ollama/convert/convert.go

129 lines
3.4 KiB
Go
Raw Normal View History

package convert
import (
"encoding/json"
2024-06-01 03:00:49 +00:00
"errors"
"fmt"
"io"
2024-06-29 23:53:59 +00:00
"io/fs"
"log/slog"
"github.com/ollama/ollama/llm"
)
2024-06-01 03:00:49 +00:00
type Parameters struct {
Architectures []string `json:"architectures"`
VocabSize uint32 `json:"vocab_size"`
}
2024-06-01 03:00:49 +00:00
func (Parameters) KV(t *Tokenizer) llm.KV {
kv := llm.KV{
"general.file_type": uint32(1),
"general.quantization_version": uint32(2),
"tokenizer.ggml.pre": t.Pre,
"tokenizer.ggml.model": t.Vocabulary.Model,
"tokenizer.ggml.tokens": t.Vocabulary.Tokens,
"tokenizer.ggml.scores": t.Vocabulary.Scores,
"tokenizer.ggml.token_type": t.Vocabulary.Types,
}
if len(t.Merges) > 0 {
kv["tokenizer.ggml.merges"] = t.Merges
}
2024-06-01 03:00:49 +00:00
if t.Template != "" {
kv["tokenizer.chat_template"] = t.Template
}
2024-04-01 23:14:53 +00:00
2024-06-01 03:00:49 +00:00
for _, sv := range t.SpecialVocabulary {
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken
}
2024-06-01 03:00:49 +00:00
return kv
2024-04-01 23:14:53 +00:00
}
2024-07-08 23:59:48 +00:00
func (Parameters) specialTokenTypes() []string {
2024-06-01 03:00:49 +00:00
return []string{
"bos", "eos", "unk", "sep", "pad", "cls", "mask",
}
2024-06-01 03:00:49 +00:00
}
2024-07-08 23:59:48 +00:00
func (Parameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
2024-06-01 03:00:49 +00:00
return llm.WriteGGUF(ws, kv, ts)
}
2024-06-01 03:00:49 +00:00
type Converter interface {
// KV maps parameters to LLM key-values
KV(*Tokenizer) llm.KV
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
2024-07-08 23:59:48 +00:00
Tensors([]Tensor) []llm.Tensor
2024-06-01 03:00:49 +00:00
// tensorName returns the LLM tensor name for a specific input name
tensorName(string) string
2024-07-08 23:59:48 +00:00
// specialTokenTypes returns any special token types the model uses
specialTokenTypes() []string
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
}
2024-07-08 23:59:48 +00:00
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
// and files it finds in the input path.
// Supported input model formats include safetensors.
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
2024-06-29 23:53:59 +00:00
func Convert(fsys fs.FS, ws io.WriteSeeker) error {
bts, err := fs.ReadFile(fsys, "config.json")
if err != nil {
2024-06-01 03:00:49 +00:00
return err
}
2024-06-01 03:00:49 +00:00
var p Parameters
2024-07-08 23:59:48 +00:00
if err := json.Unmarshal(bts, &p); err != nil {
2024-06-01 03:00:49 +00:00
return err
}
2024-06-01 03:00:49 +00:00
if len(p.Architectures) < 1 {
return errors.New("unknown architecture")
}
2024-07-08 23:59:48 +00:00
var conv Converter
2024-06-01 03:00:49 +00:00
switch p.Architectures[0] {
case "LlamaForCausalLM", "MistralForCausalLM":
2024-07-08 23:59:48 +00:00
conv = &llama{}
2024-06-01 03:00:49 +00:00
case "MixtralForCausalLM":
2024-07-08 23:59:48 +00:00
conv = &mixtral{}
2024-06-01 03:00:49 +00:00
case "GemmaForCausalLM":
2024-07-08 23:59:48 +00:00
conv = &gemma{}
case "Phi3ForCausalLM":
conv = &phi3{}
2024-06-01 03:00:49 +00:00
default:
return errors.New("unsupported architecture")
}
2024-07-08 23:59:48 +00:00
if err := json.Unmarshal(bts, conv); err != nil {
2024-06-01 03:00:49 +00:00
return err
}
2024-06-29 23:53:59 +00:00
t, err := parseTokenizer(fsys, conv.specialTokenTypes())
2024-06-01 03:00:49 +00:00
if err != nil {
return err
}
2024-06-01 03:00:49 +00:00
if vocabSize := int(p.VocabSize); vocabSize > len(t.Vocabulary.Tokens) {
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", p.VocabSize, "actual", len(t.Vocabulary.Tokens))
for i := range vocabSize - len(t.Vocabulary.Tokens) {
t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i))
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
}
2024-07-08 23:59:48 +00:00
} else {
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
}
2024-06-01 03:00:49 +00:00
2024-06-29 23:53:59 +00:00
ts, err := parseTensors(fsys)
2024-06-01 03:00:49 +00:00
if err != nil {
return err
}
2024-07-08 23:59:48 +00:00
return conv.writeFile(ws, conv.KV(t), conv.Tensors(ts))
}