comments
This commit is contained in:
parent
5e9db9fb0b
commit
df993fa37b
12 changed files with 63 additions and 61 deletions
|
@ -40,13 +40,13 @@ func (Parameters) KV(t *Tokenizer) llm.KV {
|
|||
return kv
|
||||
}
|
||||
|
||||
func (Parameters) specialTypes() []string {
|
||||
func (Parameters) specialTokenTypes() []string {
|
||||
return []string{
|
||||
"bos", "eos", "unk", "sep", "pad", "cls", "mask",
|
||||
}
|
||||
}
|
||||
|
||||
func (Parameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []*llm.Tensor) error {
|
||||
func (Parameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
|
||||
return llm.WriteGGUF(ws, kv, ts)
|
||||
}
|
||||
|
||||
|
@ -54,24 +54,27 @@ type Converter interface {
|
|||
// KV maps parameters to LLM key-values
|
||||
KV(*Tokenizer) llm.KV
|
||||
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
|
||||
Tensors([]Tensor) []*llm.Tensor
|
||||
Tensors([]Tensor) []llm.Tensor
|
||||
|
||||
// tensorName returns the LLM tensor name for a specific input name
|
||||
tensorName(string) string
|
||||
// specialTypes returns any special token types the model uses
|
||||
specialTypes() []string
|
||||
writeFile(io.WriteSeeker, llm.KV, []*llm.Tensor) error
|
||||
// specialTokenTypes returns any special token types the model uses
|
||||
specialTokenTypes() []string
|
||||
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
|
||||
}
|
||||
|
||||
func Convert(d string, ws io.WriteSeeker) error {
|
||||
f, err := os.Open(filepath.Join(d, "config.json"))
|
||||
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
|
||||
// and files it finds in the input path.
|
||||
// Supported input model formats include safetensors.
|
||||
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
|
||||
func Convert(path string, ws io.WriteSeeker) error {
|
||||
bts, err := os.ReadFile(filepath.Join(path, "config.json"))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var p Parameters
|
||||
if err := json.NewDecoder(f).Decode(&p); err != nil {
|
||||
if err := json.Unmarshal(bts, &p); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
|
@ -79,28 +82,23 @@ func Convert(d string, ws io.WriteSeeker) error {
|
|||
return errors.New("unknown architecture")
|
||||
}
|
||||
|
||||
var c Converter
|
||||
var conv Converter
|
||||
switch p.Architectures[0] {
|
||||
case "LlamaForCausalLM", "MistralForCausalLM":
|
||||
c = &llama{}
|
||||
conv = &llama{}
|
||||
case "MixtralForCausalLM":
|
||||
c = &mixtral{}
|
||||
conv = &mixtral{}
|
||||
case "GemmaForCausalLM":
|
||||
c = &gemma{}
|
||||
conv = &gemma{}
|
||||
default:
|
||||
return errors.New("unsupported architecture")
|
||||
}
|
||||
|
||||
bts, err := os.ReadFile(filepath.Join(d, "config.json"))
|
||||
if err != nil {
|
||||
if err := json.Unmarshal(bts, conv); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := json.Unmarshal(bts, c); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
t, err := parseTokenizer(d, c.specialTypes())
|
||||
t, err := parseTokenizer(path, conv.specialTokenTypes())
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
@ -112,12 +110,14 @@ func Convert(d string, ws io.WriteSeeker) error {
|
|||
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
|
||||
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
|
||||
}
|
||||
} else {
|
||||
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
|
||||
}
|
||||
|
||||
ts, err := parseTensors(d)
|
||||
ts, err := parseTensors(path)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return c.writeFile(ws, c.KV(t), c.Tensors(ts))
|
||||
return conv.writeFile(ws, conv.KV(t), conv.Tensors(ts))
|
||||
}
|
||||
|
|
|
@ -43,15 +43,15 @@ func (p *gemma) KV(t *Tokenizer) llm.KV {
|
|||
return kv
|
||||
}
|
||||
|
||||
func (p *gemma) Tensors(ts []Tensor) []*llm.Tensor {
|
||||
var out []*llm.Tensor
|
||||
func (p *gemma) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
for _, t := range ts {
|
||||
name := p.tensorName(t.Name())
|
||||
if strings.HasSuffix(name, "_norm.weight") {
|
||||
t.SetRepacker(p.addOne)
|
||||
}
|
||||
|
||||
out = append(out, &llm.Tensor{
|
||||
out = append(out, llm.Tensor{
|
||||
Name: name,
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
|
|
@ -96,8 +96,8 @@ func (p *llama) KV(t *Tokenizer) llm.KV {
|
|||
return kv
|
||||
}
|
||||
|
||||
func (p *llama) Tensors(ts []Tensor) []*llm.Tensor {
|
||||
var out []*llm.Tensor
|
||||
func (p *llama) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
for _, t := range ts {
|
||||
name := p.tensorName(t.Name())
|
||||
if strings.HasSuffix(name, "attn_q.weight") ||
|
||||
|
@ -105,7 +105,7 @@ func (p *llama) Tensors(ts []Tensor) []*llm.Tensor {
|
|||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, &llm.Tensor{
|
||||
out = append(out, llm.Tensor{
|
||||
Name: name,
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
|
|
@ -31,7 +31,7 @@ func (p *mixtral) KV(t *Tokenizer) llm.KV {
|
|||
return kv
|
||||
}
|
||||
|
||||
func (p *mixtral) Tensors(ts []Tensor) []*llm.Tensor {
|
||||
func (p *mixtral) Tensors(ts []Tensor) []llm.Tensor {
|
||||
oldnew := []string{
|
||||
"model.layers", "blk",
|
||||
"w1", "ffn_gate_exps",
|
||||
|
@ -58,10 +58,10 @@ func (p *mixtral) Tensors(ts []Tensor) []*llm.Tensor {
|
|||
return true
|
||||
})
|
||||
|
||||
var out []*llm.Tensor
|
||||
var out []llm.Tensor
|
||||
for n, e := range experts {
|
||||
// TODO(mxyng): sanity check experts
|
||||
out = append(out, &llm.Tensor{
|
||||
out = append(out, llm.Tensor{
|
||||
Name: n,
|
||||
Kind: e[0].Kind(),
|
||||
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
|
||||
|
|
|
@ -29,6 +29,11 @@ func (t tensorBase) Shape() []uint64 {
|
|||
return t.shape
|
||||
}
|
||||
|
||||
const (
|
||||
tensorKindF32 uint32 = iota
|
||||
tensorKindF16
|
||||
)
|
||||
|
||||
func (t tensorBase) Kind() uint32 {
|
||||
if strings.HasSuffix(t.name, ".block_sparse_moe.gate.weight") {
|
||||
return 0
|
||||
|
@ -38,9 +43,9 @@ func (t tensorBase) Kind() uint32 {
|
|||
case 0:
|
||||
panic("invalid tensor shape")
|
||||
case 1:
|
||||
return 0
|
||||
return tensorKindF32
|
||||
default:
|
||||
return 1
|
||||
return tensorKindF16
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -66,6 +66,7 @@ func parseSafetensors(ps ...string) ([]Tensor, error) {
|
|||
return ts, nil
|
||||
}
|
||||
|
||||
// safetensorsPad returns the padded size of the safetensors file given a length n and offset s
|
||||
func safetensorsPad(n, s int64) int64 {
|
||||
return 8 + n + s
|
||||
}
|
||||
|
@ -125,9 +126,9 @@ func (st safetensor) WriteTo(w io.Writer) (int64, error) {
|
|||
}
|
||||
|
||||
switch st.Kind() {
|
||||
case 0:
|
||||
case tensorKindF32:
|
||||
return 0, binary.Write(w, binary.LittleEndian, f32s)
|
||||
case 1:
|
||||
case tensorKindF16:
|
||||
f16s := make([]uint16, len(f32s))
|
||||
for i := range f32s {
|
||||
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
|
||||
|
|
|
@ -32,7 +32,7 @@ type Tokenizer struct {
|
|||
Template string
|
||||
}
|
||||
|
||||
func parseTokenizer(d string, specialTypes []string) (*Tokenizer, error) {
|
||||
func parseTokenizer(d string, specialTokenTypes []string) (*Tokenizer, error) {
|
||||
v, err := parseVocabulary(d)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
|
@ -66,6 +66,8 @@ func parseTokenizer(d string, specialTypes []string) (*Tokenizer, error) {
|
|||
switch pt.Type {
|
||||
case "Split":
|
||||
if pt.Pattern.Regex != "" {
|
||||
// create a checksum of all Split pretokenizers which should be sufficient
|
||||
// to identify the pretokenizer
|
||||
sha256sum.Write([]byte(pt.Pattern.Regex))
|
||||
}
|
||||
}
|
||||
|
@ -102,7 +104,7 @@ func parseTokenizer(d string, specialTypes []string) (*Tokenizer, error) {
|
|||
}
|
||||
}
|
||||
|
||||
for _, st := range specialTypes {
|
||||
for _, st := range specialTokenTypes {
|
||||
sv := SpecialVocabulary{Type: st}
|
||||
if bts, ok := p[fmt.Sprintf("add_%s_token", st)]; ok {
|
||||
if err := json.Unmarshal(bts, &sv.AddToken); err != nil {
|
||||
|
@ -224,14 +226,13 @@ func parseVocabulary(d string) (*Vocabulary, error) {
|
|||
}
|
||||
|
||||
for pattern, parseFn := range patterns {
|
||||
matches, err := filepath.Glob(filepath.Join(d, pattern))
|
||||
if err != nil {
|
||||
if _, err := os.Stat(filepath.Join(d, pattern)); errors.Is(err, os.ErrNotExist) {
|
||||
continue
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if len(matches) > 0 {
|
||||
return parseFn(d)
|
||||
}
|
||||
return parseFn(d)
|
||||
}
|
||||
|
||||
return nil, errors.New("unknown tensor format")
|
||||
|
|
17
llm/gguf.go
17
llm/gguf.go
|
@ -489,6 +489,7 @@ func readGGUFArray(llm *gguf, r io.Reader) (*array, error) {
|
|||
return a, nil
|
||||
}
|
||||
|
||||
// writeGGUFArray writes a slice s of type E to the write with a gguf type of t
|
||||
func writeGGUFArray[S ~[]E, E any](w io.Writer, t uint32, s S) error {
|
||||
if err := binary.Write(w, binary.LittleEndian, ggufTypeArray); err != nil {
|
||||
return err
|
||||
|
@ -502,16 +503,10 @@ func writeGGUFArray[S ~[]E, E any](w io.Writer, t uint32, s S) error {
|
|||
return err
|
||||
}
|
||||
|
||||
for _, e := range s {
|
||||
if err := binary.Write(w, binary.LittleEndian, e); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
return binary.Write(w, binary.LittleEndian, s)
|
||||
}
|
||||
|
||||
func WriteGGUF(ws io.WriteSeeker, kv KV, ts []*Tensor) error {
|
||||
func WriteGGUF(ws io.WriteSeeker, kv KV, ts []Tensor) error {
|
||||
if err := binary.Write(ws, binary.LittleEndian, []byte("GGUF")); err != nil {
|
||||
return err
|
||||
}
|
||||
|
@ -537,7 +532,7 @@ func WriteGGUF(ws io.WriteSeeker, kv KV, ts []*Tensor) error {
|
|||
}
|
||||
}
|
||||
|
||||
slices.SortFunc(ts, func(a, b *Tensor) int {
|
||||
slices.SortFunc(ts, func(a, b Tensor) int {
|
||||
var i, j int
|
||||
if n, err := fmt.Sscanf(a.Name, "blk.%d", &i); err != nil || n != 1 {
|
||||
return cmp.Compare(a.Name, b.Name)
|
||||
|
@ -622,7 +617,7 @@ func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
|
|||
return err
|
||||
}
|
||||
|
||||
func ggufWriteTensorInfo(ws io.WriteSeeker, t *Tensor) error {
|
||||
func ggufWriteTensorInfo(ws io.WriteSeeker, t Tensor) error {
|
||||
slog.Debug(t.Name, "kind", t.Kind, "shape", t.Shape, "offset", t.Offset)
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(t.Name))); err != nil {
|
||||
return err
|
||||
|
@ -649,7 +644,7 @@ func ggufWriteTensorInfo(ws io.WriteSeeker, t *Tensor) error {
|
|||
return binary.Write(ws, binary.LittleEndian, t.Offset)
|
||||
}
|
||||
|
||||
func ggufWriteTensor(ws io.WriteSeeker, t *Tensor, alignment int64) error {
|
||||
func ggufWriteTensor(ws io.WriteSeeker, t Tensor, alignment int64) error {
|
||||
offset, err := ws.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return err
|
||||
|
|
|
@ -21,7 +21,7 @@ func TestEstimateGPULayers(t *testing.T) {
|
|||
defer f.Close()
|
||||
inputLayerCount := 5
|
||||
|
||||
tensors := []*Tensor{
|
||||
tensors := []Tensor{
|
||||
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
|
||||
{Name: "blk.1.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
|
||||
{Name: "blk.2.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
|
||||
|
|
|
@ -19,7 +19,7 @@ import (
|
|||
|
||||
var stream bool = false
|
||||
|
||||
func createBinFile(t *testing.T, kv map[string]any, ti []*llm.Tensor) string {
|
||||
func createBinFile(t *testing.T, kv map[string]any, ti []llm.Tensor) string {
|
||||
t.Helper()
|
||||
|
||||
f, err := os.CreateTemp(t.TempDir(), "")
|
||||
|
|
|
@ -101,7 +101,7 @@ func TestGenerateChat(t *testing.T) {
|
|||
"tokenizer.ggml.tokens": []string{""},
|
||||
"tokenizer.ggml.scores": []float32{0},
|
||||
"tokenizer.ggml.token_type": []int32{0},
|
||||
}, []*llm.Tensor{
|
||||
}, []llm.Tensor{
|
||||
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
|
@ -149,7 +149,7 @@ func TestGenerateChat(t *testing.T) {
|
|||
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, llm.KV{
|
||||
"general.architecture": "bert",
|
||||
"bert.pooling_type": uint32(0),
|
||||
}, []*llm.Tensor{})),
|
||||
}, []llm.Tensor{})),
|
||||
Stream: &stream,
|
||||
})
|
||||
|
||||
|
@ -399,7 +399,7 @@ func TestGenerate(t *testing.T) {
|
|||
"tokenizer.ggml.tokens": []string{""},
|
||||
"tokenizer.ggml.scores": []float32{0},
|
||||
"tokenizer.ggml.token_type": []int32{0},
|
||||
}, []*llm.Tensor{
|
||||
}, []llm.Tensor{
|
||||
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
|
@ -447,7 +447,7 @@ func TestGenerate(t *testing.T) {
|
|||
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, llm.KV{
|
||||
"general.architecture": "bert",
|
||||
"bert.pooling_type": uint32(0),
|
||||
}, []*llm.Tensor{})),
|
||||
}, []llm.Tensor{})),
|
||||
Stream: &stream,
|
||||
})
|
||||
|
||||
|
|
|
@ -124,7 +124,7 @@ func newScenarioRequest(t *testing.T, ctx context.Context, modelName string, est
|
|||
"tokenizer.ggml.tokens": []string{" "},
|
||||
"tokenizer.ggml.scores": []float32{0},
|
||||
"tokenizer.ggml.token_type": []int32{0},
|
||||
}, []*llm.Tensor{
|
||||
}, []llm.Tensor{
|
||||
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
|
||||
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
|
||||
}))
|
||||
|
|
Loading…
Add table
Reference in a new issue