/lib/wsl/lib/libcuda.so*",
"/usr/lib/wsl/drivers/*/libcuda.so*",
"/opt/cuda/lib*/libcuda.so*",
"/usr/local/cuda/lib*/libcuda.so*",
"/usr/lib*/libcuda.so*",
"/usr/local/lib*/libcuda.so*",
}
var NvcudaWindowsGlobs = []string{
"c:\\windows\\system*\\nvcuda.dll",
}
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
// Note: gpuMutex must already be held
func initGPUHandles() *handles {
// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
gpuHandles := &handles{}
var cudartMgmtName string
var cudartMgmtPatterns []string
var nvcudaMgmtName string
var nvcudaMgmtPatterns []string
tmpDir, _ := PayloadsDir()
switch runtime.GOOS {
case "windows":
cudartMgmtName = "cudart64_*.dll"
localAppData := os.Getenv("LOCALAPPDATA")
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", cudartMgmtName)}
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartWindowsGlobs...)
// Aligned with driver, we can't carry as payloads
nvcudaMgmtName = "nvcuda.dll"
nvcudaMgmtPatterns = NvcudaWindowsGlobs
case "linux":
cudartMgmtName = "libcudart.so*"
if tmpDir != "" {
// TODO - add "payloads" for subprocess
cudartMgmtPatterns = []string{filepath.Join(tmpDir, "cuda*", cudartMgmtName)}
}
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartLinuxGlobs...)
// Aligned with driver, we can't carry as payloads
nvcudaMgmtName = "libcuda.so*"
nvcudaMgmtPatterns = NvcudaLinuxGlobs
default:
return gpuHandles
}
slog.Debug("Detecting GPUs")
nvcudaLibPaths := FindGPULibs(nvcudaMgmtName, nvcudaMgmtPatterns)
if len(nvcudaLibPaths) > 0 {
deviceCount, nvcuda, libPath := LoadNVCUDAMgmt(nvcudaLibPaths)
if nvcuda != nil {
slog.Debug("detected GPUs", "count", deviceCount, "library", libPath)
gpuHandles.nvcuda = nvcuda
gpuHandles.deviceCount = deviceCount
return gpuHandles
}
}
cudartLibPaths := FindGPULibs(cudartMgmtName, cudartMgmtPatterns)
if len(cudartLibPaths) > 0 {
deviceCount, cudart, libPath := LoadCUDARTMgmt(cudartLibPaths)
if cudart != nil {
slog.Debug("detected GPUs", "library", libPath, "count", deviceCount)
gpuHandles.cudart = cudart
gpuHandles.deviceCount = deviceCount
return gpuHandles
}
}
return gpuHandles
}
func GetGPUInfo() GpuInfoList {
// TODO - consider exploring lspci (and equivalent on windows) to check for
// GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
gpuMutex.Lock()
defer gpuMutex.Unlock()
gpuHandles := initGPUHandles()
defer func() {
if gpuHandles.cudart != nil {
C.cudart_release(*gpuHandles.cudart)
}
if gpuHandles.nvcuda != nil {
C.nvcuda_release(*gpuHandles.nvcuda)
}
}()
// All our GPU builds on x86 have AVX enabled, so fallback to CPU if we don't detect at least AVX
cpuVariant := GetCPUVariant()
if cpuVariant == "" && runtime.GOARCH == "amd64" {
slog.Warn("CPU does not have AVX or AVX2, disabling GPU support.")
}
// On windows we bundle the nvidia library one level above the runner dir
depPath := ""
if runtime.GOOS == "windows" && envconfig.RunnersDir != "" {
depPath = filepath.Dir(envconfig.RunnersDir)
}
var memInfo C.mem_info_t
resp := []GpuInfo{}
// NVIDIA first
for i := 0; i < gpuHandles.deviceCount; i++ {
// TODO once we support CPU compilation variants of GPU libraries refine this...
if cpuVariant == "" && runtime.GOARCH == "amd64" {
continue
}
gpuInfo := GpuInfo{
Library: "cuda",
}
var driverMajor int
var driverMinor int
if gpuHandles.cudart != nil {
C.cudart_check_vram(*gpuHandles.cudart, C.int(i), &memInfo)
} else {
C.nvcuda_check_vram(*gpuHandles.nvcuda, C.int(i), &memInfo)
driverMajor = int(gpuHandles.nvcuda.driver_major)
driverMinor = int(gpuHandles.nvcuda.driver_minor)
}
if memInfo.err != nil {
slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
continue
}
if memInfo.major < CudaComputeMin[0] || (memInfo.major == CudaComputeMin[0] && memInfo.minor < CudaComputeMin[1]) {
slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
continue
}
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Compute = fmt.Sprintf("%d.%d", memInfo.major, memInfo.minor)
gpuInfo.MinimumMemory = cudaMinimumMemory
gpuInfo.DependencyPath = depPath
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.DriverMajor = int(driverMajor)
gpuInfo.DriverMinor = int(driverMinor)
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
resp = append(resp, gpuInfo)
}
// Then AMD
resp = append(resp, AMDGetGPUInfo()...)
if len(resp) == 0 {
C.cpu_check_ram(&memInfo)
if memInfo.err != nil {
slog.Info("error looking up CPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
return resp
}
gpuInfo := GpuInfo{
Library: "cpu",
Variant: cpuVariant,
}
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
resp = append(resp, gpuInfo)
}
return resp
}
func GetCPUMem() (memInfo, error) {
var ret memInfo
var info C.mem_info_t
C.cpu_check_ram(&info)
if info.err != nil {
defer C.free(unsafe.Pointer(info.err))
return ret, fmt.Errorf(C.GoString(info.err))
}
ret.FreeMemory = uint64(info.free)
ret.TotalMemory = uint64(info.total)
return ret, nil
}
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
var ldPaths []string
var patterns []string
gpuLibPaths := []string{}
slog.Debug("Searching for GPU library", "name", baseLibName)
switch runtime.GOOS {
case "windows":
ldPaths = strings.Split(os.Getenv("PATH"), ";")
case "linux":
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), ":")
default:
return gpuLibPaths
}
// Start with whatever we find in the PATH/LD_LIBRARY_PATH
for _, ldPath := range ldPaths {
d, err := filepath.Abs(ldPath)
if err != nil {
continue
}
patterns = append(patterns, filepath.Join(d, baseLibName+"*"))
}
patterns = append(patterns, defaultPatterns...)
slog.Debug("gpu library search", "globs", patterns)
for _, pattern := range patterns {
// Nvidia PhysX known to return bogus results
if strings.Contains(pattern, "PhysX") {
slog.Debug("skipping PhysX cuda library path", "path", pattern)
}
// Ignore glob discovery errors
matches, _ := filepath.Glob(pattern)
for _, match := range matches {
// Resolve any links so we don't try the same lib multiple times
// and weed out any dups across globs
libPath := match
tmp := match
var err error
for ; err == nil; tmp, err = os.Readlink(libPath) {
if !filepath.IsAbs(tmp) {
tmp = filepath.Join(filepath.Dir(libPath), tmp)
}
libPath = tmp
}
new := true
for _, cmp := range gpuLibPaths {
if cmp == libPath {
new = false
break
}
}
if new {
gpuLibPaths = append(gpuLibPaths, libPath)
}
}
}
slog.Debug("discovered GPU libraries", "paths", gpuLibPaths)
return gpuLibPaths
}
func LoadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string) {
var resp C.cudart_init_resp_t
resp.ch.verbose = getVerboseState()
for _, libPath := range cudartLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.cudart_init(lib, &resp)
if resp.err != nil {
slog.Debug("Unable to load cudart", "library", libPath, "error", C.GoString(resp.err))
C.free(unsafe.Pointer(resp.err))
} else {
return int(resp.num_devices), &resp.ch, libPath
}
}
return 0, nil, ""
}
func LoadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string) {
var resp C.nvcuda_init_resp_t
resp.ch.verbose = getVerboseState()
for _, libPath := range nvcudaLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.nvcuda_init(lib, &resp)
if resp.err != nil {
slog.Debug("Unable to load nvcuda", "library", libPath, "error", C.GoString(resp.err))
C.free(unsafe.Pointer(resp.err))
} else {
return int(resp.num_devices), &resp.ch, libPath
}
}
return 0, nil, ""
}
func getVerboseState() C.uint16_t {
if envconfig.Debug {
return C.uint16_t(1)
}
return C.uint16_t(0)
}
// Given the list of GPUs this instantiation is targeted for,
// figure out the visible devices environment variable
//
// If different libraries are detected, the first one is what we use
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
if len(l) == 0 {
return "", ""
}
switch l[0].Library {
case "cuda":
return cudaGetVisibleDevicesEnv(l)
case "rocm":
return rocmGetVisibleDevicesEnv(l)
default:
slog.Debug("no filter required for library " + l[0].Library)
return "", ""
}
}