ollama/llm/memory.go

356 lines
10 KiB
Go
Raw Normal View History

package llm
import (
"fmt"
"log/slog"
"strconv"
"strings"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/gpu"
)
// This algorithm looks for a complete fit to determine if we need to unload other models
func PredictServerFit(allGpus gpu.GpuInfoList, ggml *GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
// Split up the GPUs by type and try them
var estimatedVRAM uint64
for _, gpus := range allGpus.ByLibrary() {
var layerCount int
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
if opts.NumGPU < 0 {
if layerCount > 0 && layerCount >= int(ggml.KV().BlockCount()+1) {
return true, estimatedVRAM
}
} else {
if layerCount > 0 && layerCount >= opts.NumGPU {
return true, estimatedVRAM
}
}
}
return false, estimatedVRAM
}
type MemoryEstimate struct {
// How many layers we predict we can load
Layers int
// The size of the graph which occupies the main GPU
Graph uint64
// How much VRAM will be allocated given the number of layers we predict
VRAMSize uint64
// The total size of the model if loaded into VRAM. If all layers are loaded, VRAMSize == TotalSize
TotalSize uint64
// For multi-GPU scenarios, this provides the tensor split parameter
TensorSplit string
// For multi-GPU scenarios, this is the size in bytes per GPU
GPUSizes []uint64
// internal fields for logging purposes
inferenceLibrary string
layersRequested int
layersModel int
availableList []string
kv uint64
allocationsList []string
memoryWeights uint64
memoryLayerOutput uint64
graphFullOffload uint64
graphPartialOffload uint64
}
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
// The GPUs provided must all be the same Library
func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts api.Options) MemoryEstimate {
// Graph size for a partial offload, applies to all GPUs
var graphPartialOffload uint64
// Graph size when all layers are offloaded, applies to all GPUs
var graphFullOffload uint64
// Final graph offload once we know full or partial
var graphOffload uint64
// Projectors loaded into GPU0 only
var projectorSize uint64
// Conditional output size on GPU 0
var memoryLayerOutput uint64
2024-06-05 19:07:20 +00:00
// The sizes of a layer
var layerSize uint64
// The sum of all the layer sizes (just for logging)
var memoryWeights uint64
// True if all the layers are loaded
var fullyLoaded bool
// Overflow that didn't fit into the GPU
var overflow uint64
availableList := make([]string, len(gpus))
for i, gpu := range gpus {
availableList[i] = format.HumanBytes2(gpu.FreeMemory)
}
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", availableList)
for _, projector := range projectors {
projectorSize += projectorMemoryRequirements(projector)
// multimodal models require at least 2048 context
opts.NumCtx = max(opts.NumCtx, 2048)
}
2024-05-10 21:40:37 +00:00
layers := ggml.Tensors().Layers()
2024-05-13 21:14:10 +00:00
// add one layer worth of memory as a buffer
if blk0, ok := layers["blk.0"]; ok {
2024-06-05 19:07:20 +00:00
layerSize = blk0.size()
} else {
slog.Warn("model missing blk.0 layer size")
2024-05-13 21:14:10 +00:00
}
2024-05-10 21:40:37 +00:00
// fp16 k,v = (1 (k) + 1 (v)) * sizeof(float16) * n_ctx * n_layer * n_embd / n_head * n_head_kv
var kv uint64 = 2 * 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * ggml.KV().EmbeddingLength() / ggml.KV().HeadCount() * ggml.KV().HeadCountKV()
2024-06-05 19:07:20 +00:00
// KV is proportional to the number of layers
layerSize += kv / ggml.KV().BlockCount()
graphPartialOffload, graphFullOffload = ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
if graphPartialOffload == 0 {
graphPartialOffload = ggml.KV().GQA() * kv / 6
}
if graphFullOffload == 0 {
graphFullOffload = graphPartialOffload
}
// on metal there's no partial offload overhead
if gpus[0].Library == "metal" {
graphPartialOffload = graphFullOffload
2024-06-05 19:07:20 +00:00
} else if len(gpus) > 1 {
// multigpu should always use the partial graph size
graphFullOffload = graphPartialOffload
}
2024-04-26 22:00:54 +00:00
if layer, ok := layers["output_norm"]; ok {
memoryLayerOutput += layer.size()
}
if layer, ok := layers["output"]; ok {
memoryLayerOutput += layer.size()
} else if layer, ok := layers["token_embd"]; ok {
memoryLayerOutput += layer.size()
2024-04-25 21:41:50 +00:00
}
2024-06-05 19:07:20 +00:00
// Output layer handled at the end if we have space
gpuZeroOverhead := projectorSize
// Reduce set of GPUs to only those that have sufficient space to fit overhead and at least one layer
2024-04-25 21:41:50 +00:00
var layerCount int
layerCounts := make([]int, len(gpus))
gpuAllocations := make([]uint64, len(gpus))
type gs struct {
i int
g *gpu.GpuInfo
}
gpusWithSpace := []gs{}
for i := range gpus {
var gzo uint64
if len(gpusWithSpace) == 0 {
gzo = gpuZeroOverhead
}
// Only include GPUs that can fit the graph, gpu minimum, the layer buffer and at least more layer
2024-06-05 19:07:20 +00:00
if gpus[i].FreeMemory < gzo+max(graphPartialOffload, graphFullOffload)+gpus[i].MinimumMemory+2*layerSize {
slog.Debug("gpu has too little memory to allocate any layers", "gpu", gpus[i])
continue
}
gpusWithSpace = append(gpusWithSpace, gs{i, &gpus[i]})
2024-06-05 19:07:20 +00:00
gpuAllocations[i] += gpus[i].MinimumMemory + layerSize // We hold off on graph until we know partial vs. full
}
var gpuZeroID int
if len(gpusWithSpace) > 0 {
gpuZeroID = gpusWithSpace[0].i
gpuAllocations[gpuZeroID] += gpuZeroOverhead
}
2024-06-05 19:07:20 +00:00
// For all the layers, find where they can fit on the GPU(s)
2024-05-22 05:21:04 +00:00
for i := range int(ggml.KV().BlockCount()) {
// Some models have inconsistent layer sizes
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
layerSize = blk.size()
layerSize += kv / ggml.KV().BlockCount()
}
2024-06-05 19:07:20 +00:00
memoryWeights += layerSize
if opts.NumGPU >= 0 && layerCount >= opts.NumGPU {
// Stop allocating on GPU(s) once we hit the users target NumGPU
continue
}
// distribute the layers across the GPU(s) that have space
for j := len(gpusWithSpace); j > 0; j-- {
g := gpusWithSpace[i%j]
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
2024-06-05 19:07:20 +00:00
if g.g.FreeMemory > used+layerSize {
gpuAllocations[g.i] += layerSize
layerCounts[g.i]++
2024-05-13 21:14:10 +00:00
layerCount++
break
} else {
gpusWithSpace = append(gpusWithSpace[:i%j], gpusWithSpace[i%j+1:]...)
2024-05-13 21:14:10 +00:00
}
}
}
if layerCount >= int(ggml.KV().BlockCount()) {
fullyLoaded = true
} else {
for i := layerCount; i < int(ggml.KV().BlockCount()); i++ {
2024-06-05 19:07:20 +00:00
overflow += layerSize
}
}
2024-06-05 19:07:20 +00:00
// Determine if we need to consider output then find where it fits
2024-06-13 16:59:36 +00:00
if memoryLayerOutput > 0 && (opts.NumGPU < 0 || layerCount < opts.NumGPU) {
for j := len(gpusWithSpace); j > 0; j-- {
g := gpusWithSpace[layerCount%j]
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
if g.g.FreeMemory > used+memoryLayerOutput {
gpuAllocations[g.i] += memoryLayerOutput
layerCounts[g.i]++
layerCount++
break
}
}
2024-06-05 19:07:20 +00:00
if layerCount < int(ggml.KV().BlockCount())+1 {
fullyLoaded = false
overflow += memoryLayerOutput
}
}
// Add the applicable (full or partial) graph allocations
for i := range gpus {
if layerCounts[i] <= 0 {
continue
}
if fullyLoaded {
gpuAllocations[i] += graphFullOffload
} else {
gpuAllocations[i] += graphPartialOffload
}
}
if fullyLoaded {
graphOffload = graphFullOffload
} else {
graphOffload = graphPartialOffload
}
// Summaries for the log
var memoryRequiredPartial, memoryRequiredTotal uint64
for i := range gpuAllocations {
memoryRequiredPartial += gpuAllocations[i]
}
memoryRequiredTotal = memoryRequiredPartial + overflow
tensorSplit := ""
if len(gpus) > 1 {
splits := make([]string, len(gpus))
for i, count := range layerCounts {
splits[i] = strconv.Itoa(count)
}
tensorSplit = strings.Join(splits, ",")
}
allocationsList := []string{}
for _, a := range gpuAllocations {
allocationsList = append(allocationsList, format.HumanBytes2(a))
}
estimate := MemoryEstimate{
TotalSize: memoryRequiredTotal,
Layers: 0,
Graph: 0,
VRAMSize: 0,
GPUSizes: []uint64{},
inferenceLibrary: gpus[0].Library,
layersRequested: opts.NumGPU,
layersModel: int(ggml.KV().BlockCount()) + 1,
availableList: availableList,
kv: kv,
allocationsList: allocationsList,
memoryWeights: memoryWeights,
memoryLayerOutput: memoryLayerOutput,
graphFullOffload: graphFullOffload,
graphPartialOffload: graphPartialOffload,
}
if gpus[0].Library == "cpu" {
return estimate
}
if layerCount == 0 {
slog.Debug("insufficient VRAM to load any model layers")
return estimate
}
estimate.Layers = layerCount
estimate.Graph = graphOffload
estimate.VRAMSize = memoryRequiredPartial
estimate.TotalSize = memoryRequiredTotal
estimate.TensorSplit = tensorSplit
estimate.GPUSizes = gpuAllocations
return estimate
}
func (m MemoryEstimate) log() {
slog.Info(
"offload to "+m.inferenceLibrary,
slog.Group(
"layers",
2024-05-10 21:40:37 +00:00
// requested number of layers to offload
"requested", m.layersRequested,
// The number of layers the model has (including output)
"model", m.layersModel,
// estimated number of layers that can be offloaded
"offload", m.Layers,
// multi-gpu split for tensors
"split", m.TensorSplit,
),
slog.Group(
"memory",
// memory available by GPU for offloading
"available", m.availableList,
slog.Group(
"required",
// memory required for full offloading
"full", format.HumanBytes2(m.TotalSize),
// memory required to offload layers.estimate layers
"partial", format.HumanBytes2(m.VRAMSize),
// memory of KV cache
"kv", format.HumanBytes2(m.kv),
// Allocations across the GPUs
"allocations", m.allocationsList,
),
slog.Group(
"weights",
// memory of the weights
"total", format.HumanBytes2(m.memoryWeights),
// memory of repeating layers
"repeating", format.HumanBytes2(m.memoryWeights-m.memoryLayerOutput),
// memory of non-repeating layers
"nonrepeating", format.HumanBytes2(m.memoryLayerOutput),
),
slog.Group(
"graph",
// memory of graph when fully offloaded
"full", format.HumanBytes2(m.graphFullOffload),
// memory of graph when not fully offloaded
"partial", format.HumanBytes2(m.graphPartialOffload),
),
),
)
}