ollama/llama/mllama.cpp

901 lines
34 KiB
C++
Raw Normal View History

// NOTE: This is modified from clip.cpp for Mllama only
#include "mllama.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "ggml.h"
#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#ifdef GGML_USE_CANN
#include "ggml-cann.h"
#endif
#ifdef GGML_USE_VULKAN
#include "ggml-vulkan.h"
#endif
#include <algorithm>
#include <cmath>
#include <cstdarg>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <stdexcept>
#include <vector>
#define REQUIRE(x) \
do { \
if (!(x)) { \
throw std::runtime_error("REQUIRE failed: " #x); \
} \
} while (0)
#define LOG(fmt, ...) fprintf(stderr, "%s: " fmt "\n", __func__, ##__VA_ARGS__)
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#if __GLIBCXX__
#include <cstdio>
#include <ext/stdio_filebuf.h>
#include <fcntl.h>
#endif
#endif
struct mllama_image {
int width;
int height;
int num_channels = 3;
int num_tiles = 4;
int aspect_ratio_id;
std::vector<float> data;
};
static std::string format(const char *fmt, ...) {
va_list args;
va_start(args, fmt);
std::vector<char> b(128);
int n = vsnprintf(b.data(), b.size(), fmt, args);
REQUIRE(n >= 0 && n < b.size());
va_end(args);
return std::string(b.data(), b.size());
}
//
// utilities to get data from a gguf file
//
static int get_key_index(const gguf_context *ctx, const char *key) {
int key_index = gguf_find_key(ctx, key);
REQUIRE(key_index != -1);
return key_index;
}
static std::vector<uint32_t> get_u32_array(const gguf_context *ctx, const std::string &key) {
const int i = get_key_index(ctx, key.c_str());
const int n = gguf_get_arr_n(ctx, i);
const uint32_t *data = (uint32_t *)gguf_get_arr_data(ctx, i);
std::vector<uint32_t> s(n);
for (size_t j = 0; j < s.size(); j++) {
s[j] = data[j];
}
return s;
}
static uint32_t get_u32(const gguf_context *ctx, const std::string &key) {
return gguf_get_val_u32(ctx, get_key_index(ctx, key.c_str()));
}
static float get_f32(const gguf_context *ctx, const std::string &key) {
return gguf_get_val_f32(ctx, get_key_index(ctx, key.c_str()));
}
static std::string get_ftype(int ftype) {
return ggml_type_name(static_cast<ggml_type>(ftype));
}
//
// mllama layers
//
struct mllama_hparams {
uint32_t image_size;
uint32_t patch_size;
uint32_t hidden_size;
uint32_t n_intermediate;
uint32_t projection_dim;
uint32_t n_head;
uint32_t n_layer;
uint32_t n_global_layer;
uint32_t n_tiles;
float eps;
std::vector<bool> intermediate_layers;
};
struct mllama_layer {
// attention
struct ggml_tensor *k_w;
struct ggml_tensor *k_b;
struct ggml_tensor *q_w;
struct ggml_tensor *q_b;
struct ggml_tensor *v_w;
struct ggml_tensor *v_b;
struct ggml_tensor *o_w;
struct ggml_tensor *o_b;
struct ggml_tensor *attn_gate;
// layernorm 1
struct ggml_tensor *ln_1_w;
struct ggml_tensor *ln_1_b;
// ff
struct ggml_tensor *ff_i_w;
struct ggml_tensor *ff_i_b;
struct ggml_tensor *ff_o_w;
struct ggml_tensor *ff_o_b;
struct ggml_tensor *ff_gate;
// layernorm 2
struct ggml_tensor *ln_2_w;
struct ggml_tensor *ln_2_b;
};
struct mllama_vision_model {
struct mllama_hparams hparams;
// embeddings
struct ggml_tensor *class_embedding;
struct ggml_tensor *patch_embeddings;
struct ggml_tensor *position_embeddings;
struct ggml_tensor *position_embeddings_gate;
struct ggml_tensor *tile_position_embeddings;
struct ggml_tensor *tile_position_embeddings_gate;
struct ggml_tensor *pre_tile_position_embeddings;
struct ggml_tensor *pre_tile_position_embeddings_gate;
struct ggml_tensor *post_tile_position_embeddings;
struct ggml_tensor *post_tile_position_embeddings_gate;
struct ggml_tensor *pre_ln_w;
struct ggml_tensor *pre_ln_b;
std::vector<mllama_layer> layers;
std::vector<mllama_layer> global_layers;
struct ggml_tensor *post_ln_w;
struct ggml_tensor *post_ln_b;
struct ggml_tensor *mm_0_w;
struct ggml_tensor *mm_0_b;
};
struct mllama_ctx {
struct mllama_vision_model vision_model;
uint32_t ftype = 1;
struct gguf_context *ctx_gguf;
struct ggml_context *ctx_data;
std::vector<uint8_t> buf_compute_meta;
// memory buffers to evaluate the model
ggml_backend_buffer_t params_buffer = nullptr;
ggml_backend_t backend = nullptr;
ggml_gallocr_t compute_alloc = nullptr;
};
static ggml_tensor *mllama_image_build_encoder_layer(
struct ggml_context *ctx0, const size_t il, const struct mllama_layer &layer, struct ggml_tensor *embeddings,
const float eps, const int hidden_size, const int batch_size, const int n_head, const int d_head) {
struct ggml_tensor *cur = embeddings;
{
// layernorm1
cur = ggml_norm(ctx0, cur, eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.ln_1_w), layer.ln_1_b);
ggml_set_name(cur, format("%d pre layernorm", il).c_str());
}
{
// self-attention
struct ggml_tensor *Q = ggml_mul_mat(ctx0, layer.q_w, cur);
if (layer.q_b != nullptr) {
Q = ggml_add(ctx0, Q, layer.q_b);
}
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, Q->ne[1], batch_size);
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
ggml_set_name(Q, format("%d query", il).c_str());
struct ggml_tensor *K = ggml_mul_mat(ctx0, layer.k_w, cur);
if (layer.k_b != nullptr) {
K = ggml_add(ctx0, K, layer.k_b);
}
K = ggml_reshape_4d(ctx0, K, d_head, n_head, K->ne[1], batch_size);
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
ggml_set_name(K, format("%d key", il).c_str());
struct ggml_tensor *V = ggml_mul_mat(ctx0, layer.v_w, cur);
if (layer.v_b != nullptr) {
V = ggml_add(ctx0, V, layer.v_b);
}
V = ggml_reshape_4d(ctx0, V, d_head, n_head, V->ne[1], batch_size);
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
ggml_set_name(V, format("%d value", il).c_str());
struct ggml_tensor *KQ = ggml_mul_mat(ctx0, K, Q);
KQ = ggml_scale_inplace(ctx0, KQ, 1.0f / sqrtf((float)d_head));
KQ = ggml_soft_max_inplace(ctx0, KQ);
ggml_set_name(KQ, format("%d KQ", il).c_str());
struct ggml_tensor *KQV = ggml_mul_mat(ctx0, V, KQ);
KQV = ggml_reshape_4d(ctx0, KQV, d_head, KQV->ne[1], n_head, batch_size);
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
KQV = ggml_cont_3d(ctx0, KQV, hidden_size, KQV->ne[2], batch_size);
ggml_set_name(KQV, format("%d KQV", il).c_str());
cur = ggml_mul_mat(ctx0, layer.o_w, KQV);
if (layer.o_b != nullptr) {
cur = ggml_add(ctx0, cur, layer.o_b);
}
ggml_set_name(cur, format("%d self attention", il).c_str());
if (layer.attn_gate != nullptr) {
cur = ggml_mul_inplace(ctx0, cur, layer.attn_gate);
ggml_set_name(cur, format("%d self attention gate", il).c_str());
}
}
cur = ggml_add(ctx0, cur, embeddings);
ggml_set_name(cur, format("%d residual", il).c_str());
embeddings = cur;
{
// layernorm2
cur = ggml_norm(ctx0, cur, eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.ln_2_w), layer.ln_2_b);
ggml_set_name(cur, format("%d post layernorm", il).c_str());
}
{
// feed forward
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, layer.ff_i_w, cur), layer.ff_i_b);
cur = ggml_gelu_inplace(ctx0, cur);
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, layer.ff_o_w, cur), layer.ff_o_b);
ggml_set_name(cur, format("%d feed forward", il).c_str());
if (layer.ff_gate != nullptr) {
cur = ggml_mul_inplace(ctx0, cur, layer.ff_gate);
ggml_set_name(cur, format("%d feed forward gate", il).c_str());
}
}
// residual 2
cur = ggml_add(ctx0, cur, embeddings);
ggml_set_name(cur, format("%d residual", il).c_str());
embeddings = cur;
return embeddings;
}
static ggml_cgraph *mllama_image_build_graph(mllama_ctx *ctx, const mllama_image_batch *imgs) {
const auto &model = ctx->vision_model;
const auto &hparams = model.hparams;
const int image_size = hparams.image_size;
const int image_size_width = image_size;
const int image_size_height = image_size;
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
const int num_positions = num_patches + (model.class_embedding == nullptr ? 0 : 1);
const int hidden_size = hparams.hidden_size;
const int n_head = hparams.n_head;
const int d_head = hidden_size / n_head;
const int batch_size = imgs->size;
REQUIRE(batch_size == 1);
int num_tiles = 4;
int num_channels = 3;
if (imgs->data != nullptr) {
num_tiles = imgs->data[0].num_tiles > 0 ? imgs->data[0].num_tiles : num_tiles;
num_channels = imgs->data[0].num_channels > 0 ? imgs->data[0].num_channels : num_channels;
}
struct ggml_init_params params = {
ctx->buf_compute_meta.size(), // mem_size
ctx->buf_compute_meta.data(), // mem_buffer
true, // no_alloc
};
struct ggml_context *ctx0 = ggml_init(params);
struct ggml_cgraph *gf = ggml_new_graph(ctx0);
struct ggml_tensor *inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, num_channels, num_tiles);
ggml_set_name(inp_raw, "inp_raw");
ggml_set_input(inp_raw);
struct ggml_tensor *inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, num_tiles);
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
struct ggml_tensor *aspect_ratios = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, imgs->size);
ggml_set_name(aspect_ratios, "aspect_ratios");
ggml_set_input(aspect_ratios);
if (model.pre_tile_position_embeddings != nullptr) {
struct ggml_tensor *pre_tile_position_embeddings = ggml_get_rows(ctx0, model.pre_tile_position_embeddings, aspect_ratios);
ggml_set_name(pre_tile_position_embeddings, "pre_tile_position_embeddings");
pre_tile_position_embeddings = ggml_reshape_3d(ctx0, pre_tile_position_embeddings, hidden_size, 1, num_tiles);
if (model.pre_tile_position_embeddings_gate != nullptr) {
pre_tile_position_embeddings = ggml_mul_inplace(ctx0, pre_tile_position_embeddings, model.pre_tile_position_embeddings_gate);
}
inp = ggml_add(ctx0, inp, pre_tile_position_embeddings);
}
struct ggml_tensor *embeddings = inp;
if (model.class_embedding != nullptr) {
// concat class_embeddings and patch_embeddings
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, num_tiles);
ggml_set_name(embeddings, "embeddings");
ggml_set_input(embeddings);
for (int i = 0; i < num_tiles; ++i) {
// repeat class embeddings for each tile
embeddings = ggml_acc_inplace(ctx0, embeddings, model.class_embedding, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], i * embeddings->nb[2]);
}
embeddings = ggml_acc_inplace(ctx0, embeddings, inp, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
}
struct ggml_tensor *positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
ggml_set_name(positions, "positions");
ggml_set_input(positions);
struct ggml_tensor *position_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
if (model.position_embeddings_gate != nullptr) {
position_embd = ggml_mul_inplace(ctx0, position_embd, model.position_embeddings_gate);
}
embeddings = ggml_add(ctx0, embeddings, position_embd);
if (model.tile_position_embeddings != nullptr) {
struct ggml_tensor *tile_position_embeddings = ggml_get_rows(ctx0, model.tile_position_embeddings, aspect_ratios);
ggml_set_name(tile_position_embeddings, "tile_position_embeddings");
tile_position_embeddings = ggml_reshape_3d(ctx0, tile_position_embeddings, hidden_size, num_positions, num_tiles);
if (model.tile_position_embeddings_gate != nullptr) {
tile_position_embeddings = ggml_mul_inplace(ctx0, tile_position_embeddings, model.tile_position_embeddings_gate);
}
embeddings = ggml_add(ctx0, embeddings, tile_position_embeddings);
}
// pre-layernorm
if (model.pre_ln_w != nullptr) {
embeddings = ggml_mul(ctx0, ggml_norm(ctx0, embeddings, hparams.eps), model.pre_ln_w);
if (model.pre_ln_b != nullptr) {
embeddings = ggml_add(ctx0, embeddings, model.pre_ln_b);
}
ggml_set_name(embeddings, "pre layernorm");
}
const int num_padding_patches = 8 - (embeddings->ne[1] % 8) % 8;
embeddings = ggml_pad(ctx0, embeddings, 0, num_padding_patches, 0, 0);
embeddings = ggml_view_3d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1] * embeddings->ne[2], batch_size, embeddings->nb[1], embeddings->nb[2] * embeddings->ne[3], 0);
std::vector<struct ggml_tensor *> intermediate_embeddings;
// encoder
for (size_t il = 0; il < model.layers.size(); il++) {
if (hparams.intermediate_layers[il]) {
intermediate_embeddings.push_back(embeddings);
}
embeddings = mllama_image_build_encoder_layer(
ctx0, il, model.layers[il], embeddings,
hparams.eps, hidden_size, batch_size, n_head, d_head);
}
// post-layernorm
if (model.post_ln_w != nullptr) {
embeddings = ggml_mul(ctx0, ggml_norm(ctx0, embeddings, hparams.eps), model.post_ln_w);
if (model.post_ln_b != nullptr) {
embeddings = ggml_add(ctx0, embeddings, model.post_ln_b);
}
ggml_set_name(embeddings, "post layernorm");
}
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_positions + num_padding_patches, num_tiles);
if (model.post_tile_position_embeddings != nullptr) {
struct ggml_tensor *post_tile_position_embeddings = ggml_get_rows(ctx0, model.post_tile_position_embeddings, aspect_ratios);
ggml_set_name(post_tile_position_embeddings, "post_tile_position_embeddings");
post_tile_position_embeddings = ggml_reshape_3d(ctx0, post_tile_position_embeddings, hidden_size, 1, num_tiles);
if (model.post_tile_position_embeddings_gate != nullptr) {
post_tile_position_embeddings = ggml_mul(ctx0, post_tile_position_embeddings, model.post_tile_position_embeddings_gate);
}
embeddings = ggml_add(ctx0, embeddings, post_tile_position_embeddings);
}
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_tiles * (num_positions + num_padding_patches), 1);
// global encoder
for (size_t il = 0; il < model.global_layers.size(); il++) {
embeddings = mllama_image_build_encoder_layer(
ctx0, il, model.global_layers[il], embeddings,
hparams.eps, hidden_size, batch_size, n_head, d_head);
}
struct ggml_tensor *stacked_embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 0, hidden_size, (num_positions + num_padding_patches) * num_tiles);
for (size_t i = 0; i < intermediate_embeddings.size(); ++i) {
stacked_embeddings = ggml_concat(ctx0, stacked_embeddings, ggml_reshape_3d(ctx0, intermediate_embeddings[i], 1, intermediate_embeddings[i]->ne[0], intermediate_embeddings[i]->ne[1]), 0);
}
stacked_embeddings = ggml_reshape_4d(ctx0, stacked_embeddings, intermediate_embeddings.size() * hidden_size, num_positions + num_padding_patches, num_tiles, batch_size);
stacked_embeddings = ggml_unpad(ctx0, stacked_embeddings, 0, num_padding_patches, 0, 0);
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_positions + num_padding_patches, num_tiles);
embeddings = ggml_unpad(ctx0, embeddings, 0, num_padding_patches, 0, 0);
embeddings = ggml_concat(ctx0, embeddings, stacked_embeddings, 0);
// mllama projector
embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_0_w, embeddings), model.mm_0_b);
ggml_set_name(embeddings, "multi modal projector");
// build the graph
ggml_build_forward_expand(gf, embeddings);
ggml_free(ctx0);
return gf;
}
static struct ggml_tensor *mllama_tensor_load(struct ggml_context *ctx, const char *name, const bool optional) {
struct ggml_tensor *cur = ggml_get_tensor(ctx, name);
REQUIRE(cur != nullptr || optional);
return cur;
}
static std::vector<struct mllama_layer> mllama_layers_load(struct ggml_context *ctx, const char *prefix, const int n) {
std::vector<struct mllama_layer> layers(n);
for (size_t i = 0; i < layers.size(); i++) {
auto &layer = layers[i];
layer.ln_1_w = mllama_tensor_load(ctx, format("%s.blk.%d.ln1.weight", prefix, i).c_str(), false);
layer.ln_1_b = mllama_tensor_load(ctx, format("%s.blk.%d.ln1.bias", prefix, i).c_str(), false);
layer.ln_2_w = mllama_tensor_load(ctx, format("%s.blk.%d.ln2.weight", prefix, i).c_str(), false);
layer.ln_2_b = mllama_tensor_load(ctx, format("%s.blk.%d.ln2.bias", prefix, i).c_str(), false);
layer.k_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_k.weight", prefix, i).c_str(), false);
layer.k_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_k.bias", prefix, i).c_str(), true);
layer.q_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_q.weight", prefix, i).c_str(), false);
layer.q_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_q.bias", prefix, i).c_str(), true);
layer.v_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_v.weight", prefix, i).c_str(), false);
layer.v_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_v.bias", prefix, i).c_str(), true);
layer.o_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_out.weight", prefix, i).c_str(), false);
layer.o_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_out.bias", prefix, i).c_str(), true);
layer.ff_i_w = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_down.weight", prefix, i).c_str(), false);
layer.ff_i_b = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_down.bias", prefix, i).c_str(), false);
layer.ff_o_w = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_up.weight", prefix, i).c_str(), false);
layer.ff_o_b = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_up.bias", prefix, i).c_str(), false);
layer.attn_gate = mllama_tensor_load(ctx, format("%s.blk.%d.attn_gate", prefix, i).c_str(), true);
layer.ff_gate = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_gate", prefix, i).c_str(), true);
}
return layers;
}
// read and create ggml_context containing the tensors and their data
struct mllama_ctx *mllama_model_load(const char *fname, const int verbosity = 1) {
struct ggml_context *meta = nullptr;
struct gguf_init_params params = {
true, // no_alloc
&meta, // ctx
};
struct gguf_context *ctx = gguf_init_from_file(fname, params);
REQUIRE(ctx != nullptr);
if (verbosity >= 1) {
const int n_tensors = gguf_get_n_tensors(ctx);
const int n_kv = gguf_get_n_kv(ctx);
const std::string ftype = get_ftype(get_u32(ctx, "general.file_type"));
const int idx_desc = get_key_index(ctx, "general.description");
const std::string description = gguf_get_val_str(ctx, idx_desc);
const int idx_name = gguf_find_key(ctx, "general.name");
if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
const std::string name = gguf_get_val_str(ctx, idx_name);
LOG("model name: %s", name.c_str());
}
LOG("description: %s", description.c_str());
LOG("GGUF version: %d", gguf_get_version(ctx));
LOG("alignment: %zu", gguf_get_alignment(ctx));
LOG("n_tensors: %d", n_tensors);
LOG("n_kv: %d", n_kv);
LOG("ftype: %s", ftype.c_str());
LOG("");
}
const int n_tensors = gguf_get_n_tensors(ctx);
mllama_ctx *new_mllama = new mllama_ctx{};
#ifdef GGML_USE_CUDA
new_mllama->backend = ggml_backend_cuda_init(0);
LOG("vision using CUDA backend");
#endif
#ifdef GGML_USE_METAL
new_mllama->backend = ggml_backend_metal_init();
LOG("vision using Metal backend");
#endif
#ifdef GGML_USE_CANN
new_mllama->backend = ggml_backend_cann_init(0);
LOG("vision using CANN backend");
#endif
#ifdef GGML_USE_VULKAN
new_mllama->backend = ggml_backend_vk_init(0);
LOG("vision using Vulkan backend");
#endif
if (!new_mllama->backend) {
new_mllama->backend = ggml_backend_cpu_init();
LOG("vision using CPU backend");
}
// load tensors
{
std::vector<uint8_t> read_buf;
struct ggml_init_params params = {
(n_tensors + 1) * ggml_tensor_overhead(), // mem_size
nullptr, // mem_buffer
true, // no_alloc
};
new_mllama->ctx_data = ggml_init(params);
if (!new_mllama->ctx_data) {
LOG("ggml_init() failed");
mllama_free(new_mllama);
gguf_free(ctx);
return nullptr;
}
#ifdef _WIN32
int wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, NULL, 0);
if (!wlen) {
return NULL;
}
wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, wbuf, wlen);
if (!wlen) {
free(wbuf);
return NULL;
}
#if __GLIBCXX__
int fd = _wopen(wbuf, _O_RDONLY | _O_BINARY);
__gnu_cxx::stdio_filebuf<char> buffer(fd, std::ios_base::in);
std::istream fin(&buffer);
#else // MSVC
// unused in our current build
auto fin = std::ifstream(wbuf, std::ios::binary);
#endif
free(wbuf);
#else
auto fin = std::ifstream(fname, std::ios::binary);
#endif
if (!fin) {
LOG("cannot open model file for loading tensors\n");
mllama_free(new_mllama);
gguf_free(ctx);
return nullptr;
}
// add tensors to context
for (int i = 0; i < n_tensors; ++i) {
const char *name = gguf_get_tensor_name(ctx, i);
struct ggml_tensor *t = ggml_get_tensor(meta, name);
struct ggml_tensor *cur = ggml_dup_tensor(new_mllama->ctx_data, t);
ggml_set_name(cur, name);
}
// alloc memory and offload data
new_mllama->params_buffer = ggml_backend_alloc_ctx_tensors(new_mllama->ctx_data, new_mllama->backend);
for (int i = 0; i < n_tensors; ++i) {
const char *name = gguf_get_tensor_name(ctx, i);
struct ggml_tensor *cur = ggml_get_tensor(new_mllama->ctx_data, name);
const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
fin.seekg(offset, std::ios::beg);
if (!fin) {
LOG("failed to seek for tensor %s\n", name);
mllama_free(new_mllama);
gguf_free(ctx);
return nullptr;
}
int num_bytes = ggml_nbytes(cur);
if (ggml_backend_buffer_is_host(new_mllama->params_buffer)) {
// for the CPU and Metal backend, we can read directly into the tensor
fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
} else {
// read into a temporary buffer first, then copy to device memory
read_buf.resize(num_bytes);
fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
}
}
#if defined(_WIN32) && defined(__GLIBCXX__)
close(fd);
#else
fin.close();
#endif
}
// vision model
// load vision model
auto &vision_model = new_mllama->vision_model;
auto &hparams = vision_model.hparams;
hparams.hidden_size = get_u32(ctx, "mllama.vision.embedding_length");
hparams.n_head = get_u32(ctx, "mllama.vision.attention.head_count");
hparams.n_intermediate = get_u32(ctx, "mllama.vision.feed_forward_length");
hparams.n_layer = get_u32(ctx, "mllama.vision.block_count");
hparams.n_global_layer = get_u32(ctx, "mllama.vision.global.block_count");
hparams.n_tiles = get_u32(ctx, "mllama.vision.max_num_tiles");
hparams.image_size = get_u32(ctx, "mllama.vision.image_size");
hparams.patch_size = get_u32(ctx, "mllama.vision.patch_size");
hparams.projection_dim = get_u32(ctx, "mllama.vision.projection_dim");
hparams.eps = get_f32(ctx, "mllama.vision.attention.layer_norm_epsilon");
std::vector<uint32_t> intermediate_layers_indices = get_u32_array(ctx, "mllama.vision.intermediate_layers_indices");
hparams.intermediate_layers.resize(hparams.n_layer);
for (size_t i = 0; i < intermediate_layers_indices.size(); i++) {
hparams.intermediate_layers[intermediate_layers_indices[i]] = true;
}
if (verbosity >= 2) {
LOG("");
LOG("vision model hparams");
LOG("image_size %d", hparams.image_size);
LOG("patch_size %d", hparams.patch_size);
LOG("v_hidden_size %d", hparams.hidden_size);
LOG("v_n_intermediate %d", hparams.n_intermediate);
LOG("v_projection_dim %d", hparams.projection_dim);
LOG("v_n_head %d", hparams.n_head);
LOG("v_n_layer %d", hparams.n_layer);
LOG("v_n_global_layer %d", hparams.n_global_layer);
LOG("v_eps %f", hparams.eps);
}
vision_model.class_embedding = mllama_tensor_load(new_mllama->ctx_data, "v.class_embd", true);
vision_model.patch_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.patch_embd.weight", true);
vision_model.position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.position_embd.weight", true);
vision_model.position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.position_embd.gate", true);
vision_model.pre_ln_w = mllama_tensor_load(new_mllama->ctx_data, "v.pre_ln.weight", true);
vision_model.pre_ln_b = mllama_tensor_load(new_mllama->ctx_data, "v.pre_ln.bias", true);
vision_model.post_ln_w = mllama_tensor_load(new_mllama->ctx_data, "v.post_ln.weight", true);
vision_model.post_ln_b = mllama_tensor_load(new_mllama->ctx_data, "v.post_ln.bias", true);
vision_model.tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.tile_position_embd.weight", true);
vision_model.tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.tile_position_embd.gate", true);
vision_model.pre_tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.pre_tile_position_embd.weight", true);
vision_model.pre_tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.pre_tile_position_embd.gate", true);
vision_model.post_tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.post_tile_position_embd.weight", true);
vision_model.post_tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.post_tile_position_embd.gate", true);
vision_model.mm_0_w = mllama_tensor_load(new_mllama->ctx_data, "mm.0.weight", false);
vision_model.mm_0_b = mllama_tensor_load(new_mllama->ctx_data, "mm.0.bias", false);
vision_model.layers = mllama_layers_load(new_mllama->ctx_data, "v", hparams.n_layer);
vision_model.global_layers = mllama_layers_load(new_mllama->ctx_data, "v.global", hparams.n_global_layer);
ggml_free(meta);
new_mllama->ctx_gguf = ctx;
{
// measure mem requirement and allocate
new_mllama->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
new_mllama->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_mllama->backend));
struct mllama_image_batch batch;
batch.size = 1;
ggml_cgraph *gf = mllama_image_build_graph(new_mllama, &batch);
ggml_gallocr_reserve(new_mllama->compute_alloc, gf);
size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_mllama->compute_alloc, 0);
LOG("compute allocated memory: %.2f MB", compute_memory_buffer_size / 1024.0 / 1024.0);
}
return new_mllama;
}
struct mllama_image *mllama_image_init() {
return new mllama_image();
}
void mllama_image_free(struct mllama_image *img) { delete img; }
void mllama_image_batch_free(struct mllama_image_batch *batch) {
if (batch->size > 0) {
delete[] batch->data;
batch->size = 0;
}
}
bool mllama_image_load_from_data(const void *data, const int n, const int width, const int height, const int num_channels, const int num_tiles, const int aspect_ratio_id, struct mllama_image *img) {
img->width = width;
img->height = height;
img->num_channels = num_channels;
img->num_tiles = num_tiles;
img->aspect_ratio_id = aspect_ratio_id;
img->data.resize(n);
memcpy(img->data.data(), data, n);
return true;
}
inline int mllama(int x, int lower, int upper) {
return std::max(lower, std::min(x, upper));
}
void mllama_free(mllama_ctx *ctx) {
ggml_free(ctx->ctx_data);
gguf_free(ctx->ctx_gguf);
ggml_backend_buffer_free(ctx->params_buffer);
ggml_backend_free(ctx->backend);
ggml_gallocr_free(ctx->compute_alloc);
delete ctx;
}
bool mllama_image_encode(struct mllama_ctx *ctx, const int n_threads, mllama_image *img, float *vec) {
mllama_image_batch imgs{};
imgs.size = 1;
imgs.data = img;
return mllama_image_batch_encode(ctx, n_threads, &imgs, vec);
}
bool mllama_image_batch_encode(mllama_ctx *ctx, const int n_threads, const mllama_image_batch *imgs, float *vec) {
int batch_size = imgs->size;
REQUIRE(batch_size == 1);
// build the inference graph
ggml_cgraph *gf = mllama_image_build_graph(ctx, imgs);
ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
// set inputs
const auto &model = ctx->vision_model;
const auto &hparams = model.hparams;
const int image_size = hparams.image_size;
int image_size_width = image_size;
int image_size_height = image_size;
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
const int num_positions = num_patches + (model.class_embedding == nullptr ? 0 : 1);
{
struct ggml_tensor *inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
ggml_backend_tensor_set(inp_raw, imgs->data[0].data.data(), 0, ggml_nbytes(inp_raw));
}
{
struct ggml_tensor *embeddings = ggml_graph_get_tensor(gf, "embeddings");
if (embeddings != nullptr) {
void *zeros = malloc(ggml_nbytes(embeddings));
memset(zeros, 0, ggml_nbytes(embeddings));
ggml_backend_tensor_set(embeddings, zeros, 0, ggml_nbytes(embeddings));
free(zeros);
}
}
{
struct ggml_tensor *positions = ggml_graph_get_tensor(gf, "positions");
if (positions != nullptr) {
int *positions_data = (int *)malloc(ggml_nbytes(positions));
for (int i = 0; i < num_positions; i++) {
positions_data[i] = i;
}
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
free(positions_data);
}
}
{
struct ggml_tensor *aspect_ratios = ggml_graph_get_tensor(gf, "aspect_ratios");
if (aspect_ratios != nullptr) {
int *aspect_ratios_data = (int *)malloc(ggml_nbytes(aspect_ratios));
aspect_ratios_data[0] = imgs->data[0].aspect_ratio_id;
ggml_backend_tensor_set(aspect_ratios, aspect_ratios_data, 0, ggml_nbytes(aspect_ratios));
free(aspect_ratios_data);
}
}
if (ggml_backend_is_cpu(ctx->backend)) {
ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
}
ggml_backend_graph_compute(ctx->backend, gf);
// the last node is the embedding tensor
struct ggml_tensor *embeddings = ggml_graph_node(gf, ggml_graph_n_nodes(gf) - 1);
// copy the embeddings to the location passed by the user
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
return true;
}
int32_t mllama_image_size(const struct mllama_ctx *ctx) {
return ctx->vision_model.hparams.image_size;
}
int32_t mllama_patch_size(const struct mllama_ctx *ctx) {
return ctx->vision_model.hparams.patch_size;
}
int32_t mllama_hidden_size(const struct mllama_ctx *ctx) {
return ctx->vision_model.hparams.hidden_size;
}
int mllama_n_patches(const struct mllama_ctx *ctx) {
const auto &hparams = ctx->vision_model.hparams;
return (hparams.image_size / hparams.patch_size) * (hparams.image_size / hparams.patch_size);
}
int mllama_n_positions(const struct mllama_ctx *ctx) {
return mllama_n_patches(ctx) + (ctx->vision_model.class_embedding == nullptr ? 0 : 1);
}
int mllama_n_tiles(const struct mllama_ctx *ctx) {
return ctx->vision_model.hparams.n_tiles;
}
int mllama_n_embd(const struct mllama_ctx *ctx) {
return ctx->vision_model.hparams.projection_dim;
}
size_t mllama_n_embd_bytes(const struct mllama_ctx *ctx) {
return mllama_n_positions(ctx) * mllama_n_embd(ctx) * mllama_n_tiles(ctx) * sizeof(float);
}