ollama/convert/convert_mixtral.go

95 lines
2.2 KiB
Go
Raw Normal View History

2024-05-31 20:00:49 -07:00
package convert
import (
"fmt"
"io"
"slices"
"strings"
"github.com/ollama/ollama/llm"
)
type mixtralModel struct {
llamaModel
2024-05-31 20:00:49 -07:00
NumLocalExperts uint32 `json:"num_local_experts"`
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
}
func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
kv := p.llamaModel.KV(t)
2024-05-31 20:00:49 -07:00
if p.NumLocalExperts > 0 {
kv["llama.expert_count"] = p.NumLocalExperts
}
if p.NumExpertsPerToken > 0 {
kv["llama.expert_used_count"] = p.NumExpertsPerToken
}
return kv
}
func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
2024-05-31 20:00:49 -07:00
oldnew := []string{
"model.layers", "blk",
"w1", "ffn_gate_exps",
"w2", "ffn_down_exps",
"w3", "ffn_up_exps",
}
for i := range p.NumLocalExperts {
oldnew = append(oldnew, fmt.Sprintf(".block_sparse_moe.experts.%d.", i), ".")
}
// group experts of the same layer (model.layers.%d) and type (w[123]) into a single tensor
namer := strings.NewReplacer(oldnew...)
experts := make(map[string]experts)
// merge experts into a single tensor while removing them from ts
ts = slices.DeleteFunc(ts, func(t Tensor) bool {
if !strings.Contains(t.Name(), ".block_sparse_moe.experts.") {
return false
}
name := namer.Replace(t.Name())
experts[name] = append(experts[name], t)
return true
})
2024-07-08 16:59:48 -07:00
var out []llm.Tensor
2024-05-31 20:00:49 -07:00
for n, e := range experts {
// TODO(mxyng): sanity check experts
2024-07-08 16:59:48 -07:00
out = append(out, llm.Tensor{
2024-05-31 20:00:49 -07:00
Name: n,
Kind: e[0].Kind(),
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
WriterTo: e,
})
}
return append(out, p.llamaModel.Tensors(ts)...)
2024-05-31 20:00:49 -07:00
}
func (p *mixtralModel) Replacements() []string {
2024-06-28 13:27:05 -07:00
return append(
p.llamaModel.Replacements(),
2024-06-28 13:27:05 -07:00
"block_sparse_moe.gate", "ffn_gate_inp",
)
}
2024-05-31 20:00:49 -07:00
type experts []Tensor
func (e experts) WriteTo(w io.Writer) (int64, error) {
// TODO(mxyng): experts _should_ be numerically sorted by expert but this should check
for _, t := range e {
// the canonical merged experts tensor stacks all experts along a new, 0 axis,
// e.g. `tensor.Stack(0, e[0], e[1:]...)`, which requires allocating temporary buffers
// this accomplishes the same thing by writing each expert tensor in sequence
if _, err := t.WriteTo(w); err != nil {
return 0, err
}
}
return 0, nil
}